Tailoring the Structural, Electronic and Magnetic Properties of C$_{60}$/Fe(001) through Insertion of a Two-Dimensional Oxide at the Interface

Andrea Picone1, Alberto Brambilla1, Dario Giannotti1, Alberto Calloni1, Gianlorenzo Bussetti1, Guido Fratesi2, Simona Achilli2, M. I. Trioni3, Giovanni Vinai4, Piero Torelli4, Giancarlo Panaccione4, Marco Finazzi1, Lamberto Duò1, Franco Ciccacci1

1Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
2Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, Milano, Italy
3CNR – National Research Council of Italy, ISTM, via Golgi 19, Milan, Italy
4Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, I-34149 Trieste, Italy

Presenter’s e-mail address: andrea.picone@polimi.it

Heterostructures composed by Carbon-based molecules and ferromagnetic materials are the basic building blocks for advanced organic spintronics devices [1]. In these hybrid systems, the injection and manipulation of spin strongly depend on the coupling between the ferromagnetic and the organic layer, therefore a detailed control over the interface is required.

In this talk, we discuss the influence of an ultra-thin oxide on the C$_{60}$/Fe(001) interface by comparing the properties of C$_{60}$ deposited on Fe(001), Fe-p(1x1)O and Cr$_4$O$_5$ monolayer/Fe(001). Scanning tunneling microscopy provides atomic-scale insights on the early stages of growth of C$_{60}$, revealing that the presence of an oxide monolayer promotes the self-assembly of highly ordered molecular films. Scanning tunneling spectroscopy, UV photoemission spectroscopy and inverse photoemission spectroscopy indicate that the interfacial oxide influences also the hybridization between the molecular orbitals and the electronic states of the substrate [2]. Finally, the magnetic coupling developing at the interface is investigated by X-ray Magnetic Circular Dichroism and modeled by ab-initio simulations. Spin-polarized hybridized states are present for C$_{60}$ in each substrate, but they are particularly enhanced in the case of the C$_{60}$/Cr$_4$O$_5$ interface [3]. Our results indicate that two-dimensional oxides can be used to finely tune the electronic and magnetic properties of organic spintronics systems.

References:

