QMath14: Mathematical Results in Quantum Physics

Aarhus University, 12–16 August 2019

Abstract

Spectral Theory

Darren C. Ong (Xiamen University Malaysia)

Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic operators

Joint with Wencai Liu

In this paper, we consider the Schrödinger equation,

$$Hu = -u'' + (V(x) + V_0(x))u = Eu,$$

where $V_0(x)$ is 1-periodic and V(x) is a decaying perturbation. By Floquet theory, the spectrum of $H_0 = -\nabla^2 + V_0$ is purely absolutely continuous and consists of a union of closed intervals (often referred to as spectral bands). Given any finite set of points $\{E_j\}_{j=1}^N$ in any spectral band of H_0 obeying a mild non-resonance condition, we construct smooth functions $V(x) = \frac{O(1)}{1+|x|}$ such that $H = H_0 + V$ has eigenvalues $\{E_j\}_{j=1}^N$. Given any countable set of points $\{E_j\}$ in any spectral band of H_0 obeying the same non-resonance condition, and any function h(x) > 0 going to infinity arbitrarily slowly, we construct smooth functions $|V(x)| \le \frac{h(x)}{1+|x|}$ such that $H = H_0 + V$ has eigenvalues $\{E_j\}$. On the other hand, we show that there is no eigenvalue of $H = H_0 + V$ embedded in the spectral bands if $V(x) = \frac{o(1)}{1+|x|}$ as x goes to infinity. We prove also an analogous result for Jacobi operators.