

October 5-6 2011

The RECOCA and BALTCOST models: integrated modelling to support cost-effective nutrient management in the Baltic Sea

Berit Hasler, Maria T.H. Konrad, James C.R. Smart, Mikolaj Czajkowski, Katarina Elofsson, Adam Was, Anders Fonnesbech-Wulff, Tomasz Zylich.

Nutrient abatement cost models for the Baltic Sea:

- » "BALTCOST": developed through BNI
 and the Bonus RECOCA project
- "The RECOCA model": developed through the Bonus RECOCA project

BALTCOST and RECOCA: Static models which use the inter-sea region nutrient transport matrix from the BNI SANBALT marine model. *Will be modified to handle the new BNI BALTSEM marine model with more sea-regions*.

What can the models be used for ?

- > Both models:
 - > quantify cost-effectiveness of N & P abatement measures
 - > estimate the minimum total cost of achieving particular N & P load reductions for potential use in cost benefit analysis
- > Differences between the models:
 - > spatial resolution of terrestrial, riverine and marine physical processes and their associated natural science models
 - > spatial resolution of minimum-cost abatement solutions

BALTCOST and RECOCA models

- > Use spatially-specific data on physical parameters and pollutant sources to model and quantify the effects of N & P abatement measures
- Use spatially-specific cost functions to quantify the costs of N & P abatement measures
- > Use non-linear optimisation to identify cost-minimised spatially-specific combinations of N & P abatement measures to achieve environmental targets: eg. N & P load targets for sea regions as specified under BSAP

BALTCOST and RECOCA models

- Evolutionary developments from an earlier environmental-economic model of cost-effective N & P abatement for the Baltic
- BALTCOST and RECOCA models operate at different spatial resolutions
- BALTCOST models N & P abatement in 9 countries at main drainage basin resolution: 24 main drainage basins in total around the Baltic
- RECOCA models N & P abatement in 9 countries at 10x10 km grid cell resolution: 17533 grid cells in total around the Baltic

BALTCOST

- Moderate spatial resolution, covering all 9 Baltic coast countries draining into the 7 Baltic sea regions via 24 drainage basins.
- Well suited to identifying costeffective combinations of abatement measures when nutrient load reductions are configured or allocated differently between countries and/or sea regions

The RECOCA model

- > High spatial resolution: 10 x 10km grid cell-specific modelling of natural processes – N & P retention in soil and surface waters, soil type and agricultural production etc.
- Well suited to modelling different spatial implementations of abatement measures within countries and terrestrial regions

N & P abatement measures - both models

- > Improve waste water treatment (WWT)
- > Restore wetlands and/or construct new wetlands
- > Reduce fertiliser applications in arable agriculture
- > Catch crops under spring cereals
- > Reduce animal numbers in livestock farming
- > Reduce NOx emissions from electricity generation and shipping
- > For each measure:
 - > model effectiveness (incremental effect, retentions etc.)
 - > model cost (marginal and/or average costs)
 - > assign maximum implementation capacity

at the relevant spatial resolution

> Models minimise total cost by maximising cost-effectiveness

New data inputs for effectiveness modelling

- > Soil types, agricultural cropping structure and livestock numbers
- > Current fertilizer applications, arable crop yield functions
- Spatially-specific N & P retentions in soil and surface waters (via root zone loss function etc.)
- Households currently connected to different levels of WWT, location and level of existing WWT facilities
- Electricity generating plant: locations, capacities, emissions and deposition of airborne N
- > Shipping traffic: category, transit frequency, emissions and deposition

BALTCOST & RECOCA abatement measures

<u>Measures</u>

>

Wetland restoration

Costs and capacities

Wetland: capacity estimated for
 constructed and re-established, costs
 modelled using data from Sweden and
 Denmark

- > Reduce fertiliser applications
- > Catch crops

- Data at 10x10 km grid on soils, crop
 types and fertiliser applications: yield
 functions used to estimate lost profits
- > Grown under spring cereal: Danish costs
 - adjusted

BALTCOST & RECOCA abatement measures

Measures

Reduce livestock production >

Costs and capacities

> max 20% livestock reduction: costs estimated as opportunity cost in terms of standard gross margin (country-specific)

- Improve WWT >

- NOx reduction from power > plants and ships
- WWTP data from Poland and Denmark: > cost functions quantify scale effect and elasticity of cost with respect to input prices: feasibility of WWT connection
- Data from literature review, NECA > assessment and DEHM model results on depositions

BALTCOST#1 illustration: modelling WFD- and MSFD-relevant emissions reductions

- The BALTCOST#1 used to identify
 cost-effective combinations of
 abatement measures when N & P
 reduction targets are formulated
 differently
- > BALTCOST#1 is an earlier version of the BALTCOST model which used old models of the costs and effectiveness of abatement measures across 21 basins draining into 7 sea regions (Schou et al, Gren et al)
- Scenario 1: BSAP reduction

 allocations enforced separately for
 each country at its own coastline –
 reduction measures distributed cost effectively within a country
- Scenario 2: BSAP targets enforced for each sea region around its coastline - reduction measures distributed cost-effectively between basins which drain into that sea

Scenario 1: BSAP reduction allocations enforced for each country

- > m denotes the six abatement measures, *i* denotes separate drainage basins
- $\rightarrow C_{im}$ () are the cost function for implementing measure m in drainage basin i
- \rightarrow a_{im} is abatement level by measure *m* in drainage basin *i*,
- > $T_{country_N}$ and $T_{country_P}$ are the reduction allocations enforced per country
- f_i are transport coefficients specific to each drainage basin and pollutant
- \rightarrow $a_{im max}$ is the max potential for implementing measure m in drainage basin i

Scenario 2: BSAP targets enforced for each sea region

- > m denotes the six abatement measures, *i* denotes separate drainage basins
- $\rightarrow C_{im}$ () are the cost function for implementing measure m in drainage basin i
- \rightarrow a_{im} is abatement level by measure *m* in drainage basin *i*,
- > $T_{searegion_N}$ and $T_{searegion_P}$ are the reduction targets enforced per sea region
- \rightarrow g_i () are transport coefficients specific to each drainage basin and pollutant
- \rightarrow $a_{im max}$ is the max potential for implementing measure m in drainage basin i

HELCOMs BSAP

Sea Region	Current loads (Ton	nes)	Reduction targets (Tonnes)		
	Nitrogen	Phosphorous	Nitrogen	Phosphorous	
Bothnian Bay	51440	2580	0	0	
Bothnian Sea	56790	2460	0	0	
Baltic Proper	327260	19250	94000	12500	
Gulf of Finland	112680	6860	6000	2000	
Gulf of Riga	78400	2180	0	750	
Danish Straits	45890	1410	15000	0	
Kattegat	64260	1570	20000	0	

Helcom, 2007

Cost-minimised N & P reductions under Scenarios 1 & 2 vs BSAP targets

Sea Region	Nitrogen reduction (Tonn	es)		Sea Region	Phosphorous reduction (T	Connes)	
	Scenario 1	Scenario 2	BSAP	-	Scenario 1	Scenario 2	BSAP
Bothnian Bay	6187	0	0	Bothnian Bay	300	0	0
Bothnian Sea	6218	0	0	Bothnian Sea	277	0	0
Baltic Proper	87622	94000	94000	Baltic Proper	10244	12500	12500
Gulf of Finland	11219	10687	6000	Gulf of Finland	2098	2000	2000
Gulf of Riga	4582	15008	0	Gulf of Riga	341	750	750
Danish Straits	15913	15000	15000	Danish Straits	212	0	0
Kattegat	14404	20000	20000	Kattegat	43	185	0

• BSAP sea region targets may not be achieved when allocations are enforced per country (e.g. Scenario 1: Baltic Proper)

•Overfulfillment in some countries/sea regions for both P and N (e.g. Scenarios 1 & 2: N in Gulf of Finland, Scenarios 1 & 2: P in Kattegat)

Scenario 1 & 2 illustration: N cost allocation

Country	Cost allocation, Million Euro (percentages of share of costs)			
-	Scenario 1	Scenario 2		
Sweden	125.56(26%)	76.07(16%)		
Finland	7.31(2%)	0(0%)		
Russia	53.45(11%)	42.77(9%)		
Estonia	4.70(1%)	4.78(1%)		
Latvia	4.47(1%)	16.47(3%)		
Lithuania	8.95(2%)	44.28(9%)		
Poland	200.02(41%)	216.67(41%)		
Denmark	56.66(12%)	64.93(14%)		
Germany	21.59(4%)	10.39(2%)		
Totals	482.72	476.35		

BALTCOST#1- illustration

As an illustration BALTCOST #1 investigated 2 scenarios:

- 1) nutrient load reductions allocated to individual countries
- 2) nutrient load reduction targets enforced at the coast of the individual sea-regions
- Scenario 1: suggests that country-based reduction allocations are unlikely to deliver the desired load reductions in all sea regions.
- Scenario 2: suggests that setting reduction targets for sea regions should deliver load reductions which meet requirements
- Scenario 2 is likely to be delivered at slightly lower total cost than
 Scenario 1
- > Distribution of costs between countries differs under the two Scenarios

Policy evaluations with BALTCOST

- Current BSAP per-country allocation of load reductions targets is not likely to be cost-effective
- Useful for policy evaluations related to the Water Framework Directive and the Marine Strategy Framework Directive: different targets, enforced across different spatial areas - WFD enforced at country level cf. MSFD enforced in the open sea
- > The BALTCOST and RECOCA models will be used to investigate a number of other scenarios during the coming months

Thank you for your attention!

Appendix

 Following slides are available if additional details are requested during the presentation

The model sets and variables in the RECOCA model

- $n \in \{N, P\}$ nutrients
- r = 1..7 the Baltic Sea Regions
- t_r^n target nutrient loadings to each region
- m = 1..M measures to be applied
- $g_r = 1..G_r$ overland grid cells $\left(\sum_{r=1}^{R} G_r = 17533\right)$
- q_{g_rm} scale of application of measure m in grid cell g_r
- \overline{q}_{g_rm} potential (maximum scale) of application of measure m in grid cell g_r
- $l_{g_r}^n(q_{g_rm})$ reduction of nutrient n as a function of q_{g_rm} (measured at the river mouth)
- $c_{g_rm}(q_{g_rm})$ cost of application of measure m in grid cell g_r as a function of q_{g_rm}

The cost-minimisation problem

The cost minimization problem:

$$\min \sum_{r=1}^{R} \sum_{g_r=1}^{G_r} \sum_{m=1}^{M} c_{g_r m} \left(q_{g_r m} \right) \quad \text{s.t.} \quad \begin{cases} \bigvee_{n \in \{N, P\}} \bigvee_{r=1..R} \sum_{g_r=1..R}^{G_r} \sum_{g_r=1}^{M} l_{g_r}^n \left(q_{g_r m} \right) \ge t_r^n \\ \bigvee_{r=1..R} \bigvee_{g_r=1..G_r} \bigvee_{m=1..M}^{Q} 0 \le q_{g_r m} \le \overline{q}_{g_r m} \end{cases}$$

Search for a scale q_{g,m} to which each measure m should be applied in each grid cell g_r of each Baltic Sea region r so that the resulting N and P reductions are at least their targets for this region tⁿ_r and the costs are minimized

