
LevioSA: Lightweight Secure
Arithmetic Computation from Any
Passively Secure OLE

Carmit Hazay (Bar-Ilan University)
Yuval Ishai (Technion)
Antonio Marcedone (Cornell Tech)
Muthuramakrishnan Venkitasubramaniam
(U. of Rochester / Cornell Tech)

How is a function represented?

Classically, Boolean circuits [Yao86, GMW87,…]

Secure Computation

• Many computations are done over an arbitrary field 𝔽
• Mixing arithmetic with Boolean, e.g. machine learning
• Arithmetic computation with “non-arithmetic” inputs, e.g.

bit decomposition [LPSY15]

• Notable examples:
• SHA-256
• Threshold cryptography [BF97, Gil99…]
• Machine learning [LP00,…, JVC18, MR18, WCG18]
• Pattern matching [HL08, HT10, …,KRT17]
• Even BMR garbling [LPSY15,…]

Arithmetic Computation

• Two-party

• Active security

• Arithmetic circuits for any field

This Talk

• Two-party

• Active security

• Arithmetic circuits for any field

This Talk

Motivating question:
Overhead for active security

given black-box access to
any passive secure OLE implem.

Oblivious linear evaluation (OLE)

What is OLE?

OLE
a,b ∈ 𝔽 x ∈ 𝔽

ax+b

sender receiver

1. 2PC in the OLE-hybrid [GMW87, IPS09, DGNNR17]
• Black-box calls to OLE

2. 2PC in the OT-hybrid [Gil99, KOS16, FPY18]
• Black-box calls to OT

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

Current Approaches to Practical Arithmetic 2PC

1. 2PC in the OLE-hybrid [GMW87, IPS09, DGNNR17]
• Black-box calls to OLE

2. 2PC in the OT-hybrid [Gil99, KOS16, FPY18]
• Black-box calls to OT

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

Current Approaches to Practical Arithmetic 2PC

22 calls to
active OLE

1. 2PC in the OLE-hybrid [GMW87, IPS09, DGNNR17]
• Black-box calls to OLE

2. 2PC in the OT-hybrid [Gil99, KOS16, FPY18]
• Black-box calls to OT

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

Current Approaches to Practical Arithmetic 2PC

6 log(|𝔽|) calls to
active OT

22 calls to
active OLE

1. 2PC in the OLE-hybrid [GMW87, IPS09, DGNNR17]
• Black-box calls to OLE

2. 2PC in the OT-hybrid [Gil99, KOS16, FPY18]
• Black-box calls to OT

• Requires bit-decomposition

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

Current Approaches to Practical Arithmetic 2PC

22 calls to
active OLE

6 log(|𝔽|) calls to
active OT

1. 2PC in the OLE-hybrid [GMW87, IPS09, DGNNR17]
• Black-box calls to OLE

2. 2PC in the OT-hybrid [Gil99, KOS16, FPY18]
• Black-box calls to OT

• Requires bit-decomposition

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]

Current Approaches to Practical Arithmetic 2PC

22 calls to
active OLE

6 log(|𝔽|) calls to
active OT

9 kbit per
auth. triple

1. 2PC in the OLE-hybrid [GMW87, IPS09, DGNNR17]
• Black-box calls to OLE

2. 2PC in the OT-hybrid [Gil99, KOS16, FPY18]
• Black-box calls to OT

• Requires bit-decomposition

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]
• Optimizing lattice based construction

Current Approaches to Practical Arithmetic 2PC

9 kbit per
auth. triple

22 calls to
active OLE

6 log(|𝔽|) calls to
active OT

1. 2PC in the OLE-hybrid [GMW87, IPS09, DGNNR17]
• Black-box calls to OLE

2. 2PC in the OT-hybrid [Gil99, KOS16, FPY18]
• Black-box calls to OT

• Requires bit-decomposition

3. 2PC based on semi-homomorphic encryption
[BDOZ11, DPSZ12, KPR18]
• Optimizing lattice based construction

Current Approaches to Practical Arithmetic 2PC

9 kbit per
auth. triple

22 calls to
active OLE

6 log(|𝔽|) calls to
active OT

Main Result

First efficient implem. of general passive-to-active compiler [ala IPS08]

Theorem 1: Actively secure 2PC for most functions that makes

O(1) black-box calls to passive OLE protocol per multiplication

Main Result

Theorem 1: Actively secure 2PC for most functions that makes

O(1) black-box calls to passive OLE protocol per multiplication

Best passive: GMW 2 calls to passive OLE protocol,

For “nice” circuits our communication overhead is 2

First efficient implem. of general passive-to-active compiler [ala IPS08]

Main Result

Theorem 1: Actively secure 2PC for most functions that makes

O(1) black-box calls to passive OLE protocol per multiplication

First efficient implem. of general passive-to-active compiler [ala IPS08]

[DGNNR17] makes 22 black-box calls to any active OLE for any function

and 44 calls to specific RS-based passive OLE [GNN17]

Best passive: GMW 2 calls to passive OLE protocol,

For “nice” circuits our communication overhead is 2

Main Result

Theorem 1: Actively secure 2PC for most functions that makes

O(1) black-box calls to passive OLE protocol per multiplication

First efficient implem. of general passive-to-active compiler [ala IPS08]

[DGNNR17] makes 22 black-box calls to any active OLE for any function

and 44 calls to specific RS-based passive OLE [GNN17]

Corollary [Thm 1]: 16 black-box calls to any passive OLE for auth. triples

Best passive: GMW 2 calls to passive OLE protocol,

For “nice” circuits our communication overhead is 2

Main Result

[GNN17] constructs active OLE via 2 calls to a specific passive OLE
Noisy RS assumption forces communication overhead at least 32 field
elements

Theorem 2: Active OLE that makes 2 black-box calls to any
passive OLE protocol in the batch setting

Black-Box Use of Any Passive OLE

1. More flexibility
• Use any existing approach to passive OLE (e.g., lattice-based,

group-based, code-based, etc.)
• Does not need “ZK friendliness”

• Off-the-shelf software/hardware implementation

2. Bonus feature: “error-correct” weak implem. of passive OLE
efficiently [in progress]
• Constant correctness error (group-based HSS schemes [BGI16])
• Constant privacy error (aggressive params. for lattice-based OLE)

Real protocol execution

..…

Underlying Technique: MPC-in-the-Head [IKOS07, IPS08]

Client C1

Client C2 Client Cm

Two building blocks:
1. Passive MPC with dishonest majority

• Namely, inner protocol

2. Active MPC with honest majority
• Namely, outer protocol

Real protocol execution

..…

Underlying Technique: MPC-in-the-Head

Client C1

Client C2 Client Cm

..…

Imaginary protocol

Server S1 Server S2 Server Sn

Two building blocks:
1. Passive MPC with dishonest majority

• Namely, inner protocol

2. Active MPC with honest majority
• Namely, outer protocol

Real protocol execution

..…

Underlying Technique: MPC-in-the-Head

Client C1

Client C2 Client Cm

..…

Imaginary protocol

Server S1 Server S2 Server Sn

Utilizing best of both worlds!

Two building blocks:
1. Passive MPC with dishonest majority

• Namely, inner protocol

2. Active MPC with honest majority
• Namely, outer protocol

The [IPS08] Compiler – Outer Protocol

C1 C2

Servers S1 S2 Sn

Clients

..…

The [IPS08] Compiler – Outer Protocol

C1 C2

Servers S1 S2 Sn

Clients

..…

The [IPS08] Compiler – Outer Protocol

C1 C2

Servers S1 S2 Sn

Clients

..…

The [IPS08] Compiler – Inner Protocol

Implement server’s actions
1. Server’s view is additively shared across clients
2. Any passive protocol for server’s computation

a) GMW in the OT/OLE-hybrid for
Boolean/Arithmetic computation

b) FHE based secure computation
Client C1 Client C2

The [IPS08] Compiler – Combined Protocol

1. Watchlist Setup
• Obtain random subset of PRG seeds using t-out-

of-n OT (done twice)
2. Views of servers additively shared among clients
3. Emulate servers actions via inner protocol

Optimizing the IPS Compiler [LOP11]

• First work to concretely analyze parameters
• Improved watchlist mechanism (i.e. reduced #servers)
• Room to improve
• Optimize communication of outer protocol
• Optimize the analysis
• No implementation

The [IPS08] Compiler – Our Instantiations

Outer Protocol – New Optimized Protocol
• Inspired from [AHIV17]

Inner Protocol – [GMW87]

Our Approach – Improvements the Outer Protocol

•Optimize parameters – new analysis of adaptive
security [AHIV17]

•Batch consistency checks (security with abort)

Our Analysis [AHIV17]

Requirements: deg = t + e + m < n/2 and e < (n-deg)/3
n = #servers, e = #deviations, t = #watchlists,
m = packing factor

Robustness: Probability of affecting correctness
Prob. deviations are not caught= (1-e/n)t

Prob. bad shares are not caught= (e+2)/|F|s + ((2deg+e)/n)t

Efficiency: Number of OLEs per mult. = 2(n/m)

Concrete Parameters

Outer Protocol for Arithmetic 2PC
● Input sharing phase: Additively share all input wires
●For each layer:

1. Secret share blocks via share packing and send to servers
2. Servers locally add/multiply values
3. Return additive shares of output to clients
4. Degree reduction and rearrange: Apply linear

transformations
●After all computation layers

• Degree test – servers check degree of all input shares
• Permutation test – servers check all rearrangements

●Reveal outputs

S R
a1, a2, … , am b1, b2, … , bm x1, x2, … , xm

A1, A2, … , An X1, X2, … , XnB1, B2, … , Bn

Illustration - Active OLE from Passive OLE

..…

S R
a1, a2, … , am b1, b2, … , bm x1, x2, … , xm

A1, A2, … , An X1, X2, … , XnB1, B2, … , Bn

Illustration - Active OLE from Passive OLE

A1,
B1, X1

A2,
B2, X2

..…
An,

Bn, Xn

S R
a1, a2, … , am b1, b2, … , bm x1, x2, … , xm

A1, A2, … , An X1, X2, … , XnB1, B2, … , Bn

Illustration - Active OLE from Passive OLE

..…C1 C2
Cn

Ci = Ai ∙ Xi + Bi

S R
a1, a2, … , am b1, b2, … , bm x1, x2, … , xm

A1, A2, … , An X1, X2, … , XnB1, B2, … , Bn

cIllustration - Active OLE from Passive OLE

C1 C2
..… Cn

Ci = Ai ∙ Xi + Bi

S R
a1, a2, … , am b1, b2, … , bm x1, x2, … , xm

A1, A2, … , An X1, X2, … , XnB1, B2, … , Bn

Illustration - Active OLE from Passive OLE

C1, C2,…,Cn c1, c2,…,cm

C1 C2
..… Cn

Ci = Ai ∙ Xi + Bi

S R
a1, a2, … , am b1, b2, … , bm x1, x2, … , xm

A1, A2, … , An X1, X2, … , XnB1, B2, … , Bn

Illustration - Active OLE from Passive OLE

C1, C2,…,Cn c1, c2,…,cm

C1 C2
..… Cn

Ci = Ai ∙ Xi + Bi

COIN

R1,R2,R3

S R
a1, a2, … , am b1, b2, … , bm x1, x2, … , xm

A1, A2, … , An X1, X2, … , XnB1, B2, … , Bn

cIllustration - Active OLE from Passive OLE

C1 C2
..… Cn

Ci = Ai ∙ Xi + Bi

C1, C2,…,Cn c1, c2,…,cm

COIN

R1,R2,R3

Ti = R1 ∙ Ai +
R2 ∙ Xi +
R3 ∙ Bi

On Our Computational Complexity

• Recent results achieve constant computation overhead
[ADINZ17,BCGGHJ17]

• Our protocol requires log(n) multiplicative overhead
• Not too bad in practice…

Some Implementation Numbers…

Summary

1. First efficient implem. of general passive-to-active
compiler [ala IPS08]

2. Active OLE that can instantiated from any passive OLE
3. Implementation!
• Integrating with LWE-based OLE [in progress]

Thank You

