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Abstract—In this study, we employed an emergent emotion
model, based on neuro-computational energy regulation, to carry
out a cognitive task. The experiment involved visual recalling
and was performed by a physically embodied agent (iCub
humanoid robot). In this task, the agent operates its associative
memory (Higher-Order Hopfield Network) to form a stimulus-
energy association for each perceived input. Then, the agent
uses these associations to derive an internal reward signal in a
reinforcement learning framework to make a sequence of actions
(i.e., coordinated head-eye movements) to discover the states
where the minimal computational energy is required to perform
the task. The results indicate that the agent successfully utilizes
this model to act in an unknown environment by following the
energy minimization principle. On the basis of obtained results,
we suggest that exploiting this approach will give rise to rich
applications for developmental robotics where emergent (that
is, not reflexive) behaviors are necessary for higher cognitive
functions – planning, decision making, etc.

Index Terms—emotion, energy regulation, visual recalling

I. INTRODUCTION

Emotion is one of the critical mechanisms that plays es-
sential roles in cognitive functions and developmental pro-
cesses such as recalling memories, behaviorally responding
caregivers while playing peekaboo, regulating prediction of
the reward and short-cutting cognitive processes [1], [2].
In humans, the effects of the emotion can be behaviorally
observed throughout the lifespan – starting from early infancy
to the late stage of the development. That is why emotion has
been a fertile field for many diverse disciplines ranging from
the behavioral economics to the humanoid robotics. However,
we restrict the scope of this study to provide an overview
of the emotion-related studies in the context of cognitive
developmental robotics [3].

In this paper, we designed an experiment – by extending
our previous works [4], [5] – to emulate the regulatory role of
the emotions in a physically embodied agent (iCub Humanoid
Robot). We note that with emotions we refer to high-level
such as well-being and boredom, we indicate that the types of
emotion which bring about computational benefits while per-
forming cognitive functions (e.g., recalling memories) rather
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than reflex-like responses which are performed just in time.
To be concrete, we hold that short-cutting computationally in-
tensive processes to reduce neural energy consumption yields
what we term “emotion”. This functional aspect enables a
biological agent to rely on suboptimal solutions rather than
searching the best solution for critical – sometimes intractable–
problems such as mate selection, visual attention, to mention
a few examples.

Here, we provide representative approaches related to the
emotion: however, the extensive review and biological sup-
port of the proposed implementation can be found in our
previous studies [4], [5]. One approach is to recognize human
facial expressions and label them based on basic emotions
such as happiness, disgust, fear, surprise or implementing
these predefined categorical emotions on an artificial agent
to adjust the behaviors [6], [7]. Another approach is to
use a weighted combination of the basic emotions or use
arousal/valence dimensions to extract the affective state of
the agent [8], [9], [10]. Note that the literature studies are
mostly concerned about the two approaches mentioned above.
We suggest that these approaches may simplify the complex
nature of emotions and may not answer how an emotion
emerges in the agent’s neural system to create computational
and behavioral benefits to the agent. More importantly, most of
the studies were not employed on an actual hardware platform
to asses whether proposed methods can be employed in a real-
world scenario [4], [5].

Instead of focusing on basic emotions, our proposal in this
study centered on the computational benefits (e.g., relying on
“good enough” choices over searching the best options) of
the emotion during the decision-making that an agent may
face throughout its developmental processes. In doing so,
we addressed the cognitive aspects of emotions regarding
the following functionalities: short-cutting cognitive processes,
storing and recalling memories and value (e.g., reward) ex-
traction for action selection. To employ these functionalities
on the iCub robot, we designed a visual recalling experiment
in which the robot process perceived visual stimulus from
the environment and construct stimulus-energy association via
its auto-associative memories. Then, the robot employs this
association to extract a reward value in order to select an action
(i.e., moving its gaze towards a state where visual stimulus is



located) which leads to minimizing the computational cost of
the recalling task. To perform this action selection sequentially,
we adopt a temporal difference learning algorithm in which
the reward signal is internally generated.

The results show that the proposed method enables the
robot to find states associated with a low amount of energy
consumption to accomplish visual recalling task. Contrary to
most of the literature studies, the displayed behavior relies
only on the internal dynamics of the agent without having an
explicit reward assignment by an operator. Based on the exper-
imental results, we conclude that emotion should be considered
as a regulatory mechanism for developmental robots which
performs higher-order cognitive processes (such as planning
and decision making) rather than reflex-like behavior.

This paper is organized as follows: we introduce the per-
formed methods in Section II. Section III provides details
about the experimental setup and iCub robot. The experimental
results and discussions based on obtained results are explained
in Section IV. Lastly, the conclusions of this work and research
objectives for future studies are highlighted in Section V.

II. METHODS

In this section, we introduce the methods to form associative
memories for perceptual processing and to extract reward
values by exploiting energy-stimulus associations. For the
former part we employed a customized Hopfield network,
for the latter part we implemented a temporal difference
learning algorithm. We noted that the detailed description
of the performed methods and biological background can be
found in [4], [5].

A. Higher-Order Hopfield Network: stimulus-energy associa-
tion

To form an associative memory based on perceived visual
stimuli from the environment, we employed the Higher-Order
Hopfield network (HHOP) [11]. To do this, the network trained
with the five different visual patterns which are selected to be
either a number or a letter. Figure 1 shows one of the received
camera images and stored patterns to train the network.

The perceptual processing begins with seeing an image
from the robot’s camera. Then the visual pattern processed
by applying standard image processing algorithms – namely
grayscaling, binarization, and downscaling image to 20× 20–
to obtain bipolar representation (−1, 1). Activation of a unit
(e.g., neuron) in the network obtained by Eq. 1 as the product
of the activation of pair-units in the network.

Si = sgn

∑
jk

WijkSjSk

 (1)

The sgn(x) function outputs 1 if x ≥ 0, otherwise −1. To
store a set p of inputs with bipolar representation, the weights,
W , computed as Wijk =

∑
p
ξpi ξ

p
j ξ
p
k . In this derivation, ξpi , ξpj

and ξpk are the jth, jth and kth bipolar bits of the pth image
pattern, ξp, where p = 5. After obtaining the weights, the

network will automatically associate perceived pattern, ξ, to
a converged pattern, as ξ. This converged pattern can be one
of the trained patterns, the inverse of the one of the trained
pattern or the combination of the trained patterns. We note
that a converged pattern has the same size (20 × 20) of the
perceived pattern.

(a) Camera image. (b) Stored pattern 1. (c) Stored pattern 2.

(d) Stored pattern 3. (e) Stored pattern 4. (f) Stored pattern 5.

Fig. 1: Camera image and stored patterns to construct an
associative memory.

The energy, E(ξ), required in order to obtain a converged
pattern (i.e., a recalled pattern) is function of the activation
switches of the network units was calculated as E(ξ) =∑N
i=1

|ξi−ξi|
2 where N is defined as the total number of bi-

polarized values of the perceived pattern. Due to the asyn-
chronous activation of the units in the network, this is a lower-
bound estimate of the actual number of switched activation.
Therefore, it can be considered as the minimum amount of
energy required to recall the image stored in memory.

B. Temporal Difference Learning: energy-reward association

To guide robot actions, composed of coordinated move-
ments of the eyes and head, we adopt an on-policy temporal
difference (TD) learning algorithm known as SARSA [12].
In this setting, the robot has no prior information about the
expected reward values while moving from one state to the
another by following ε-greedy policy, where ε is chosen to
be 0.3. It should be emphasized that there are no predefined
end states to terminate the experiment. We note that this
experiment is designed to address whether the robot can find
the states in which less amount of the computational energy
needed to perform visual recalling task.

In Eq. 2, Q(s, a) represents the current value of state-action
pairs. Similarly, Q(s′, a′) indicates the value for the action a′

in the next state s′.

Q(s, a)← Q(s, a) + µ(R(s, s′) + γQ(s′, a′)−Q(s, a)) (2)



The µ variable is the step size learning parameter, γ is an
adjustment factor that discounts expected future rewards. The
µ and γ variables are set to 0.7 and 0.4, respectively.

R(s, s′) =

{
−1 if E(ξs) < E(ξs

′
)

1 if E(ξs) ≥ E(ξs
′
)

(3)

We extracted the reward value of a s, s′ pair, R(s, s′), as a
function of the computational energy consumed to process a
visual pattern perceived in a state. To be more concrete, we
derive the reward value of a s, s′ pair based on Eq. 3. In
this equation, ξs and ξs

′
are the image patterns received in

the states s and s′ respectively, then the energy values for
the execution of recalling operations, annotated by E(ξs) and
E(ξs

′
), are obtained and compared. Based on this operation,

the reward value is representing whether the agent moves from
an higher energy state to lower energy one or vice versa.

III. EXPERIMENTAL SETUP

The experimental setup, shown in Figure 2, consists of the
iCub humanoid robot and a screen which facilitates visual
perception. We note that perceived images can be one of
the memory patterns as shown in Figure 1, noisy version of
the memory pattern or a completely new pattern. The robot
perceives a visual stimulus, with a resolution of 640 × 480,
trough a camera located its left eye. The robot explores the

Fig. 2: Experiment setup: iCub humanoid robot and the
constructed scene for perceptual processing.

environment by visiting the states (i.e., directing its gaze from
a discrete region in the scene to another) via coordinated head
and eye movements [13], [14]. We highlight that the purpose
of the robot experiments is to validate the proposed method
in a real-world scenario in which hardware constraints (e.g.,
camera resolution) and environmental noise (e.g., reflections)
exist.

IV. RESULTS AND DISCUSSIONS

In this section, we report and discuss the obtained results
by employing emotion mechanism on the iCub robot. In
the conducted experiment, the temporal difference learning
algorithm run for 800 iterations and in each iteration the robot
receives a visual stimulus from the environment (i.e., a screen
that located in front of the robot). In that, the robot forms

the stimulus-energy association via performing HHOP, then
employs this association to facilitate energy-reward derivation
in order to learn how to act in the environment while minimiz-
ing the consumed computational energy for visual recalling.
We depict subfigures in Figure 3 to interpret the robot’s

(a) Average energy per state (b) Q matrix heat map

(c) Cumulative rewards (d) Final states

Fig. 3: Experiment results for 800 iterations.

behavior during the experiment. The average computational
energy consumed by the robot for a specific state shown as a
heat map in Figure 3(a). In this figure, the constructed heat
map can be considered as a zero-indexed matrix where each
element corresponds to a state given in Figure 3(d) and the
energy values depicted by a color scale (i.e., darker gradient
refers to high energy state). In this way, it can be seen that the
average computational cost of recalling a memory pattern will
mostly require less amount of energy than recalling a noisy
pattern or an unseen pattern. This stimulus-energy association
can be observed by comparing the energy values of the first,
sixth, and seventh states.

The values in this figure will be used to asses whether
the behavior of the robot operates by performing energy
minimization principle. We use the values in this heat map
to determine how many times the robot chooses the correct
actions. For instance, if the robot directs its gaze from a high
energy state to the lower one, we assign the action as correct.
In the inverse situation, we considered the action as wrong.
Here, we report that the percentage of choosing the correct
action by the robot is 85%.

To confirm that the robot learns to direct its gaze from
the state that requires high energy consumption for visual
recalling to the low one, we plot the cumulative reward curve
in Figure 3(c). Based on the increment trend in this figure,
we interpret that the robot learns the environmental dynamics
by increasing the cumulative reward over iterations. Some
fluctuations can be observed in this figure due to environmental
noise and exploration rate of the SARSA. Lastly, Figure 3(d)



shows the discovered final states are demonstrated with green
rectangles. These states are extracted from the Q matrix. In
that, the Q matrix elements are populated to determine the
most valuable state-action pairs. The green-rectangled states
indicate that regardless of an initial state in which robot
directs its gaze, the robot will end up displaying a cyclic
behavior that sequentially moves among the discovered states.
To illustrate that discovered states are the states in which
the robot consumes less amount of energy to perform visual
recalling, we depict state transition diagram, in Figure 4, based
on average energy values on Figure 3(a). Figure 4 presents

Fig. 4: State transition diagram of the final policy extracted
from the Q matrix. S9 contains a stored pattern while S2, S6,
and S12 contain the noisy version of the stored patterns.

the state-action transition of the final policy. In this figure,
each yellow circle indicates a state and the transition to move
from one state to the another shown with the directed arrows.
For each circle, the average energy that requires to perform
visual recalling shown by E. To be more concrete, if the robot
discovered the 2nd state (S2), it would spend an average E2

energy to process perceived stimuli then it will move to the
12th state, as S12.

An onlooker might expect the robot should continuously
gaze towards the S9 as a final state. However, the external
factors (such as operating in a real environment and being
exposed to noisy sensory information) and internal factors
(e.g., asynchronous update rule of the HHOP and exploration
rate of the SARSA) of the experiment prevent the robot to
perform this behavior. Our ongoing studies will address to
eliminate this transition from the final state by analyzing
external and internal factors.

On the basis of the presented results, we draw the following
conclusions. Firstly, we show that the proposed methods
enable the robot to perform the cognitive task by minimizing
required computational energy. Secondly, the demonstrated
behavior by the robot is non-trivial regarding stimulus-energy-
reward associations. Lastly and more importantly, this non-
deterministic behavior emerges from the robots internal mech-
anisms (e.g., associative memories and internal reward) while
operating in an unknown environment.

V. CONCLUSIONS AND FUTURE WORKS

In this study, we present experimental results that test the
proposed emotion model which employs the (neural) computa-
tional cost of visual recalling to extract an internally generated
reward signal to guide actions (decisions) of the iCub robot.
By doing so, the robot displays non-trivial behavior – that is,
finding a set of available states in an unknown environment

where less amount of computational energy needed to sustain
the robot’s life cycle. We hold that this regulatory role of the
emergent emotion can be exploited further for the higher-order
cognitive functions such as planning and decision making in
the context of developmental robotics.

For the future studies, we will exploit the proposed model
in a simple cognitive architecture that the robot performs
complex cognitive tasks which require multimodal sensory
processing for planning and decision making. Another research
direction is to investigate the role of “emotional affinity” from
an onlooker perspective. In detail, we would like to conduct the
same experiment to inquire whether the robot shows affective
response towards specific visual patterns.
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