Abstract

Marek Gluza (FU Berlin)

Equilibration towards generalized Gibbs ensembles in non-interacting theories

Joint with J. Eisert and T. Farelly

Even after almost a century, the foundations of quantum statistical mechanics are still not completely understood. In this work, we provide a precise account on these foundations for a class of systems of paradigmatic importance that appear frequently as mean-field models in condensed matter physics, namely non-interacting lattice models of fermions (with straightforward extension to bosons). We demonstrate that already the translation invariance of the Hamiltonian governing the dynamics and a finite correlation length of the possibly non-Gaussian initial state provide sufficient structure to make mathematically precise statements about the equilibration of the system towards a generalized Gibbs ensemble, even for highly non-translation invariant initial states far from ground states of non-interacting models. Whenever these are given, the system will equilibrate rapidly according to a power-law in time as long as there are no long-wavelength dislocations in the initial second moments that would render the system resilient to relaxation. Our proof technique is rooted in the machinery of Kusmin-Landau bounds. Subsequently, we numerically illustrate our analytical findings through a quench scenario with an initial state corresponding to an Anderson insulator observing power-law equilibration. We consider some possibilities for realizing distinct instances of generalized Gibbs ensembles in optical lattice-based quantum simulators and studying their stability in the presence of interactions.