IMPROVEMENTS IN WATER QUALITY OF A DANISH ESTUARY FOLLOWING NUTRIENT REDUCTIONS

Peter Stæhr¹, Jeremy Testa², Jacob Carstensen¹

¹Dept. Bioscience, AU, Denmark ²Chesapeake Biological Laboratory, Univ. Maryland, USA

STÆHR, PETER ANTON SC

THE OLIGOTROPHICATION PATHWAY?

Which responses, where and how fast?

- Loading and concentrations
- Transformation and exchange processes
- Water quality and biological changes
- Recovery pathways

LONG-TERM MONITORING AND MODELLING

LOADINGS AND CONCENTRATIONS

SEASONALITY IN NUTRIENTS

DIN declines occurred in spring and autumn – related to lower inputs

DIP declines due to reduced sediment release during summer and reduced inputs during winter

Continued high DIP release in summer

STÆHR, PETER ANTON

SCIENCE FOR THE ENVIRONMENT 01 OCTOBER 2015

LIMITING NUTRIENTS

Outer estuary is strongly N and P limited \rightarrow low response to further reductions

Inner estuary is mostly N limited

WATER QUALITY PARAMETERS

STÆHR, PETER ANTON

SCIENCE FOR THE ENVIRONMENT 01 OCTOBER 2015

SALINITY AND TEMPERATURE

STÆHR, PETER ANTON

01 OCTOBER 2015

NET OXYGEN PRODUCTION

Increasing autotrophy in both parts of the estuary, with most changes during summer \rightarrow

reduced ecosystem respiration and increased benthic primary production

NET DIP AND DIN PRODUCTION

AARHUS

JNIVERSITY

High prim prod during spring \rightarrow large uptake of DIN and DIP (mostly inner)

Modest decrease in DIP release from sediments during summer (only inner)

STÆHR, PETER ANTON

NUTRIENT MASS BALANCES

Small changes in DIN fluxes in both parts

Reduced DIP uptake in both parts over time

High exchange of both DIN and DIP at the outer part \rightarrow Low retention in the estuary

REDUCED IMPORTANCE OF DENITRIFICATION

STATUS OF THE BIOLOGICAL COMMUNITIES

Parameter	Inner part	Outer part	Target (WFD)
Eelgrass main depth limit	2.6m	4.2m	3.0 and 4.1m
Chl a	4.0µg /L	2.5µg /L	3.6 and 2.1µg /L
Benthic filter feeders	~3 g AFDW	< 0.5g AFDW	none

Annual means over the last 3 years

STÆHR, PETER ANTON SCIENCE FOR THE ENVIRONMENT

01 OCTOBER 2015

WHICH RESPONSES, WHERE AND HOW FAST?

1) Impact and responses of Inner \neq outer estuary

2) Three recovery phases:

I: Fast transformation and loss of C,N,P →

a) reduced nutrient concentrations \rightarrow

b) gradual nutrient limitation (mostly DIN)

c) slower removal of excess N and P over time

II: Reduced pelagic PP and ChI \rightarrow

a) improved light at bottom

b) fewer benthic filtrators

c) lower ecosystem R but higher benthic PP

III: Slow improvements in eelgrass \rightarrow longer term storage of C,N,P

3) Targets are getting close but changes in temp, precip. and wind may affect recovery

THIS WORK WAS SUPPORTED BY THE COCOA PROJECT FUNDED UNDER THE BONUS PROGRAM "VIABLE ECOSYSTEMS"

STÆHR, PETER ANTON SCIEN

SCIENCE FOR THE ENVIRONMENT 01 OCTOBER 2015