Dissociative adsorption of CO₂: The role of the steps

<u>Benjamin Hagman¹</u>, Alvaro Posada-Borbón², Andreas Schaefer³, Natalia M. Martin³, Henrik Grönbeck², Edvin Lundgren¹, Johan Gustafson¹

¹Synchrotron Radiation Research, Lund University, SE-221 00 Lund, Sweden
²Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
³Department of Chemistry and Chemical Engineering and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
benjamin.hagman@sljus.lu.se

Due to the urgent problem of global warming, a demand of reducing the release of the greenhouse gas CO_2 into the atmosphere has emerged. A potential approach to limit the CO_2 release is to convert it into useful chemical products, such as methanol, instead of releasing it into the atmosphere. However, the recycling of CO_2 is a challenging task as the molecule is rather inert, which makes it difficult to activate for reduction and subsequent hydrogenation. The most used metal for this activation is Cu, and, hence, a fundamental understanding of how CO_2 interacts with Cu surfaces would promote the development of new catalysts for the reduction of CO_2 [1].

We have previously studied the CO_2 interaction with a Cu(100) surface using Ambient Pressure Xray Photoelectron Spectroscopy [2], and the analysis, supported by Density Functional Theory (DFT) calculations [3], strongly indicates that the steps on the surface are responsible for the CO_2 adsorption and the subsequent dissociation.

In the present contribution we confirm experimentally the importance of steps using APXPS, exposing a stepped Cu(911) surface to CO₂ at elevated pressures. We observe that CO₂ chemisorb as the activated species $CO_2^{-\delta}$ on the surface, and dissociates forming adsorbed atomic oxygen and CO that desorbs. We demonstrate that the CO₂ adsorption is significantly facilitated by the presence of the steps on the Cu(911) surface as compared to the flat Cu(100). The effect of the facilitated CO₂ adsorption on the subsequent dissociation will be discussed.

References:

- [1] Marc D. Porosoff, Binhang Yang, Jingguang G. Energy Environ. Sci. 9, 62 (2016).
- [2] Benjamin Hagman, et al, in manuscript.
- [3] Alvaro Posada-Borbón, et al, in manuscript.