Valley-polarized excitation in bulk 2H-MoS$_2$ and monolayer WS$_2$/Au(111)

Hauke Beyer1, Gerald Rohde1, Antonija Grubisic Cabo2, Ankatrin Stange1, Luca Bignardi3, Daniel Lizzit3, Paolo Lacovig3, Silvano Lizzit3, Kai Rossnagel1, Philip Hofmann2, Michael Bauer1

1Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
2Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
3Elettra Sincrotrone Trieste, S.S. 14 Km 163.5, 34149 Trieste, Italy

hbeyer@physik.uni-kiel.de

Time- and angle-resolved photoelectron spectroscopy (trARPES) is employed to study the dynamics of valley-selectively excited carriers in semiconducting transition metal dichalcogenides (TMDC). Two sample systems were investigated: Naturally grown bulk 2H-MoS$_2$ and single-orientation WS$_2$/Au(111) [1].

Upon photoexcitation with right and left circular polarized laser pulses ($\lambda \approx 600 \, nm$) we observe in both samples a selective population of K and K’ valley of the conduction band, respectively. However, the experimental manifestation of the circular dichroism strongly differs between bulk and monolayer sample. For bulk 2H-MoS$_2$ the dichroism results in a pronounced and transient difference in the population at K and K’ only in the early stage of photoexcitation and has almost completely vanished when the maximum population is reached. This observation is in accordance with trARPES studies of bulk 2H-WSe$_2$ and can be attributed to the effect of intervalley scattering processes [2]. For monolayer WS$_2$/Au(111) the dichroism is significantly stronger and seems to persist as long as the valleys are populated. Due to interaction with the gold substrate the valley population decays, however, on much shorter timescales than in the bulk sample. The persistence of dichroism in WS$_2$/Au(111) hints to intervalley scattering being only of minor relevance for the observed dynamics.

![Figure: Transient excited carrier population at the K valley of the conduction band as probed by trARPES upon excitation with right (σ^+) and left (σ^-) circular polarized laser pulse. Left: 2H-MoS$_2$, right: WS$_2$/Au(111).](image)

References: