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Abstract—Any variation on the robot characteristics or the
interaction medium makes the robot difficult to adapt using
model based standard methods. This paper analyses the suit-
ability of the active inference framework for continual learning
in artificial agents for providing adaptive body perception and
control. The approach presented is inspired on one of the most
influential theories about the Bayesian brain: the predictive
processing theory modelled as dynamic Bayesian estimation. The
underlying idea is to infer the most plausible body state by
means of the predictive error: the difference of the expected
sensory information, produced by a generative model, and the
observed sensations. We theoretically address the advantages and
disadvantages of this mathematical model and test it in simulation
on a robot with a 2DOF robotic arm and a mounted monocular
camera.

I. INTRODUCTION

Predictive processing, or its biologically counterpart pre-
dictive coding, is a well know mathematical model under the
Bayesian assumption, introduced by [1], that tries to explain
how the brain perceives the world. Under this paradigm,
perception is a minimization of the prediction error between
the inner model, modulated by higher cortical layers, and
the observed variables (sensors) [1], [2]. Accordingly, active
inference [3] is the extension of this model when formalizing
perception as a bound relation between sensors and actions.
Here, the action also plays the role of minimizing the error
prediction. Intuitively, we could either minimize the error by
acting on the world or changing our beliefs [3]. The actions
are computed as a result of an inference process closely related
to the concept of planning as inference described by [4].

Although active inference provides clear advantages over
other methods, the majority of the works in the literature
assume that the generative models of the environment are
known a priori or tuned to obtain an specific behaviour [3],
[5]. This highly contradict the enactivist approach, where the
agent progressively learns its body by interaction [6] and uses
body perception to understand the world [7]. Moreover, just
a few works have tried to bring this computational model
to robotics. For instance, in [8] they tested the model on a
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simulated PR2 robot. Another interesting approach was taken
in [5] where they modelled a sort of Braitenberg vehicles [9]
by means of active inference. Methods that exploit learning
use recurrent neural networks like the seminal work from Tani
and its application for imitation using a simulated icub robot
[2]. On the other hand, we recently proposed in [10] a similar
model for robotic body multimodal estimation using Gaussian
processes for learning the generative process. We successfully
applied the computational model to replicate the passive rubber
hand illusion on a robot [11]. However, we only addressed
static perception.

This paper presents body estimation and control as a free-
model active inference problem combining state-of-the-art
regressors [12] with free energy lower bound minimization
[13]. The major advantages of this approach is that only
forward models need to be learnt, and each sensing modality
can be computed separately. However, in a long life learning
scheme, we show that obtaining the generative functions for
the observation model and the state estimation is already a hard
task. The paper is structured as follows: Sec. II explains the
active inference model for body estimation; sec III describes
the robot model and discuss the results; and finally Sec. IV
summarizes the work.

II. ACTIVE INFERENCE MODEL FOR ROBOT BODY
PERCEPTION

Fig. 1. Model description. Hidden (black) and observable variables (red and
purple) and their relation with the environment.



We cast body perception as a Bayesian inference problem
where the body configuration x is inferred using the sensory
information by applying Bayes rule:

p(x|s) = p(s|x)p(x)
p(s)

(1)

where p(s|x) is the sensory consequence of being in state
x and p(x) is the prior belief of the internal variables. The
marginalization of the likelihood over all the possible body
states could be intractable. However, we can apply variational
free energy approximation [1], [10], [13]. The core idea is to
minimize Kullback-Leibler divergence between a distribution
q(x) that is encoded in the brain dynamics and the true
posterior p(x|s).

DKL(q(x)||p(x|s)) =
∫
q(x) ln

q(x)

p(x|s)
dx

=

∫
q(x) ln

q(x)

p(x, s)
dx+ ln p(s)

=

∫
q(x) [ln q(x)− ln p(x, s)] dx+ ln p(s)

= F + ln p(s) (2)

Note that minimizing F we reduce DKL(q(x)||p(x|s)) as
ln p(s) does not depend on q(x).

Instead of approximating p(x|s) with the whole q(x) dis-
tribution, the agent model is a delta distribution δ(x− x̂) that
makes x̂ the mean of the approximating density [14]. Thus,
we can remove the integrals simplifying the free energy to:

F = − ln p(x̂, s) = −(ln p(s|x̂) + ln p(x̂)) (3)

Generalizing for a dynamical system of order n
{x1, . . . , xn} ≡ {x, x′, x′′, · · · } with m sensors, the
joint probability becomes:

F = −
n∑
i=0

m∑
j=0

ln p(sj |x̂i) +
n∑
i=0

ln p(x̂i+1|x̂i) (4)

A. Free Energy Framework for Body Perception
Without loss of generality, we define the robot, depicted in

Figure 1, as a 2DOF arm with a camera mounted able to see
the end-effector. The input sensors are the position of the end-
effector in the visual field v and the joint angles q as well as
their velocities v̇ and q̇. The latent variables x̂ represent the
estimation of the body. We have assumed, conversely to the
general predictive processing framework that the brain states
are able to encode position and velocity of body configuration
defined as the joint angles.

Hence, we further define µ = {µ, µ′, µ′′, µ′′′} as the brain
variable that represents x̂ up to 3rd order dynamics. Assuming
the independence of these variables, we express the likelihood
of sensing s given an estimated body state µ and the prior for
the current model as:

P (s|µ) = p(q|µ)p(q̇|µ′)p(v|µ)p(v̇|µ′) (5)
P (µ) = p(µ′|µ)p(µ′′|µ′)p(µ′′′|µ′′) (6)

Note that we have replaced s with the actual sensors variables
q and v. When substituting into Eq. 4 we observe that the free
energy is the summation of the likelihoods of getting a sensor
value given our belief of body configuration (e.g., location
of the end-effector in the visual field given the joint angles
p(v|µ)), plus the summation of the prior belief p(µ).

1) Generative functions: According to the predictive pro-
cessing framework [3] the brain is able to learn approximated
generative functions of the world dynamics given the brain
state. For body perception we define the function g(µ), which
predicts the sensor value given the current belief of the body
configuration/state, and f(µ), which predicts the dynamics
of the system. This predictors of forward models must be
continuously learnt to enable perception - see Sect. II-B.

Hence, we shall define the sensor likelihood p(q|µ) as a
Normal distribution with mean gq(µ) and variance σq [14]:

p(q|µ) = 1

Z
exp

[
−(q − gq(µ))2/2σq

]
(7)

p(q̇|µ′) =
1

Z ′ exp

[
−(q̇ − ∂gq(µ)

∂µ
µ′)2/2σq̇

]
(8)

where Z =
√
2πσq .

Analogously, body dynamics p(µ′|µ) follows a Normal
distribution with mean f(µ) and variance σµ:

p(µ′|µ) = 1

W
exp

[
−(µ′ − f(µ))2/2σµ

]
(9)

p(µ′′|µ′) =
1

W ′ exp

[
−(µ′′ − ∂f(µ)

∂µ
µ′)2/2σµ′

]
(10)

where W =
√

2πσµ. Note that we have removed p(µ′′′|µ′′)
assuming that it is just noise [13].

2) Body perception as free energy optimization: Calculat-
ing the free energy by substituting in Eq. 4 with the distribution
functions defined in Eq. 5 and 6 we obtain:

F = ln 1/W + ln 1/W ′ + ln 1/Z + ln 1/Z ′

− 1

2σµ
(µ′ − f(µ))2 − 1

2σ′
µ

(µ′′ − ∂f(µ)

∂µ
µ′)2

− 1

2σq
(q − gq(µ))2 −

1

2σq̇
(q̇ − ∂gq(µ)

∂µ
µ′)2

− 1

2σv
(v − gv(µ))2 −

1

2σv̇
(v̇ − ∂gv(µ)

∂µ
µ′)2 (11)

Body perception is then reduced to inferring µ by minimiz-
ing F through gradient descent [3], [10]:

∂F

∂µ
=

1

σµ
(µ′ − f(µ))∂f(µ)

∂µ
+

1

σ′
µ

(µ′′ − ∂f(µ)

∂µ
µ′) · ∂∂fµ

+
1

σq
(q − gq(µ))

∂gq(µ)

∂µ
+

1

σq̇
(q̇ − ∂gq(µ)

∂µ
µ′) · ∂∂gqµ

+
1

σv
(v − gv(µ))

∂gv(µ)

∂µ
+

1

σv̇
(v̇ − ∂gv(µ)

∂µ
µ′) · ∂∂gvµ

(12)



3) Model simplifications and functions meaning: Without
loss of generality we enforce some assumptions to simplify
the computation of the free energy based on the problem
formulation described in Fig. 1. We first set body configuration
latent variable as the joints angles q. Then, in the case of
having a sensor that provides that information, µ becomes
the predictor of the body state: gq(µ) = µ1. We apply the
same assumption for q̇ by estimating the joint angle velocity:
∂gq(µ)
∂µ µ′ = µ′. Secondly, we define f(µ) as the change on the

body configuration or “velocity”. Finally, for the sake of clarity
we rename ∂f(µ)/∂µ as h(a, µ, µ′), a function that computes
the acceleration of the body joint angles depending on the
force/torque applied the current state and the “velocity”2.

Under the previous assumptions and definitions Eq. 12
becomes:

∂F

∂µ
=

1

σq
(q − µ)

+
1

σv
(v − gv(µ))

∂gv(µ)

∂µ

+
1

σµ
(µ′ − f(µ))∂f(µ)

∂µ

+
1

σ′
µ

(µ′′ − h(a, µ, µ′))
∂h

∂µ
(13)

Analogously for µ′:

∂F

∂µ′ =
1

σq̇
(q̇ − µ′)+

+
1

σv̇
(v̇ − gv̇(µ′))

∂gv̇(µ)

∂µ′

+
1

σµ
(µ′ − f(µ))∂f(µ)

∂µ′

+
1

σ′
µ

(µ′′ − h(a, µ, µ′))
∂h

∂µ′ (14)

The last order µ′′:

∂F

∂µ′′ =
1

σ′
µ

(µ′′ − h(a, µ, µ′)) (15)

4) Brain variables dynamics to infer the latent space: In
order to compute the brain variables we define their differential
equations as [3]:

µ̇ = Dµ− ∂F

∂µ
(16)

Specifically for 3rd order dynamics Eq. 16 becomes3:

µ̇ = µ′+

[
1

σq
(q − µ)+

1

σv
(v − gv(µ))

∂gv(µ)

∂µ

+
1

σ′
µ

(µ′′ − h(a, µ, µ′))
∂h

∂µ

]
(17)

1When the sensors do not provide the angle, e.g., muscle spindle, we cannot
use this assumption and the generative function shoul be learnt.

2In the original work from Friston a is replaced by a hidden cause or a
prior expectation [3].

3Note that we have inverted the sign to fulfil Eq. 3 negative free energy.

µ̇′ = µ′′+

[
1

σq̇
(q̇ − µ′) +

1

σv̇
(v̇ − gv̇(µ′))

∂gv̇(µ)

∂µ′

+
1

σ′
µ

(µ′′ − h(a, µ, µ′))
∂h

∂µ′

]
(18)

µ̇′′ = − 1

σ′
µ

(µ′′ − h(a, µ, µ′)) (19)

With these three equations and the generative functions
g(.) and h(.) the robot is able to infer its body configuration
integrating all sensory information.

B. Learning the generative functions

We define the learning as obtaining the predictors of the
sensor values given the body latent variables. Figure 2 shows
the architecture of the system where the perception inference
is given by Eq. 16 and the action inference is computed using
Eq. 21. Assuming that we do not know the generative functions
or predictors g(µ) and f(µ) we need to learn them in a
unsupervised or semi-supervised manner. There are several
ways to approach this non-linear function learning. In [10]
we proposed Gaussian Process (GP) regression for learning
the functions as we can easily compute the partial derivative
with respect to the state. In this paper we get advantage of a
high-dimensional space regressor that permits scalable online
learning: locally weighted projection regression (LWPR) [15].

In particular, for the body perception test we learnt h(a, q, q̇)
and gv(q) using LWPR and in order to generate sample points
we used a matsuoka oscillator as a first stage input force (i.e.,
torque).

Fig. 2. Overall architecture for the free-model active inference system. The
information available is: the joint position sensors and their velocity, and the
2D location of the end-effector on the camera field of view.

C. Active Inference

Under this paradigm, the action plays a core role on the
optimization. It also improves the approximation of the real
distribution. Thus, reducing the prediction error by minimizing
the free energy:

a = argmin
a
F (20)



Using the gradient descent formulation the action is computed
as:

ȧ = −∂F
∂a

= −∂s
∂a

∂F

∂s

= −
[
∂q

∂a

(q − µ)
σq

+
∂v

∂a

(v − g(µ))
σv

+
∂q̇

∂a

(q̇ − µ′)

σq̇
+
∂v̇

∂a

(v̇ − µ′)

σv̇

]
(21)

III. RESULTS

We tested the computational model on a simulated 2DOF
robot arm in matlab simulink generated by with the toolbox
[16]. The robot, represented in 1, is driven by the following
dynamics:

q̈ =M\(τ − C(q)q̇ −G(q)− βq̇) (22)

where τ , M , C, G and β are the torque, inertia, Coriolis,
gravitational and friction matrices respectively.

Figure 3 shows an instance of the end-effector 3D and visual
trajectory generated at the training stage.

First we test the proposed perception approach without
the action. Figure 4 shows how the estimation µ tries to
approximate the real values of the robot body joints. However,
there is a big mismatch in high order latent variables. The
reason is that the inference is highly sensitive to the generative
function h(a, q, q̇). Fig. 5 shows the predictor depending on
a and µ′. There is a considerable difference if we compare
with q̈. This means that the regressor did not properly learn
the robot dynamics and both the predicted Jacobian and the
values are not temporally smooth. The method used in [10] for
learning the generative functions gave better results in terms
of interpolating the predictions.

(a) 3D trajectory (b) Visual trajectory

Fig. 3. End-effector trajectory generated using a matsuoka oscillator in world
coordinates and in the visual frame.

Finally, in order to test the active inference (Eq. 21) we
substitute the unreliable predictor of h(a, q̇) by its ground
truth value q̈ (Fig. 6(c)). We define the goal or desire state
of the robot as µ = [0.1,−0.1] joint angles and zero velocity
µ′ = [0, 0]. This goal is assumed to be defined by high order
layers in the predictive processing scheme. Figure 6(a) shows
the robot behaviour and Fig. 6(b) the latent space dynamics.
Note that although q and µ are quite similar, the second
and third order differ. The robot is able to reach the desired

(a) Ground truth (b) Body estimation

Fig. 4. Perception of the body joint angles.

Fig. 5. Acceleration q̈ predictor using LWPR.

body joint angles position by means of the action through the
minimization of the prediction error (Fig. 6(d)) .

(a) q (b) µ

(c) h(a, µ, µ′) (d) Force action

Fig. 6. Active inference with prior joint angles. Desired state: µ = [0.1,−0.1]
and µ′ = [0, 0]. The action moves the robot towards reducing the prediction
error.

IV. CONCLUSION

We have presented body action and perception from the
predictive processing framework and analysed the suitability of
learning from scratch the needed generative functions during
the movement of the robot. Results show how body inference
depends on learning the state forward dynamics, yielding to
a hard problem. Moreover, the necessity of computing the
Jacobian of the observation model and the state dynamics with



respect to the latent space does not makes this approach sim-
pler compared with the inverse dynamics approach. However,
in theory, the free energy optimization methodology could
solve the discrepancies between the learnt generative model
and the real world dynamics, as well as improving scalability
in multisensory data assimilation.
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