Monitoring forest species diversity feedback from 15 years of experience in France

Vincent Boulanger, M.Nicolas, B.Richard, I.Le Roncé, M.Aubert, F.Archaux, J-L.Dupouey

Office National des Forêts, R&D Dept. FONTAINEBLEAU, FRANCE

October 2, 2015

Contents

Introduction

- Context and general issues
- Reporting on long term changes
- Renecofor: 15 years of experience in ecosystem monitoring

Main lessons

- Methodological issues
 - Monitoring plant species composition
 - Fungus species censuses
- Spatio-temporal patterns
 - Plant bioindication
 - Determinants of fungal communities
- Fencing effects

Introduction ••••••• Context and general issues

Conclusion

Contents

Introduction

- Context and general issues
- Reporting on long term changes
- Renecofor: 15 years of experience in ecosystem monitoring

2 Main lesson

- Methodological issues
 - Monitoring plant species composition
 - Fungus species censuses
- Spatio-temporal patterns
 - Plant bioindication
 - Determinants of fungal communities
- Fencing effects

Monitoring forest changes & species diversity

Why monitoring forests ? a recent concern

- Recognise long-lasting trends in ecosystem dynamics, across forest cycles
- Providing explanations and identify causes of sudden forest dieback events
- Base policy on real science

Monitoring forest changes & species diversity

Why monitoring forests ? a recent concern

- Recognise long-lasting trends in ecosystem dynamics, across forest cycles
- Providing explanations and identify causes of sudden forest dieback events
- Base policy on real science

Measuring trends in biodivesity: a multifaceted challenge

- Global: Earth's sixth mass extinction (Barnosky et al. 2011)
- Social: links between biodiversity and ecosystem services
- Technical: how to assess (changes in) species diversity? (Chiarucci et al., 2011)
- Political: identify main drivers to set efficient policies

Reporting on long term changes

Contents

Introduction

- Context and general issues
- Reporting on long term changes
- Renecofor: 15 years of experience in ecosystem monitoring

2 Main lesso

- Methodological issues
 - Monitoring plant species composition
 - Fungus species censuses
- Spatio-temporal patterns
 - Plant bioindication
 - Determinants of fungal communities
- Fencing effects

Monitoring forest changes & species diversity

Options for assessing changes in species diversity

- Species richness is a typical indicator in conservation strategies
- Long-term trends in SR reported in many papers (see Vellend) et al., 2013, PNAS)
- Community composition and species populations
- Common and exceptional biodiversity
- Use of bio-indication for environmental description

Reporting on long term changes

Monitoring forest changes & species diversity

Options for assessing changes in species diversity

- Species richness is a typical indicator in conservation strategies
- Long-term trends in SR reported in many papers (see Vellend) et al., 2013, PNAS)
- Community composition and species populations
- Common and exceptional biodiversity
- Use of bio-indication for environmental description

Monitoring is a methodological issue in itself

- Ensure the temporal consistency of measurements
- Provide statistically relevant data, rigorous collection through homogeneous protocols,
- What trends can be detected? time spans

Renecofor: 15 years of experience in ecosystem monitoring

Contents

Introduction

- Context and general issues
- Reporting on long term changes

• Renecofor: 15 years of experience in ecosystem monitoring

2 Main lessor

- Methodological issues
 - Monitoring plant species composition
 - Fungus species censuses
- Spatio-temporal patterns
 - Plant bioindication
 - Determinants of fungal communities
- Fencing effects

Main lessons

Conclusion

Renecofor: 15 years of experience in ecosystem monitoring

Renecofor: a nation-wide network of forest ecosystems

Network design

- Set up: early 90's
- Period: 1992-2022
- 102 permanent plots in mature forest stands
- stratified by common commercial tree species

Main lessons

Conclusion

Renecofor: 15 years of experience in ecosystem monitoring

Sampling design

Years	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Plant species		n=102					n=102					n=102					n=48					n=102
Fungi species			n=12								n	:50										
Soil parameters																						

Contents

Introduction

- Context and general issues
- Reporting on long term changes
- Renecofor: 15 years of experience in ecosystem monitoring

2

Main lessons

Methodological issues

- Monitoring plant species composition
- Fungus species censuses

• Spatio-temporal patterns

- Plant bioindication
- Determinants of fungal communities

• Fencing effects

3 Conclusion

Methodological issues

Contents

Introduction

- Context and general issues
- Reporting on long term changes
- Renecofor: 15 years of experience in ecosystem monitoring

2

Main lessons

Methodological issues

- Monitoring plant species composition
- Fungus species censuses
- Spatio-temporal patterns
 - Plant bioindication
 - Determinants of fungal communities
- Fencing effects

Main lessons

Conclusion

Methodological issues

Sampling scheme for exhaustive censuses \mathcal{W}

Main lessons

Conclusion

Methodological issues

Sampling scheme for exhaustive censuses W

- Archaux et al. 2008
 - Autumn recording not needed
 - Spring and summer required

Main lessons

Conclusion

Methodological issues

Sampling scheme for exhaustive censuses W

Archaux et al. 2008

- Autumn recording not needed
- Spring and summer required

- Local botanists
- Calibration training

Methodological issues

Main lessons

Conclusion

Methodological issues

Observer effects W

Main lessons

Methodological issues

Observer effects W

- Awareness of plant census quality
- Recording: 2 botanists
- Keep the same observers/plot over time (if possible)

Main lessons

Conclusion

Methodological issues

Global trend in species richness W

Main lessons

Conclusion

Methodological issues

Global trend in species richness W

Main lessons

Conclusion

Methodological issues

Global trend in species richness W

- Increase in species richness over the first 10 years
- Turnover VS nestedness
- Can monitoring detect signs of "biodiversity erosion"?

Main lessons

Conclusion

Methodological issues

How many fungus inventories to pool and when ? $m{ au}$

Main lessons

Conclusion

Methodological issues

How many fungus inventories to pool and when ? $m{ au}$

A highly seasonal group

Main lessons

Conclusion

Methodological issues

How many fungus inventories to pool and when ? $m{ au}$

A highly seasonal group

- Better knowledge of fungal phenology (mushroom occurrence)
- New species detected at each sampling
- Multiple samplings to reach exhaustiveness ?

Main lessons

Conclusion

Methodological issues

How many fungus inventories to pool and when ? $m{ au}$

Sampling coverage

Main lessons

Conclusion

Methodological issues

How many fungus inventories to pool and when ? $m{ au}$

Methodological issues

How many fungus inventories to pool and when ? 👕

- Cumulated species richness does not level off
- High variability in community composition over time
- Is it possible to define species richness for fungi?

Spatio-temporal patterns

Contents

Introduction

- Context and general issues
- Reporting on long term changes
- Renecofor: 15 years of experience in ecosystem monitoring

2

Main lessons

- Methodological issues
 - Monitoring plant species composition
 - Fungus species censuses

Spatio-temporal patterns

- Plant bioindication
- Determinants of fungal communities
- Fencing effects

Main lessons

Conclusion

Spatio-temporal patterns

National trends in chemical parameters of forest soils \mathfrak{W} i

Main lessons

Conclusion

Spatio-temporal patterns

National trends in chemical parameters of forest soils \mathcal{W} (

Main lessons

Conclusion

Spatio-temporal patterns

Soil bioindication: at the plot scale \widetilde{W} i

Main lessons

Conclusion

Spatio-temporal patterns

Soil bioindication: at the plot scale $\widetilde{\mathbb{W}}$ i

• Relevance of plant bioindication

Main lessons

Conclusion

Spatio-temporal patterns

Soil bioindication: at the plot scale \mathcal{W} (

• Relevance of plant bioindication

Temporal relationship

• No inference possible over 10 years

Main lessons

Conclusion

Spatio-temporal patterns

What shapes fungal communities? 👕

Main lessons

Conclusion

Spatio-temporal patterns

What shapes fungal communities? 👕

Contents

Introduction

- Context and general issues
- Reporting on long term changes
- Renecofor: 15 years of experience in ecosystem monitoring

2

Main lessons

- Methodological issues
 - Monitoring plant species composition
 - Fungus species censuses
- Spatio-temporal patterns
 - Plant bioindication
 - Determinants of fungal communities

• Fencing effects

3 Conclusion

Main lessons

Conclusion

Fencing effects

Plant - Herbivore interactions 💥

Main lessons

Conclusion

Fencing effects

Plant - Herbivore interactions 💥

Trends in differences (unfenced - fenced) in species richness

- Paired plant inventories (inside and outside the fence) reduce observer effects
- Decrease in shrub species richness
- Increase in ground flora species richness
- Changes in species composition: more generalist species outside

Contents

Introduction

- Context and general issues
- Reporting on long term changes
- Renecofor: 15 years of experience in ecosystem monitoring

2) Main lessons

- Methodological issues
 - Monitoring plant species composition
 - Fungus species censuses
- Spatio-temporal patterns
 - Plant bioindication
 - Determinants of fungal communities
- Fencing effects

Requirements for plant sampling

- Rigorous protocol take advantage of past experience
- Calibration training: large scale, multiple observers
- More accurate assessment of inventory quality in monitoring networks

Requirements for plant sampling

- Rigorous protocol take advantage of past experience
- Calibration training: large scale, multiple observers
- More accurate assessment of inventory quality in monitoring networks

Sampling fungi 🕇

- Exhaustiveness nearly impossible through observation
- How to disentangle temporal changes and additional observed species?
- Meta-genomics (DNA barcoding)as an option?

Requirements for plant sampling

- Rigorous protocol take advantage of past experience
- Calibration training: large scale, multiple observers
- More accurate assessment of inventory quality in monitoring networks

Sampling fungi 🗂

- Exhaustiveness nearly impossible through observation
- How to disentangle temporal changes and additional observed species?
- Meta-genomics (DNA barcoding)as an option?

Are taxonomists endangered species?

The issue of generality

- Experiments are designed to test a specific set of questions.
- Should long-term monitoring be restricted to the original questions?
- Identify not only topics and variables to be monitored, but also thouse to NOT monitor.

The issue of generality

- Experiments are designed to test a specific set of questions.
- Should long-term monitoring be restricted to the original questions?
- Identify not only topics and variables to be monitored, but also thouse to NOT monitor.

Long-term monitoring takes time

- Mistaken beliefs and excessive expectations about network results
- Could the starting lag / maturing period could be shortened by more frequent samplings early on?
- Sustainable funding is required and must be maintained until the network produces the desired results!

