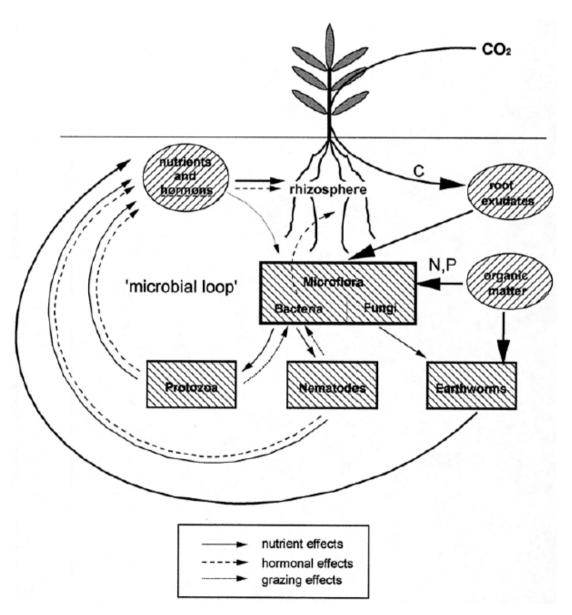


Impact of functional microbial diversity on soil ecosystem services and assessment thereof

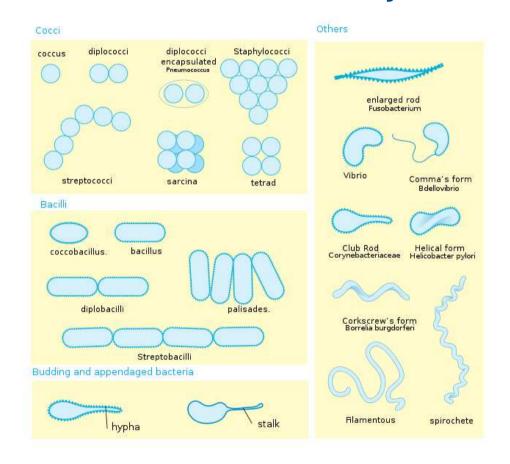

Anne Winding, Anders Johansen, Niels Bohse Hendriksen Department of Environmental Science, AU, Roskilde, Denmark

Functions of microorganisms in soil

Functions of microorganisms in soil

- > turnover of organic matter
- > recycling of nutrients
- > plant growth beneficial microorganisms
- > competition and dilution of microorganisms
- > degradation of organic pollutants
- > food for predators
- > control of plant pests
- > plant pests
- > and more...
 - for this a high diversity is required

Diversity of microbial communities


> Biodiversity is the variability among living organisms.... includes diversity within species, between species,and of ecosystems

Determination of microbial diversity

- > not taxonomy
- > not morphology

Determination of microbial diversity

Genetic diversity

DNA

Structural diversity structural cell constituents e.g Phospholipid fatty acids

Functional diversity: what they can do at the given conditions.

mRNA, growth, respiration, enzyme activities

Choice of method ?!

Selecting biological indicators for monitoring soils

Ecological relevant biological indicators of soil:

183 candidates – reduced to 21 candidates for different trophic groups

considering soil functions, environmental interactions, supporting habitats and biodiversity

General microbial functions:

- activity capability profile of community
- enzyme potential activity

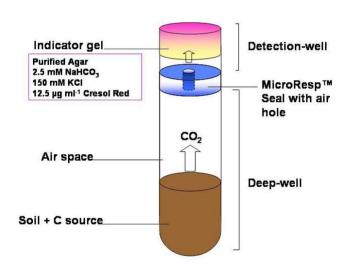
Method development and standardization required

(Ritz et al. 2009)

Respiration based

- CO₂ production, measured by GC Substrate Induced Resiration (SIR) on multitude of substrates
- ¹⁴C-CO₂ measured by scintillation counting
- CO₂ measured by indicator dye (Biolog, MicroResp)

Enzyme activities


Extracellular enzyme activities general substrates fluorescent substrates in microtiter plates

Bacterial enzyme activities separate bacteria from soil

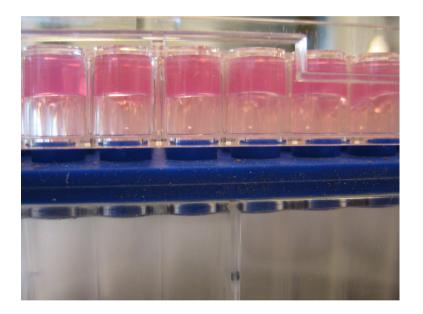
MicroResp

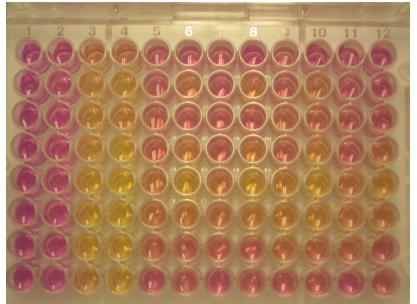
Colorimetric method

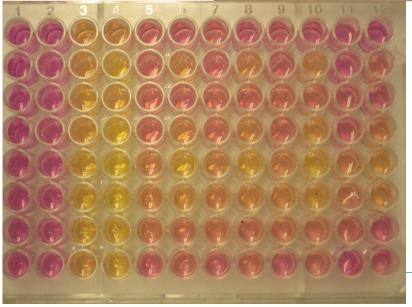
Indicator gel: The cresol red changes from pink to yellow as the pH decreases.

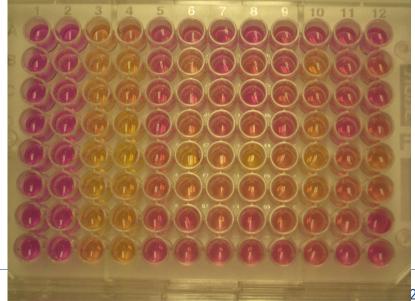
$$CO_2$$
 (gas) + H_2O + $HCO^{3-} \leftrightarrow 2CO_3^{2-} + 3H^+$

KCI is present to reduce the effect of ionic strength on pH.


(www.microresp.com)







MicroResp

	Multi SIR (Degens and Harris 1997)	MicroResp (13 references) (number of substrates identical to MultiSIR)
Carbohydrates	15	19 <i>(9)</i>
Amino Acids	23	17 <i>(13)</i>
Alcohols	5	2 (2)
Amides	3	0 (0)
Amines	7	5 <i>(3)</i>
Carboxylic acids	26	14 <i>(7)</i>
Other	3	6 (2)
Total	82	63 <i>(36)</i>

Extracellular Enzyme Activity

Table 1. Role of soil enzymes

Enzyme	Organic Matter Substances Acted On	End Product	Significance	Predictor of Soil Function
Beta glucosidase	carbon compounds	glucose (sugar)	energy for microorganisms	organic matter decomposition
FDA hydrolysis	organic matter	carbon and various nutrients	energy and nutrients for microorganisms, measure microbial biomass	organic matter decomposition nutrient cycling
Amidase	carbon and nitrogen compounds	ammonium (NH4)	plant available NH4	nutrient cycling
Urease	nitrogen (urea)	ammonia (NH3) and carbon dioxide (CO2)	plant available NH4	nutrient cycling
Phosphatase	phosphorus	phosphate (PO4)	plant available P	nutrient cycling
Sulfatase	sulfur	sulfate (SO4)	plant available S	nutrient cycling

Extracellular Enzymatic Activity assay

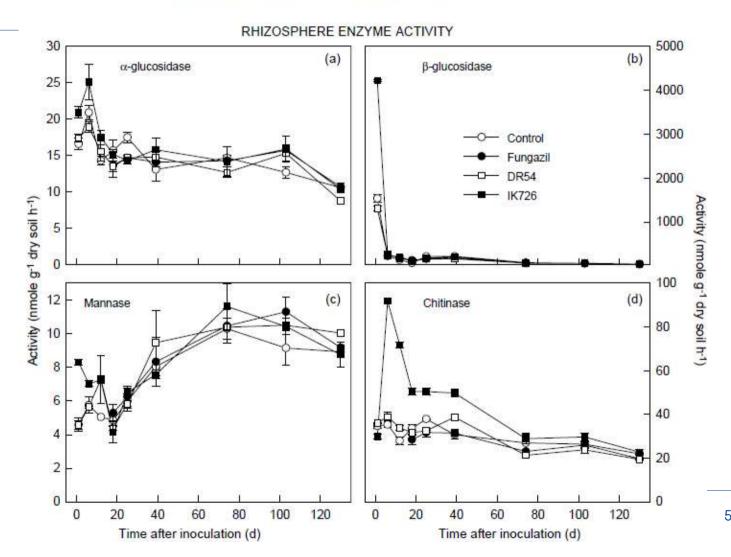
fluorescently labelled substrates (a total of ca. 25 different reported used) enzymatic cleavage induce flourescens

Microtiter based assay with 96 different substrates (replicates / microbial)

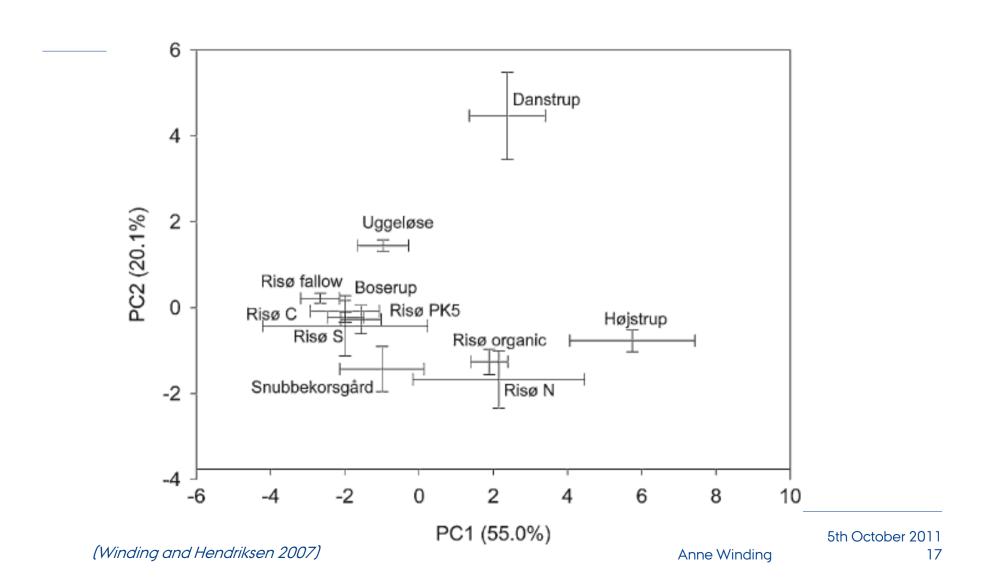
Microtiter based assay with 96 different substrates/replicates/microbial communities

Example: 4-Methylumbelliferyl acetate

4-methylumbelliferyl acetate + H2O ≠ 4-methylumbelliferone + acetate


(MUF substrates)

Extracellular Enzyme Activity in rhizosphere


A. Johansen et al. / Soil Biology & Biochemistry 37 (2005) 2225-2239

Cellular enzyme activity in soil

European Long Term Observatories

- > Sweden
- > The Netherlands
- > Great Britain
- > France
- > Italy, Sardinia
- > Portugal
- Compare and contrast soils and methods to identify bioindicators and develop standard operating procedures for these.

What can MicroResp and EEA be used for?

- >track changes (rate/potential) in functions of microbes or functional microbial diversity
- > input to modelling of soil food web
- > bioindicator of soil microbial diversity and soil quality
- > soil quality index
- > assessing functionality of microbes for providing ecosystem services

Key ecosystem services affected by functional microbial diversity

Biomass production

cycling of waste and dead organic matter food for predators

Nutrient regulation recycling of nutrients

Pest and disease control competition suppressive soils microbial pest control agents

Green house gas regulation producers of CO2, CH3, NOx and more consumers of CH3, NOx

Carbon sequestration heterotrophic life cycle (mainly)

Thank you

Acknowledgement:

European Community's Seventh Framework Programme FP7/ 2007 agreement n°- FP7 ENV-264465

Technician Anne Grethe Holm-Jensen