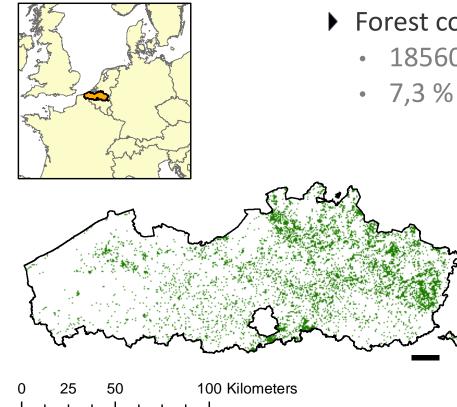
Flanders State of the Art

Development of a semi-automated process to analyse data from the Flemish forest inventory

Toon Westra, Hans Van Calster, Pieter Verschelde, Leen Govaere and Paul Quataert

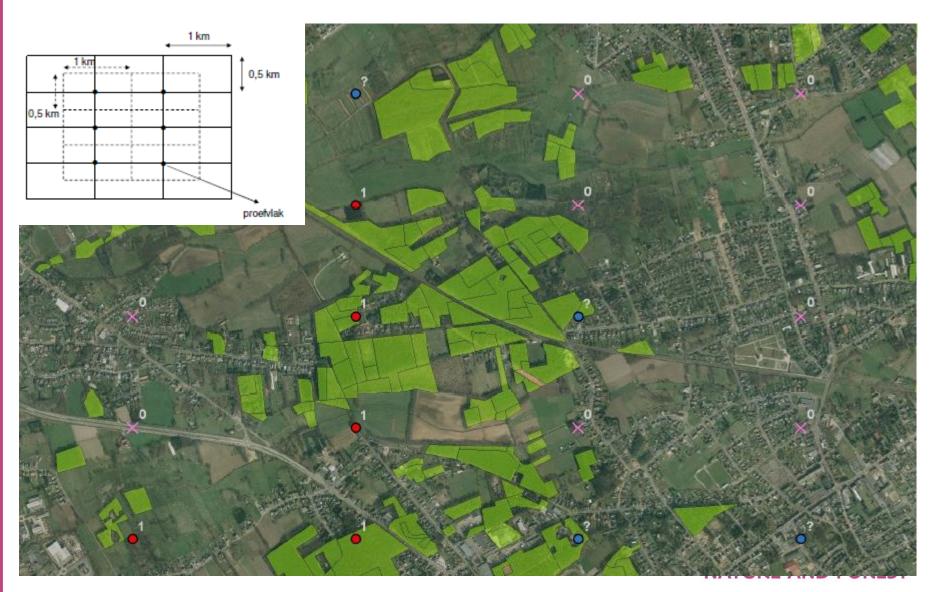
3rd Science for the Environment Conference Aarhus Denmark 1-2 October 2015

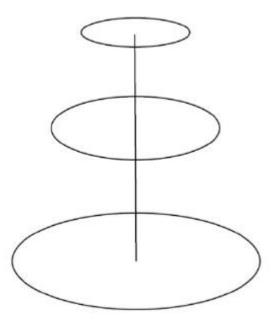

Overview

Forest inventory in flanders: objectives and design

RESEARCH INSTITUTE NATURE AND FOREST

- Challanges for data analysis
- Semi-automated analysis process
 - Quality control of measured variables
 - Calculation of derived variables
 - Actual data analysis


Conclusions


- Forest cover in Flanders
 - 185600 ha

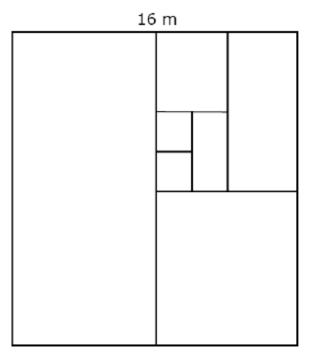
Flemish forest inventory (VBI)

- Information on status and trends of forest characteristics in Flanders
- Managed by Agency of Nature and Forests (ANB)
- 61 monitoring questions/ targets
- 6 thematic categories
 - Forest distrubution
 - Tree species composition
 - Forest stand characteristics
 - Biodiversity indicators
 - Vegetation composition
 - Forest management and forest use (wood quantity and quality)

Sample plot: stand characteristics and tree measurements

A2

- 4,5 m radius
- Trees with perimeter < 22 cm and height >= 2 m
- Number per species

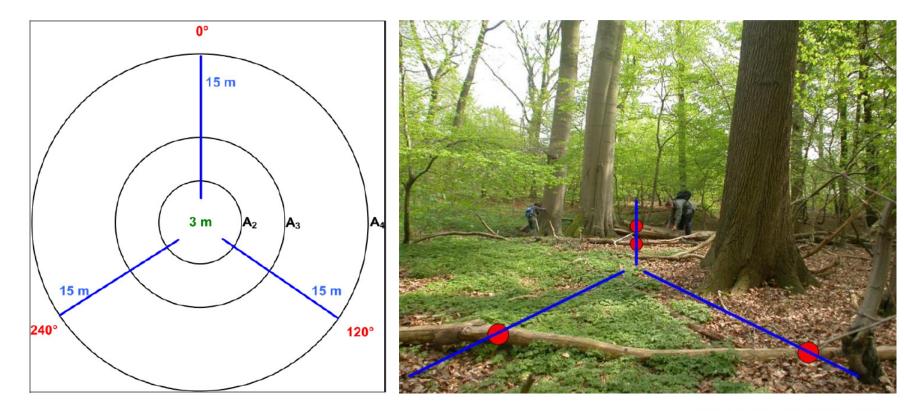

A3

- 9 m radius
- Trees with 22 cm <= perimeter < 122 cm
- · Species, status, perimeter, height, location

A4

- 18 m radius
- Trees with perimeter >= 122 cm
- Species, status, perimeter, height, location
- Stand characteristics RESEARCH INSTITUTE
 NATURE AND FOREST

Sample plot: vegetation


Braun-Blanquet cover/abundance

- Herb layer
- Shrub layer
- Tree layer

16 n

RESEARCH INSTITUTE

Sample plot: line intersect sampling for laying dead wood

RESEARCH INSTITUTE

▶ 1st inventory: 1997 – 1999

> 2nd inventory: 2009 – ongoing

- 12 year cycle
- Approximately 50 % of marked sample plots could be retrieved → mixture of permanent and tempory sample plots
- Various differences in measurement
 protocol
 - 1st inventory: plots on forest edge or containing different stand types removed to get homogeneous forest plot
 - 2nd inventory: plots are put on original position

Analysing data from the Flemish forest inventory

- Goal: periodical reporting of results based on standardized data analysis
- Challanges
 - Many types of data collected in the field
 - Many variables derived from raw data (for example: wood volume, biodiversity indices, Ellenberg values,...)
 - Many monitoring questions to be answered
- ightarrow Good organization and documentation of dataset
 - Mixture of permanent and temporary plots
 - Some plots are only partially covered by forest
- \rightarrow Need for appropriate statistical techniques

Analysing data from the Flemish forest inventory

- Quality assurance of data analysis is essential
- INBO developped a semi-automated process to support data analysis and reporting of results

RESEARCH INS

- Analysis process is implemented by a series of R-scripts
- The actual analysis will be performed by ANB

Overview of analysis process

www.inbo.be

Analysis process: quality control

- Comparison of tree measurements in the 1st and 2nd inventory
 Only for trees that have been remeasured in 2nd inventory (35% of the trees)
- Detection of anomalies and group them into different types
 - Zombies: status changes from dead to alive
 - Shifters: tree changes to another species
 - Movers: tree changes position
 - Outliers in perimeter growth
 - Outliers in height growth

Validation

- Change value of measured variable
- Consider the trees in the 1st and 2nd inventory as different trees \rightarrow this impacts the further analysis
- Confirm measurements

RESEARCH INSTITUTE

Analysis process: database of derived variables

► Most questions can not directly be answered based on the original measured variables → derived variables have to be calculated

- ► For example
 - What 's the volume of dead standing trees per ha?
 - Status, height and perimeter per tree \rightarrow volume per dead tree \rightarrow volume dead trees per plot type \rightarrow volume dead trees per ha
- In total 90 derived variables for 61 monitoring questions/targets
- Variables describing the measurement process are needed to perform a proper statistical analysis
 - Measurement date
 - Plot weight
 - Permanent plot of temporary plot
 - • •

Analysis process: database of derived variables

Derived variables, measurements characteristics and strata information are organised in a database

Documentation

- Which derived variables are needed to answer a certain monitoring questions, which external data is used
- Clear description of how derived variables are calculated

RESEARCH INST

Analysis process: actual data analysis

• Example scripts for detailed analysis of monitoring questions

- Different types of derived variables: continuous, binary, count data, categorical data
- Thematically different types of questions

Data analysis consists of different parts

- Data exploration
- Design-based parameter estimation
- Model-based parameter estimation

Results can be stored in a database

- Parameter estimate and confidence intervals
- Date of analysis
- Characteristics of analysing technique
- Characteristics of the dataset on which analysis was performed

Documentation

- How to interpret data exploration plots
- How to interpret models
- How to validate results

Analysis process: model – based parameter estimation

- Estimating differences between both inventories is not straightforward
 - In only part of the locations plots were remeasured, in the other part new plots were established

RESEARCH INS

- Measurements in permanent plots are more similar
- ▶ Our approach → Generalized linear mixed effects models (GLMM)
 - Plot ID is used as random effect
 - GLMM can handle different data distributions
 - GLMM can handle plot weights
 - Strata can be incorporated
 - Nlme package (Pinheiro et al., 2015)

Analysis process: model – based parameter estimation

- Example analysis (preliminary results)
 - VolumeSnags ~ InventoryID + (1 | PlotID)
 - Model output

<pre>o Fixed effects:</pre>					
I	Estimate	Std.	Error	t١	value
(Intercept)	4.0238	0.3	122	12	2.889
InventoryID2	5.1140	0.5	310	(9.631

- Estimated standing dead wood volume
 - \circ 1st inventory: 4,0 m³/ha
 - \circ 2nd inventory: 4,0 + 5,1 = 9,1 m³/ha
 - Difference: 5,1 m³/ha
 - \circ 95% confidence interval of difference: 4,1 6,2 m³/ha

RESEARCH INSTITUTE NATURE AND FOREST

www.inbo.be

Conclusions

 Quality assurance of data analysis process is an essential part of long term monitoring programs

- → Standardized, statistically sound, repeatable analysis of data and reporting of results
- Approach for Flemish forest inventory
 - Conceptual scheme of analysis process
 - Well documented R-scripts
 - Parameter estimation based on GLMM
 - Documentation + manual

RESEARCH INST

Thank you

www.inbo.be