Tailoring the Properties of Metal-Oxide Interfaces through Graphene

Physics Department, Politecnico di Milano, Milano, Italy
alessandro.lodesani@polimi.it

Metal-oxide interfaces are a topic of great interest since they play a fundamental role in a wide variety of technological applications [1,2]. As the size of devices shrinks down, the role of interfaces becomes more and more important, making the ability of growing well-ordered heterostructures a fundamental requisite for the development of nanotechnologies. In this framework, the study of 2D materials (graphene, MoS$_2$, etc.) as buffer layers in metal-oxide heterostructures is still in its infancy.

The focus of this contribution will be on the effects induced by a graphene (Gr) interlayer on the properties of an ultra-thin chromium oxide film grown on a Ni(111) substrate. Auger electron spectroscopy and X-ray photoemission spectroscopy reveal that the graphene layer promotes the formation of a chemically sharp Cr$_2$O$_3$/Ni(111) interface. Low energy electron diffraction and scanning tunnelling microscopy show that the surface of Cr$_2$O$_3$/Gr/Ni(111) is well-ordered and atomically flat, while the oxide grown on the bare Ni(111) surface develops a rough morphology. Finally, scanning tunneling spectroscopy reveals that the insertion of graphene also modifies the surface electronic properties of the oxide, resulting in a metallic behavior.

References: