Perfect Secure Computation in Two Rounds

Benny Applebaum Tel Aviv University

Joint work with Zvika Brakerski and Rotem Tsabary

Theory and Practice of Multiparty Computation Workshop, Aarhus, 2018

The MPC Zoo

Adaptively-secure MPC with fairness

Today: Simplest Model (BGW,CCD)

- N parties
- point-to-point private channels
- passive adversary
- honest majority
- perfect security
 - unbounded adversary
 - unconditional

"the simplest nervous system is in certain jellyfish"

"Should have been discovered by the ancient Greeks..." Ronald Cramer (3 days ago)

Today: Simplest Model (BGW,CCD)

- N parties
- point-to-point private channels
- passive adversary
- honest majority
- perfect security
 - unbounded adversary
 - unconditional

Simple BUT:

- Useful starting point for more realistic adversaries
- Still quite a few open problems

"the simplest nervous system is in certain jellyfish"

Completeness Results

1988:

[Ben-Or, Goldwasser, Wigderson, Chaum, Crépeau, Damgård]

Thm. At the presence of honest majority, **every** function f can be perfectly computed

Tight: Honest Majority is necessary **Complexity**: poly(circuit-size(f)) **Rounds**: Multiplicative depth of f

[Bar-Ilan-Beaver-1989]: expected O(1) round for all f

- efficient protocol for NC1
- worst-case O(1) round with statistical security

90's: restricted interaction patterns & efficiency slightly beyond NC1

• [FKN '94,IK' 97, CD '00]

- 2000-02: [Ishai-Kushilevitz]
- Thm. With honest majority,
- 3-round perfect protocol for all functions
- Randomizing Polynomials
 - Every function reduces to degree 3 computation

- 2000-02: [Ishai-Kushilevitz]
- Thm. With honest majority,
- 3-round perfect protocol for all functions
- Efficient for NC1 and log-space
- Computational variant for poly-size circuits [AIK05]

- 2000-02: [Ishai-Kushilevitz]
- Thm. With honest majority,
- 3-round perfect protocol for all functions
- 1 round is impossible
- Yields 2 rounds if privacy threshold <n/3

Open: With honest majority, **2-round** perfect protocol for all functions?

• [IK00] cannot be achieved with degree-2 randomizing polynomials

Ishai-Kushilevitz 2000:

"An open question of a somewhat different flavor is that of finding the exact number of rounds required for privately evaluating an arbitrary (i.e., a worst-case) function f with an optimal privacy threshold.

Using randomizing polynomials, an upper bound of 3 was obtained. If this bound is tight (i.e., 2 rounds are not enough) then, in a very crude sense, the randomizing polynomials approach is non-restrictive."

Our Results

Thm 1: With honest majority,

2-round perfect protocol for all functions

- Efficient for NC1 and log-space
- New paradigm: Multiparty Randomized Encoding
 - Relaxes Randomized Encoding
 - Abstracts Garbled Protocols [Garg-Srinivasan-2017]

Thm 2: Assume OWF and honest majority.

eff. 2-round comp. protocol for poly-size circuits

- Parties make only BB calls to OWF.
- Incomparable to [Garg-Srinivasan'18], [Benhamouda-Lin'18]
- We don't need OT but require honest majority

The rest of the talk

- Randomizing Polynomials
- Multiparty Randomized Encoding (MPRE)
- About the proof: MPRE with degree* 2

Conclusion

g has d-round protocol \Rightarrow f has d-round protocol !

Thm [IK02] Every f has perfect RP of degree 3

Degree-3 RP from Information-Theoretic Garbled Circuit [IK02]

 $g(\mathbf{x},(\mathbf{k}_{i,b},\mathbf{r})) = ((\mathbf{k}_{i,xi})_{i=1..n}, \text{ garbled tables})$

GC-based Randomized Encoding

Randomness per wire:

- random mask bit
- 2 keys

Release:

per gate:

per input wire release: corresponding key

4 ciphertexts

release mask bit

per output wire:

deg-3=deg(gate)+1

GC-based Randomized Encoding

per gate:

- 4 ciphertexts
- deg-3=deg(gate)+1

Randomizing Polynomials

Many other applications (e.g., parallel crypto)

decouple simplicity from semantics !

Problem: For most functions, NO degree-2 perfect RE's

Sol: Compromise! Aim for a weaker notion

Relaxed correctness: Each party has a decoder

Relaxed correctness: Each party has a decoder

Relaxed privacy: Every minority has a simulator

Relaxed privacy: Every minority has a simulator

MPRE relaxes Randomized Encoding

- Encodes functionality
- RE is a special case of MPRE
- Protocol for $g \Rightarrow$ Protocol for f

Thm: every functionality has MPRE of "effective" deg-2

- Efficient for NC1
- Efficient computational-MPRE for general circuits
- ⇒ 2-round honest-majority protocol

Proof Idea

1. From protocols to "nice"-MPRE

2. From "nice"-MPRE to deg-2 MPRE

Let g be MPRE that gives to a party its view & intermediate values

Key observation

The MPRE is "simple":

Each output y is either:

- output of local computation
- Value sent by another party

Step 2: re-encode via perfect Garbled Circuit

Case 1: Local Computation Gates

Orange party

Randomness per wire:

• mask bit owned by orange party

 2 keys shared between all

Release:

4 ciphertexts per gate For all parties

Degree-2 (after preprocess)!

• since masks of a,b,c are known to same party

Case 2: Transmission Gates

Blue party

Randomness per wire:

- mask bit owned by orange/blue
- 2 keys shared between all

Release for all: 2 ciphertexts per gate

Degree-2 !since deg(gate)=1

Orange party

Putting it all together

Conclusion

Assuming honest majority and passive adversary:

- Every function has perfect 2-round protocol
 - Efficient for NC1, log-space
 - Computational variant for poly-size circuits using OWFs

Conclusion

- Practical relevance?
 - 2-round protocols easily transfer to client-server model
 [Ishai-Damgard '05]

Conclusion

- Practical relevance?
 - 2-round protocols easily transfer to client-server model
 [Ishai-Damgard '05]

Multiparty Randomized Encoding of Functionalities

- Useful concept
- Other applications?

Thank You