Macrophytes in boreal streams: Characterizing and predicting occurrence and abundance to assess human impact

J. Rääpysjärvi, H. Hämäläinen, J. Aroviita Finnish Environment Institute





CONFERENCE ON ENVIRONMENTAL MONITORING AND ASSESSMENT 1.10.2015

# Why use macrophytes to study the ecolocical status & human impact?





### Questions

- How to assess the extent of the impact of agriculture on stream ecosystems?
- How to define (in a reliable way) the ecological status of macrophytes?
  - Habitat
  - Presence/absence or abundance
  - Index

### Materials & methods

- Data from 51 near natural reference (REF) and 67 impacted (IMP) streams
  - national agricultural monitoring network
  - Data on water quality, hydro-morphological changes and land use
- Represent a range of streams from headwaters to larger rivers
- At each site macrophytes were surveyed at riffle and pool section (2\*100 m)
- We developed RIVPACS-type (Moss et al. 1987) models to assess the ecological status





### Materials & methods

- We predicted the presence and abundance of macrophytes in the absence of human influence
  - $\circ$  Clustering  $\rightarrow$
  - Structuring environmental variables?  $\rightarrow$  RF
  - $\circ$  Predict the probability to belong to cluster  $\rightarrow$
  - Predict the probability of each taxa & calculate expected abundances in the absence of human impact
  - Cross-validation of REF-sites
- We compared the predicted and observed communities using three indices:
  - o O/E-taxa
  - o BC
  - $\circ~$  AB, abundance index
  - $\circ$  1 excellent 0 poor condition



#### **TEST SITE**



Lakes: 3.3 % Altitude: 35 m Latitude: 60° 21.338' C. area: 199 m2 Peatland: 6 %

# Results: model evaluation

|                 |      | SD    | М    | ean   | % i  | % impacted |       |  |
|-----------------|------|-------|------|-------|------|------------|-------|--|
| Habitat & index | null | model | null | model | null | mo         | model |  |
| Pool            |      |       |      |       |      |            |       |  |
| O/E-taxa        | 0.34 | 0.27  | 0.98 | 0.94  | 35   | 36         |       |  |
| BC              | 0.19 | 0.16  | 0.99 | 0.96  | 27   | 58         |       |  |
| AB              | 0.25 | 0.22  | 0.99 | 0.99  | 23   | 32         |       |  |
| Riffle          |      |       |      |       |      |            |       |  |
| O/E-taxa        | 0.27 | 0.19  | 0.94 | 0.97  | 52   | 64         |       |  |
| BC              | 0.15 | 0.12  | 0.99 | 0.95  | 48   | 76         |       |  |
| AB              | 0.20 | 0.16  | 0.97 | 0.97  | 51   | 70         |       |  |
| Riffle and pool |      |       |      |       |      |            |       |  |
| O/E-taxa        | 0.29 | 0.20  | 0.99 | 0.95  | 40   | 63         |       |  |
| BC              | 0.13 | 0.16  | 0.99 | 0.96  | 55   | 66         |       |  |
| AB              | 0.18 | 0.13  | 0.99 | 0.97  | 60   | 79         |       |  |

- The standard deviation of the REF index values show that BC and AB were most precise
- Mean values of the REF sites indicate that all models are relatively accurate
- The proportion of the IMP sites judged impaired was highest in the riffle and combined data



### Results: response to human impact

| <del>ر</del> ن –                                                                                                                                                                            | 1.5                                      |                                                                      |                                         |                                                      |                                          |                                         |                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|--|
|                                                                                                                                                                                             | <b>E</b>                                 | 0/E-taxa 🥒 🔥                                                         |                                         | AB                                                   |                                          | BC                                      |                                         |  |
|                                                                                                                                                                                             | PŌ                                       | RÎ 🐴 RP                                                              | PO                                      | RI RP                                                | PO                                       | RI                                      | RP                                      |  |
| Water quality                                                                                                                                                                               |                                          |                                                                      |                                         |                                                      |                                          |                                         |                                         |  |
| Ammonium μg l <sup>-1</sup>                                                                                                                                                                 | -0.14                                    | -0.38 -0.39                                                          | -0.09                                   | -0.43 -0.53                                          | -0.43                                    | -0.43                                   | -0.49                                   |  |
| Suspended solids mg l <sup>-1</sup>                                                                                                                                                         | -0.06                                    | -0.33 -0.29                                                          | 0.02                                    | -0.33 -0.42                                          | -0.34                                    | -0.32                                   | -0.36                                   |  |
| Total P μg l <sup>-1</sup>                                                                                                                                                                  | -0.09                                    | -0.36 -0.31                                                          | 0.01                                    | -0.37 -0.44                                          | -0.35                                    | -0.35                                   | -0.40                                   |  |
| Hydromorphology                                                                                                                                                                             |                                          |                                                                      |                                         |                                                      |                                          |                                         |                                         |  |
| Habitat quality                                                                                                                                                                             | 0.09                                     | 0.15 0.13                                                            | 0.11                                    | 0.17 <b>0.2</b> 3                                    | 0.21                                     | 0.14                                    | 0.20                                    |  |
| Habitat Modification Score                                                                                                                                                                  | -0.11                                    | -0.12 -0.08                                                          | -0.07                                   | -0.14 -0.12                                          | -0.22                                    | -0.13                                   | -0.18                                   |  |
| Channelization score                                                                                                                                                                        | -0.09                                    | -0.02 0.07                                                           | -0.05                                   | 0.02 0.06                                            | -0.05                                    | 0.02                                    | 0.03                                    |  |
| Land use                                                                                                                                                                                    |                                          |                                                                      |                                         |                                                      |                                          |                                         |                                         |  |
| Urban and agricultural land use %, whole catchment                                                                                                                                          | -0.02                                    | -0.24 -0.24                                                          | 0.01                                    | 0.34 -0.3                                            | -0.34                                    | -0.33                                   | -0.36                                   |  |
| Urban and agricultural land use %, riparian area                                                                                                                                            | -0.02                                    | -0.32 -0.30                                                          | -0.08                                   | 0.41 -0.4                                            | -0.33                                    | -0.39                                   | -0.41                                   |  |
| Habitat quality<br>Habitat Modification Score<br>Channelization score<br>Land use<br>Urban and agricultural land use %, whole catchment<br>Urban and agricultural land use %, riparian area | 0.09<br>-0.11<br>-0.09<br>-0.02<br>-0.02 | 0.15 0.13<br>-0.12 -0.08<br>-0.02 0.07<br>-0.24 -0.24<br>-0.32 -0.30 | 0.11<br>-0.07<br>-0.05<br>0.01<br>-0.08 | 0.17 0.23<br>-0.14 -0.12<br>0.02 0.06<br>-0.34 -0.33 | 0.21<br>-0.22<br>-0.05<br>-0.34<br>-0.33 | 0.14<br>-0.13<br>0.02<br>-0.33<br>-0.39 | 0.20<br>-0.18<br>0.03<br>-0.36<br>-0.41 |  |

Total phosphorus µg/l

Ammonium µg/l

Spearman's rank correlation between predictive modelling based OE-taxa, AB-, BC-indices (PO = pools, RI = riffles, RP = pool and riffle combined) and variables describing human pressure.

# Conclusions

- The reference community variation explained by:
  - latitude, altitude, size of the catchment, proportion of lakes in the catchment
- The expected species composition can be predicted with reasonable accuracy and precision
- We developed a novel method to derive site-specific expectation for species abundance
  - The importance of abundances!
- The indicces based on community abundance and composition showed clear responses to several anthropogenic disturbance variables



# Thank you!