On the Exact Round Complexity of Secure Three-Party Computation [CRYPTO 2018]

Arpita Patra, Divya Ravi Indian Institute of Science

TPMPC 2018

Roadmap

- MPC
- Security notions
 - guaranteed output delivery (god),
 - fairness (fn),
 - unanimous abort (ua) and
 - selective abort (sa)
- 3PC with one malicious corruption-special case of honest majority
- Our results (2 lower bounds and 3 upper bounds) settling all questions on exact round complexity
 - point-to-point channels
 - above + broadcast
- 3-rounds are sufficient for 3PC protocol with fairness in [- broadcast]
- 3 rounds are necessary for nPC protocol with fairness in [+broadcast]; 3t > n>2t

MPC

Setup:

- n parties P_1, \dots, P_n ; t are corrupted by a centralized adv

- P_i has **private** input x_i
- A common n-input function $f(x_1, x_2, .., x_n)$

Goals:

- Correctness: Compute f(x₁,x₂,..x_n)
- Privacy: Nothing more than function output should be revealed

Security Notions: Degree of Robustness

- Guaranteed output delivery (god) - Strongest

Adversary cannot prevent honest parties from getting output

- Fairness (fn)

If adversary gets output, all get the output

- Security with unanimous abort (ua)

Either all or none of the honest parties get output (may be unfair)

- Security with selective abort (sa) - weakest

Adversary selectively deprives some honest parties of the output

3PC with One Corruption: Why?

1st: Popular setting for MPC in practice: First Large-Scale Deployment of Danish Sugar Beet Auction, ShareMind, Secure ML

2nd: Improved fault tolerance: recovery of secrets is possible with 3 as opposed to 2

3rd: Strong security goals: god and fairness only achievable in honest majority setting [Cleve86]

4th: Leveraging one corruption to circumvent lower bounds:

+ 2-round 4PC of [IKPP15] circumvents the lower-bound 3 rounds for fair MPC with t > 1 [GIKR02]!

+ VSS with one corruption is possible in one round!

5th: Weak assumptions: possible from OWF/P shunning PK primitives such as OT altogether

6th: Lightweight constructions and better round guarantee:

- + No cut-and-choose
- + 2 vs 4 in plain model with point-to-point channels

The Exact Round Complexity of 3PC

- Broadcast

+ Broadcast

		Lower	Upper		Lower	Upper
selective abort (sa)	2	[HLP11]	[IKKP15]	2	[HLP11]	[IKKP15]
unanimous abort (ua)	3	Our Work	Our Work	2	[HLP11]	Our Work
fairness (fn)	3	• Our Work	Our Work	3	Our Work	Our Work
Guaranteed (god)	Impossible	[CHOR16]		3	Our Work	l Our Work

LB1: 3 rounds are necessary for **ua** in [- broadcast]

- Implies optimality of 3PC with sa in terms of security

UB1: 3 rounds are sufficient for **fn** in [- broadcast]

Lower bounds can be extended for any n, t; 3t > n > 2t **Upper bounds** rely on (injective) OWF (garbled circuits) **LB2**: 3-rounds are necessary for **fn** in [+ broadcast]

- Broadcast does **not** improve round complexity
- Complements a result that fairness requires 3 rounds for t>1 and any n;
- n=4 is necessary implying known 4PC optimal

UB2: 2-rounds are sufficient for **ua** in [+ broadcast]

- Broadcast improves round complexity

UB3: 3-rounds are sufficient for **god** in [+ broadcast]

Circuit Garbling Evaluates a circuit in encoded domain

 $x_1 x_2 x_3 x_4$

႞ၟ႞_႞႞

Obliviousness: Output privacy when decoding info is withheld

Authenticity: Unforgeability of Y

Upper Bounds: Overview and Challenges

3–round Fair protocol [-Broadcast]

- No broadcast : Conflict and confusion
- Novel mechanism : Reward honesty with certificate used to unlock output
- New primitive : Authenticated conditional disclosure of secret (Authenticated- CDS) via privacy-free garbled circuits

2–round unanimous abort [+Broadcast] R2 private communication: Soft spot R1 private (detect early and report in R2)

Two-part release mechanism for encoded inputs of the parties

common inf

TAMOR

cert

R2 broadcast (publicly detectable)

3–round Guaranteed Output Delivery [+Broadcast] Strong identifiability : either get output / identify corrupt by second round

A1: No cut-and-choose **A2:** No OT

[MRZ15, IKKP10]

when well-behaved

Issue2: Cannot rely on the evaluator to send Y to others **Sol:** Repeat this BB three times, one for each party

Fair 3PC in 3 rounds [- Broadcast]

Fair 3PC in 3 rounds [- Broadcast]

Issue4: Corrupt always gets Y. Can keep one happy and other **confused**. Get decoding info from happy and get output. How to get fairness ?

Sol: (1) If an honest party is happy, all gets output no matter what(2) Only way to get d for adv is to keep an honest happy

A **confused honest** party can identify the honest and use her Y to compute y

Certificate proves honesty

A **confused honest** party can deliver d in a way that only an honest happy party decrypt. Certificate carries d securely so that only legitimate holder can open

corrupt or conflict

Equality checking circuit Privacy-free garbling

Fair 3PC in 3 rounds [- Broadcast]

Fair 3PC in 3 rounds [- Broadcast]

Lower Bounds (3 rounds necessary for ua [-broadcast] and for fn [+broadcast])

MPC

Setup:

- n parties P_1, \dots, P_n ; t are corrupted by a centralized adv

- P_i has **private** input x_i
- A common n-input function $f(x_1, x_2, ..., x_n)$

Goals:

- Correctness: Compute f(x₁,x₂,..x_n)
- **Privacy**: Nothing more than function output should be revealed

Challenge:

NO TTP MPC: interactive protocol that emulates TTP

Extension of garbling for 3 PC

Round 2:

Honest Majority: avoided public-key

How to design 2-round protocol?

Garbling : Randomized Encoding

Honest P_2 gets output but P_3 does not.

Unanimous abort violated!

Takeaway: Honest garbler must be informed if honest evaluator unable to get output.

Partial Solution

Building the solution

- What we know: Handle misbehavior
 - Type 1: Private info sent in Round 1
 - Type 2: Broadcast info sent in Round 2

- Idea : Evaluator's share broken down as :
 - random input picked by garbler
 - offset of actual share and random input
- Solution: Two part release mechanism
 - **Private** release of encoding of random inputs
 - **Public** release of encoding of offset

Completing the picture

Round 1: (Private Release of encoded random input)

Claim: No Abort => P₃ gets output!