Double photoemission on correlated electron pairs in metals

Cheng-Tien Chiang¹², Andreas Trützschler¹², Michael Huth², Robin Kamrla¹², Frank O. Schumann², Wolf Widdra¹²*

¹Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, D-06120, Halle (Saale), Germany
²Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120, Halle (Saale), Germany

*wolf.widdra@physik.uni-halle.de

The interaction between electrons in solids plays a central role in magnetism, superconductivity as well as metal-insulator transitions [1]. In double photoemission (DPE) experiments, a pair of interacting electrons can be excited by one single photon and analyzed spectroscopically. Therefore, DPE may allow a direct access to probe the strength of electron correlation [2,3]. In contrast to the well-established angle-resolved photoelectron spectroscopy on individual electrons, DPE experiments have been developed progressively over the last decade. In this contribution we will present new DPE experiments using a laboratory high-order harmonic light source in combination with two time-of-flight electron spectrometers [4,5]. With this setup we explore the energy distribution of electron pairs on the Ag(001) and Cu(111) surfaces and discover signatures of electron correlation between the sp and d valence electrons [6].

The DPE experiments were performed using photon energies of 25 and 32 eV. In the two dimensional energy distribution of electron pairs from the Ag(001) surface, we observed step-like features located at well-defined sum energies of electron pairs. These features can be explained according to the multiples of the minimal binding energy of Ag 4d electrons of around 4 eV. Consequently, the photoelectron pairs can be assigned as pairs of sp and d electrons (sp-d) as well as pairs of two d electrons (d-d) [6]. In addition, we observed indications of excitation processes with three d electrons (d-d-d*) including one neutral excitation from the d bands to the Fermi level (d*). These results will be discussed in terms of electron correlation and compared with the DPE spectra on Cu(111) as well as the strongly correlated electron system NiO.

References: