# Disentangling the complexity of biodiversity using ecoinformatics



Science for the Environment, Aarhus 6.10.2011

## Atte Moilanen

University of Helsinki Dept. Biosciences

## **Contents**

- 1. "Ecoinformatics"
- **2. Zonation software**
- 3. 4 recent examples
- 4. Operational principles
- 5. Benefits, disadvantages



## Use of ecological information for computational analysis and decision making

- My angle: Ecologically based conservation decision analysis
- Protection, maintenance, restoration, offsetting, allocation of different land uses, etc.

**Most important components** 





#### **Zonation - Spatial Conservation Prioritization** Freely from: www.helsinki.fi/bioscience/consplan



© 2004-2006 Atte Moilanen

2006

## ZONATION

Spatial conservation planning framework and software Version 2.0



2011

2008

Spatial conservation planning framework and software

Version 3.0 **User manual** 

**Atte Moilanen** Laura Meller Jarno Leppänen **Anni Arponen** Heini Kujala

### Z on new-world mammals, amphibians, & birds: meaning of the Nagoya 17%...





## Produces spatial priority ranking across the landscape

**Strategy:** 

Minimization of loss of weighted range-size normalized richness

**Minimize extinction rates** 

## Landuse zoning: targeting peat extraction elsewhere

#### Santtu Kareksela, Janne Kotiaho & Atte Moilanen



### Data

#### Regional Council of Central Finland

- Peatland classification & drainage
- Bird observation data
- Plant cover data
- Peat depth data

#### • Other

- Natural springs
- Endangered spp observations





#### What to dig up for energy?

#### Focus on low ranks =>

avoidance of negative ecological impacts!



## **Zonation: fundamental principles**

- **1. Best is everything protected**
- **2.** Minimize loss = maximize what will remain
- **3. Habitat quality and connectivity basic variables**
- 4. Range-size normalization emphasizes features with small or shrinking ranges
- 5. Priority ranking identifies both best and worst parts of the landscape in one go

Prioritization in and around the Nature 2000 network Anniina Mikkonen and Atte Moilanen



#### Conservation priority according to Zonation Priority rank



#### Variables:

- 68 Natura 2000 habitat types (HT)
- Natural state & HTs
- Pair-wise similarity of HTs
- Species richness of HTs
- Condition of HTs (assessment for EU 2007)
- Connectivity, area
- EU priority
- Rarity

## **Zonation: major features**

- Many biodiversity features (species, habitats)
- Weighting of features
- Connectivity, 7 methods
- 3 conceptual models for conservation value
- Species & community level analysis
- Uncertainty analysis
- Costs & opportunity costs
- Needs of alternative land uses
- Different priorities in different administrative regions
- Large-scale high-resolution analysis on a PC

## **The Capercaillie and connectivity**

- Population down 60%+
- Umbrella species
- Lecks > 300 ha

Saija Sirkiä, Joona Lehtomäki, Harto Lindén & Atte Moilanen





#### + known leck locations



**Guiding survey efforts 2011->** 

## Benefits and disadvantages

## **Disadvantages**

- Slow, when (formatted) data is missing
  => expensive, initially
- Data quality / availability problems
- Stakeholders hesitant about new methods

## **Benefits**

Large quantities of data can be processed
 + difficult factors, such as connectivity

- Transparency, limits subjectivity
- Efficient, when data exists
- Adds focus into data collection



