

3rd Science for the Environment Conference Aarhus Denmark 1-2 October 2015

TARGETED REGULATION OF AGRICULTURAL N LOAD TO DANISH MARINE WATERS

(1)Jonas Rolighed, (2)Nikolaj Ludvigsen, (3) Hans Kjær, (4) Carl Åge Pedersen, (5) Søren Kolind Hvid, (6) Irene Asta Wiborg, (7) Gitte Blicher-Mathiesen

(1)Aarhus University, Department of Bioscience, Vejlsøvej 25, DK-8600 Silkeborg (2)Environmental Protection Agency, Danish Ministry of the Environment, Strandgade 29, DK-1401 København K. (3) Environmental Protection Agency, Danish Ministry of the Environment, Strandgade 29, DK-1401 København K. (4) SEGES, Agro Food Park 15, DK-8200 Aarhus N. (5) SEGES, Agro Food Park 15, DK-8200 Aarhus N. (6) SEGES, Agro Food Park 15, DK-8200 Aarhus N. (7) Aarhus University, Department of Bioscience, Vejlsøvej 25, DK-8600 Silkeborg

ABSTRACT

Nitrogen (N) loading from diffuse sources to Danish marine waters was reduced by 41% in the period 1990-2012 by a suite of general measures. However, further reduction could be required to reach goals of the EU Water Framework Directive. Existing regulation requires sub-optimal fertilization leading to yield reductions and low protein content of the crops. A more differentiated regulation could combine optimal fertilization on most fields with a low loss of nitrogen to marine recipients. The model prototypes was designed to environmentally differentiate the farm specific N-load and replace the current general measures, taking into account 1) targets of N-loading to marine recipients and 2) properties of N-retention from the field to marine recipients. The first model distributes part of the N-quota evenly among farms in a catchment - the remaining part is differentially distributed according to N-leaching and N-retention properties of the soil of each farm. Farmers can increase their N-quota by implementing measures to reduce N-leaching, i.e. establishing wetlands, using catch crops, reduction of fertilizer-N, etc. The second model distributes the allowed N load of the recipient evenly among the farms. In this model farmers can meet the required maximum N load by use of measures and through best management practice. The two models were tested in a case study involving 30 farmers, representing different types of agriculture from catchments with different N-loading targets and N-retention properties. Each farmer prepared plans for crop rotations and N-reducing measures for both models and for different levels of N-loading targets, optimizing economy and yield under the given circumstances. Results show that 50-90% of the participating farmers increases their economic income and also reduce or maintain current N load compared to present-day regulations. Few farms experienced significant economic losses. Farmers generally placed N-reducing measures in areas with low N-retention. Especially measures as catch crops and early sowing of winter cereals were used, while wetland establishment was popular on drained areas in one of the catchments.

3rd Science for the Environment Conference Aarhus Denmark 1-2 October 2015

