Improving monitoring strategies and process understanding using novel continues water quality sensor technologies

Michael Rode, Markus Weitere, Marieke Oosterwoud, Marieke Oosterwoud, Andreas Musolff, Seifeddine Jomaa, Sanyuan Jiang, Toralf Keller, Jan Fleckenstein, Karsten Rinke

Helmholtz Center for Environmental Research- UFZ, Magdeburg, Leipzig

Environmental Monitoring and Assessment 1-2 OCTOBER 2015 Aarhus, Denmark

Page 2

Motivation: Patterns in hydrochemical and biological time series may help to clarify catchment and instream processes

Solutes matter:

- (a) in their own right
 - -contaminants
 - -nutrients
- (b) as keys to hydrological and chemical processes

(c) constrain model parameters and define process description

What is really new?

We are able to measure water quality constituents in the same frequency than discharge

Temporal variability of chemical and biological data can be evaluated every hour or even every minute

Diurnal cycles reflect many different mechanisms, including

Photosynthesis & respiration: -> O₂ & CO₂ -> pH & Eh -> reactions, redox, speciation Temperature effects: -> reaction rates & biotic activity Evapotranspiration: -> streamflow cycles & source mixing

Biotic uptake and release:

-> macro- & micro-nutrients, DOC

Heffernan and Cohen (2010) - L&O

Hydrological Observatory Bode Catchment (TERENO) Helmholtz Centre for Environmental Research-UFZ

River metabolism and biotic nitrate uptake

- Stream ecosystem metabolism
 - Impact of environmental factors on Gross Primary Production
 - Land use-riparian vegetation
- Nitrate retention due to GPP
- Assess the value of new UV sensors

Online Water Quality Measurement Stations River stations

Measurement Sensors and Automatic Samplers

TRIOS UV sensors

YSI Sensors

Online-Data

2,5

2

1,5

1

0,5

190

Absorption [AU]

Study sites

Forest stream, Selke Station Meisdorf

- mean discharge = $1,5 \text{ m}^3/\text{s}$
- mean NO₃-N=1,5 mg/l
- reparian vegetation

Agricultural stream, Selke Station Hausneindorf

- mean discharge = 1,7 m³/s
- mean NO_3 -N = 3,3 mg/l
- spars reparian vegetation

Continues sensor data offer new insights into Ecosystem metabolism (Selke river)

- T

Diurnal variability of selected constituents in the forest stream reach (Selke river)

- Clear diurnal oxygen amplitudes in spring
- Nitrate amplitudes show maximum at dawn
- pH shows high correlation with oxygen
- Nitrate minimum shows hysteresis with oxygen maximum

Ecosystem metabolism in the Selke River

(agricultural stream, Selke)

- One station diel DO method (Roberts et al. 2007) and energy dissipation method
- Gross Primary Production (GPP) clearly follows seasonal variation
- NEP was mostly positive during vegetation period
- Clear regression between ER and GPP

>strong contribution of autotrophic respirtion on ER

Impact of temperature on GPP (forest stream reach, Meisdorf)

- High GPP during spring
- Much lower GPP than in agricultural stream
- Clear temperature effect only in spring
- Light is the controlling factor of GPP
- Autumn peak during leave litter fall

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

Impact of discharge on Gross Primary Production (agricultural stream, Hausneindorf)

Nitrogen cycling in streams.

Diel Method for Inferring Nitrogen Retention Mechanisms

Heffernan and Cohen 2010

NO₃ uptake rate related to GPP, Selke River

Forest stream (Meisdorf), April 2011

Agricultural stream (Hausneindorf), 2011

- Low flow conditions
- Lower GPP in forest stream
- Similar slopes of regression functions

N assimilatory uptake rate, forest and agricultural stream reach, Selke

based on regression between U and GPP

Ranges of NO₃ assimilatory uptake rates on a yearly basis (2011-2012)

comparison of different stream systems

- Forest stream shows lowest assimilatory NO₃-N uptake
- Light availability controls areal NO₃-N uptake

Stream network characteristics of the Selke river

- Stream order
- Stream bottom area

RESEARCH – UFZ

Stream order	Mean area (km²)	Stream length (km)	Mean length (km)	Mean direct drainage (km²)	Numbers	Direct Drain to Order (Proportion)
1	0.95	168	0.74	0.95	226	0.50
2	5.22	114	1.99	1.48	57	0.19
3	23.9	41.4	2.96	2.71	14	0.09
4	224	68.4	34.2	42.8	2	0.20
5	446	3.15	3.15	6.76	1	0.02

River network assimilatory NO3-N uptake, whole catchment (2011-2012)

- Percentage network uptake up to 40% in agricultural and forset streams
- Total yearly Ua uptake up to 13% of total load NO₃

Inferring DOC mobilisation processes from UV-vis spectral data

Funded by BMBF TALKO Project

Bode Catchment (TERENO)

Instrumentation

- Measuring period: 2 years
- Measurement interval : 15 minutes
 - UV-vis sensor (S::CAN)
 - 220-730nm wavelength
 - Self contained deployment

Sampling interval and DOC load

Seasonality

- Large [DOC] variation during discharge events
- Temperature controlled seasonal [DOC] variation

DOC~Q hysteresis gives information on transport mechanisms

- Hysteresis slope (correlation between DOC and discharge)
 - Log [DOC]=log a + b x log Q
 - steeper slope in spring and summer
- Hysteresis rotation
 - clockwise > surface runoff
 - Counter clockwise> interflow

Seasonality – DOM quality -using spectral slope ratios

Slope ration (Sr) as proxy for DOM quality

- Sr = S275-295 / S350-400
- decreasing Sr → increasing molecular weight
- Spring: enrichment in higher molecular weight
- Autumn: reduced molecular weight
- Sr converges with increasing dicharge

RESEARCH – UFZ

Rappbode Reservoir Observatory Station map

Warme Bode June/July 2012

Königshütte Reservoir June/July 2012

Rappbode Pre-dam Automated vertical profiler measurments

2D Water quality monitoring

BATHYMETRY of the Rappbode Reservoir

RESEARCH - UFZ

Hydrodynamic Simulation (3D)

Modelling NO₃-N concentration and loading with high frequency data

Nitrate-N concentration at daily time step

Nitrate-N load at daily time step

- Same density of hydrological and NO₃-N data
- High data density support model parametrization
- Improvement of model performances

Reduction of model parameter uncertainties compared to fortnightly data

Markov Chain Monte Carlo approach

- Improved model identification
- Reduced parameter uncertainty bounds
 - Parameter uncertainties
 - Total uncertainties

Conclusions

- Continues measurements allow new continues insights into stream ecosystem metabolism and nutrient processing
- Assimilatory N uptake can be evaluated by continues nitrate measurements (diel NO₃ method)
- Spectral analysis of UV sensors reveal information on DOC composition
- New data streams can support dynamic modelling of freshwaters

Thank you very much for your interest

Miniaturized, monochromatic absorbance measurements in waters

Lead: Jan Bumberger (MET), Cooperation: MET, SEEFO , UFZ

Lab-on-Chip Technology

- Still in development
- Currently used for marine systems HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ