The Electronic Structure and Transport Properties of Niobium Doped Bismuth Selenide

Henriette E. Lund1, Marco Bianchi1, Simone Munkholm Kevy2, Laura Wollesen2, Martin Bremholm2, Mark J. Haastrup1, Elze J. Knol3, Alexander A. Khajetoorians3, Steffen Wiedmann4, Philip Hofmann1

1Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
2Department of Chemistry and iNANO, Aarhus University, 8000 Aarhus C, Denmark
3Scanning Probe Microscopy, Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
4High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands

hel2305@phys.au.dk

It is believed that topological superconductivity can be realized in bismuth selenide, Bi\textsubscript{2}Se\textsubscript{3}, doped with metals. One such material is niobium (Nb) doped Bi\textsubscript{2}Se\textsubscript{3}, but little is known about the properties of this system. For this reason, the electronic structure and transport properties of Nb\textsubscript{0.25}Bi\textsubscript{2}Se\textsubscript{3}, Nb\textsubscript{0.20}Bi\textsubscript{2}Se\textsubscript{3}, and Nb\textsubscript{0.10}Bi\textsubscript{2}Se\textsubscript{3} have been investigated.

Angle-resolved photoemission spectroscopy (ARPES) reveals that the presence of Nb in the Bi\textsubscript{2}Se\textsubscript{3} crystal leads to n-doping. The ARPES measurements also pointed towards an inhomogeneous surface structure of the samples which was further supported by results from scanning tunneling microscopy and atomic force microscopy. Transport measurements performed in a magnetic field (up to 12 T) show that samples from the Nb\textsubscript{0.20}Bi\textsubscript{2}Se\textsubscript{3} and Nb\textsubscript{0.10}Bi\textsubscript{2}Se\textsubscript{3} crystals become partly superconducting with the critical temperature, T_C, ranging between 2.3 K and 3.2 K. In both cases, not the entire sample volumes become superconducting.

The experiments performed so far indicate that the Nb\textsubscript{x}Bi\textsubscript{2}Se\textsubscript{3} system crystallizes in an inhomogeneous manner with different crystalline phases present. This makes it challenging to understand the nature and origin of the superconductivity in Nb\textsubscript{x}Bi\textsubscript{2}Se\textsubscript{3} and motivates further work on this project utilizing different techniques.