
SPDZ2k : Efficient MPC mod 2k for Dishonest

Majority

To appear at CRYPTO 2018

Ronald Cramer1 Ivan Damg̊ard2 Daniel Escudero2 Peter Scholl2

Chaoping Xing3

May 29, 2018

1CWI, Amsterdam

2Aarhus University, Denmark

3Nanyang Technological University, Singapore

Introduction

MPC

• Given a function f : Dn → D (where D is some set) and n

parties P1, . . . ,Pn, where party Pi holds some input xi ∈ D,

Secure Multiparty Computation

Obtain a protocol Π such that, at the end of its execution, the

parties learn z = f (x1, . . . , xn) and nothing else.

• Comparable to an ideal world where inputs are sent to a third

trusted party who computes the output and does not reveal

anything else

1

Many different approaches

• Garbled Circuits (D = F2)

• BMR (D = F2)

• GMW (D = F2)

• BGW (D = Fp for p > n)

• BeDOZa (D = Fp)

• SPDZ (D = Fp)

• MASCOT (D = Fp)

Few works address the case D = Z2k .1

1ZM denotes the ring of integers modulo M

2

Why should we care about this case?

In many scenarios, it is desirable to let D be the ring of integers

modulo 2k .

• Computation modulo 2k matches closely what happens on
standard CPUs and hence protocol designers can take
advantage of the tricks found in this domain;

• It simplifies implementations by avoiding the need for modular

arithmetic,

• It reduces the complexity of compiling existing programs into

arithmetic circuits.

• Functions containing comparisons and bitwise operations are

typically easier to implement using arithmetic modulo 2k ;

• Operations modulo 2k are expensive to emulate with finite

field arithmetic.

3

Some works on this direction

• (Cramer et al, EUROCRYPT 2003) showed how to contruct
actively secure MPC over black-box rings.

• Mostly a feasibility result

• Concrete efficiency is not clear

• (Bogdanov et al, ESORICS 2008, aka Sharemind) allows for
computation over this ring.

• Assumes n = 3, t = 1;

• Provides only passive security.

• (Damg̊ard, Orlandi, Simkin, CRYPTO 2018) show a compiler
from passive to active security for arbitrary rings.

• Small number of corrupt players.

4

Why is it so difficult?

Most practical secret-sharing-based multiparty protocols like SPDZ

and MASCOT require authentication mechanisms to avoid

cheating which only work over fields.

• It has been an open problem to design an efficient

homomorphic authentication scheme modulo 2k

Many problems appear when working over Z2k in contrast to Fp:

• Zero-divisors!

• Non-invertible elements!

• Taking dot product with random vectors is not a 2-universal

function!

5

Our contributions i

1. A new additively homomorphic authentication scheme that
works in Z2k and is as efficient as the standard solution over a
field.

• New number-theoretic tricks to overcome the difficulties of

working over a ring like Z2k .

• A new method for checking large batches of MACs with a

communication complexity that does not depend on the size of

the batch.

2. As a corollary, we obtain a SPDZ-style online protocol that
securely computes an arithmetic circuit over Z2k with
statistical security (assuming a preprocessing functionality).

• Total computational work ≤ O(|C |n) operations over Z2k+s

• Amortized communication complexity ≤ O(|C |k) bits

6

Our contributions ii

3. An implementation of the preprocessing functionality to
generate multiplication triples.

• Roughly twice the communication cost of MASCOT

7

SPDZ

Additive Secret sharing with MACs

We write [x] to denote the following situation2

• Each party Pi holds a random value x i such that
∑

x i = x .

• There is a (global) random value α for which each party Pi

has a share αi such that
∑
αi = α.

• Each party Pi holds a random value mi such that∑
mi = α · x .

Important!
[x + y] = [x] + [y], [c · x] = c · [x] and [x + c] = [x] + c can be

computed locally.

2In this setting D is a finite field of size p (a big prime)

8

Secure computation in a nutshell

Input phase

[xi] = (xi − ri) + [ri]

where xi are the inputs and (ri , [ri]) is preprocessed.

Addition gates

[x + y] = [x] + [y]

Multiplication gates

[x · y] = [c] + (x − a) · [b] + (y − b) · [a] + (x − a)(y − b)

where ([a], [b], [c]) is preprocessed with c = a · b.

9

MAC Checking

Consider a shared value [x] (x =
∑

x i , x · α =
∑

mi)

• To (partially) open it, each party Pi announces its share x i

and the parties reconstruct x =
∑

x i

• To check that this value is correct, each party computes,

commits to and announces z i = mi − αix .

• Then the parties check that
∑

z i = 0.

10

Security Analysis

Some corrupt parties may lie about their shares and open an

incorrect value x ′ = x + δ with δ 6= 0.

• It can be shown that in this case the adversary knows ∆ and δ

such that δ · α = ∆.

• Since α = δ−1 ·∆ and α is random, this happens only with

probability at most 1/p.

This does not work modulo 2k : the equation ∆ ≡ α · δ mod 2k

can be satisfied with high probability (e.g. δ = 2k−1 and ∆ = 0)

• Main problem: δ may not be invertible modulo 2k .

11

SPDZ2k

Our solution

The circuit to be computed is in Z2k , but the computation is

performed modulo 2k+s .

Same type of sharing [x] than SPDZ.3

• Each party Pi holds a random value x i ∈ Z2k+s such that

x ′ ≡k x where x ′ ≡k+s
∑

x i .

• There is a (global) random value α for which each party Pi

has a share αi ∈ Z2s such that
∑
αi ≡k+s α.

• Each party Pi holds a random value mi ∈ Z2k+s such that∑
mi ≡k+s α · x ′.

3x ≡ y mod 2` will be abbreviated by x ≡` y

12

Security Analysis4

What if the check passes (α · δ ≡ ∆ mod 2k+s) and there is an

error δ 6≡ 0 mod 2k .

• Let v be the largest integer such that 2v |δ (we have that

v < k), then α · δ2v ≡
∆
2v mod 2k+s−v

• But δ/2v is odd! So we can invert:

α ≡
(
δ

2v

)−1 · ∆
2v mod 2k+s−v

• Therefore, the adversary knows the last k + s − v bits of α,

which happens with probability at most 2v−k−s < 2−s .

4The actual MAC checking protocol is a bit more complicated due to some

random masks that are required for the upper s bits

13

SPDZ2k : Full protocol

Offline phase (preprocessing)

1. Random authenticated values

2. Multiplication triples

3. Generate shares of MAC key and shares of MACked values

Online phase

1. Distribute inputs

2. Compute shares of the values on the circuit

3. Check correctness of the opened values using their MACs

• Checking individual MACs

• Batch MAC-checking

14

SPDZ2k : Full protocol

Offline phase (preprocessing)

1. Random authenticated values

2. Multiplication triples

3. Generate shares of MAC key and shares of MACked values

Online phase

1. Distribute inputs

2. Compute shares of the values on the circuit

3. Check correctness of the opened values using their MACs

• Checking individual MACs

• Batch MAC-checking

15

Batch MAC-checking

Motivation

During the execution of the protocol many values are partially

opened (e.g. on the multiplication gates)

• Checking correctness for each one of these individually incurs

in a large overhead

• These are only the means towards the final goal: ensuring

correctness of the output

Instead, we perform only one check at the end of the execution

that takes into account all previously opened values at once.

Typical solution over fields

Take a random linear combination of the partially opened values

and check correctness of this combination.

16

Batch MAC-checking in SPDZ2k

Let x1 + δ1, . . . , xt + δt ∈ Z2k+s be the partially opened values

where the xi ∈ Z2k are the “correct” values.

Key idea

Compute, open and check [x] =
∑

i χi · [xi]

• The argument over a field relies on the fact that if

(χ1, . . . , χt) ∈ Ft is random and (δ1, . . . , δn) ∈ Ft is non-zero,

then δ =
∑

i χi · δi is non-zero with low probability

• This does not work modulo 2k (same invertibility issues as

before)

• Using the same solution as before naively would require us to

add yet another register (i.e. work in Z2k+2s)

17

Security Analysis

This is not actually required if we do a more fine-grained analysis!

• Let E be the event in which the check of [x] passes, i.e. the

equation δ · α ≡k+s ∆ is satisfied with δ ≡k+s
∑

i χi · δi
• Let w be the largest integer such that 2w divides δ.

Theorem

Pr[E] =

≤2−s︷ ︸︸ ︷
Pr[E |0 ≤ w ≤ k] ·

≤1︷ ︸︸ ︷
Pr[0 ≤ w ≤ k]

+
s∑

c=1

Pr[E |w = k + c]︸ ︷︷ ︸
≤2c−s

·Pr[w = k + c]︸ ︷︷ ︸
≤2−c−1

≤ 2−s + 2−s−1+log s

18

Multiplication Triples

General Idea (high level) i

The parties need to preprocess triples ([a], [b], [c]) such that a, b

are random and c ≡k a · b.

Similar to the MASCOT triple generation protocol (Keller et al,

CCS 2016). Based on Oblivious Transfer.

1. Each party Pi chooses bi ∈ Z2k+s and ai ∈ (Z2)τ . Let

a = (
∑

i a
i) mod 2k+s and b = (

∑
i b

i) mod 2k+s , notice that

c ≡k+s a · b ≡k+s

∑
i

ai · bi +
∑
i 6=j

ai · bj

19

General Idea (high level) ii

2. Every ordered pair of parties (Pi ,Pj) runs OT to get

c i
i ,j + c j

i ,j ≡k+s ai · bj ,

where Pi has c i
i ,j , Pj has c j

i ,j , and the modulo congruence is

performed component-wise.

3. Each party Pi computes:

c i = ai · bi +
∑
j 6=i

(c i
i ,j + c i

j ,i) mod 2k+s .

Notice that
∑

i c
i ≡k+s a · b.

20

Combine:

1. Sample r , r̂ ∈ (Z2k+s)τ .

2. Each party Pi sets

ai =
τ∑

h=1

rhai
h mod 2k+s , c i =

τ∑
h=1

rhc i
h mod 2k+s

âi =
τ∑

h=1

r̂hai
h mod 2k+s , ĉ i =

τ∑
h=1

r̂hc i
h mod 2k+s

It holds that a · b ≡k+s c and â · b ≡k+s ĉ where a ≡k+s
∑

i a
i and

similarly for b, c, â and ĉ .

• At this point the shares are authenticated (using a MAC

functionality) and the triple ([â], [b], [ĉ]) is sacrificed to check

correctness of ([a], [b], [c])

21

Conclusions

We develop an efficient dishonest majority MPC protocol for

computation over Z2k .

• New number-theoretic tricks introduced to overcome the
difficulties of working over a ring as Z2k :

• Zero-divisors!

• Non-invertible elements!

• Taking dot product with random vectors is not a 2-universal

function!

• First efficient, information-theoretic secure, homomorphic

authentication scheme modulo 2k .

22

Future work

• Implementation and performance test5

• Preprocessing is theoretically slower than MASCOT

• We expect SPDZ2k ’s online phase to be faster in practice since

each individual operation is faster

• Develop sub-protocols for basic primitives like inequality and
equality tests, bit comparisons, bit decomposition, shifting,
etc.

• This is not trivial since, for example, shifting down means

dividing by 2, which is not possible directly.

• Constructing a information-theoretic secure protocol modulo

2k in the honest majority setting.6

5This is ongoing joint work with Alexandra Institute, Denmark
6This is ongoing joint work with the Cryptology group at CWI

23

Thank you!

23

	Introduction
	SPDZ
	SPDZ2k
	Batch MAC-checking
	Multiplication Triples
	Conclusions

