Hydrogen storage on cation-decorated biphenylene and nitrogenated holey carbon layered materials

Walter Orellana¹, Raúl Guerrero-Avilés²

¹Departamento de Ciencias Físicas, Universidad Andres Bello, Santiago, Chile ²Material Physics Center, Donostia International Physics Center, Spain worellana@unab.cl

Carbon-based two-dimensional (2D) materials are becoming increasingly important for hydrogen storage due to the large surface to volume ratio and lightweight. Particularly, biphenylene (BPC) [1] and nitrogenated holey carbon (C2N) [2] are new graphene-like materials, which have been reported as a potential hydrogen storage media [3,4]. Experimental and theoretical studies have proved that metal decoration is an efficient way to increase the H₂ storage capacity. In this work, hydrogen storage on pristine and ion-decorated BPC and C₂N is addressed by dispersioncorrected density functional theory (DFT) calculations. Maximum storage capacity and adsorption energy of a gas-phase hydrogen monolayer adsorbed on both sides of pristine and ion-decorated 2D materials are investigated. Our plane-wave pseudopotential calculations were performed using the Quantum-ESPRESSO ab-initio package. Dispersive interactions were included through van der Waals exchange-correlation functional. We consider Li⁺, Na⁺, Mg²⁺, Ca²⁺ ions in different concentrations adsorbed on both C₂N and BPC. Our results show that pristine BPC and C₂N can adsorbs hydrogen with modest values of binding energies and storage capacity, 0.07eV/H₂ and 4.6 wt%, respectively, similar to that found on graphene. However, ion-decorated BPC and C₂N can increase these values to ranges of $-0.12 - 0.29 \text{ eV/H}_2$ and 6.6 - 10.3 wt%, depending on the cation species, suggesting promising applications as low-cost and lightweight H₂ storage media.

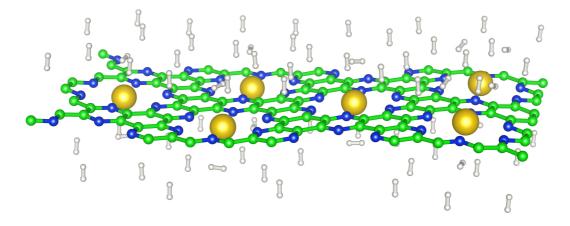


Figure 1: First layer of H₂ adsorbed on both sides of Ca^{2+} -decorated C₂N. The cations are incorporated on the centre of the C₂N holes with a binding energy of -8.86 eV/ion. The hydrogen binding energy and storage capacity are calculated to be -0.12 eV/H₂ and 8.8 wt%, respectively.

References:

- [1] F. Schlütter et al., Angew. Chem. Int. Ed. 53, 1538 (2014).
- [2] J. Mahmood et al. Nat. Comm. 6, 6486 (2015).
- [3] A. Hashmi et al., J. Mat. Chem A 5, 2821 (2017).
- [4] R. Pan et al., Comput. Mat. Sci. 124, 106 (2016).