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Machine Learning

Applications:

I recommendation systems
I antispam software
I ....
I bioinformatics & medicine

e.g. -genomics
-personalized medicine (pharmacogenetic)
-adverse drug event detection,
-disease/disorder prevention

Privacy
confidential data

proprietary models
VS

Information Sharing
improved results
larger usability

Privacy-Preserving
Machine Learning
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Training

Detection of a pattern (model) in data via a learning algorithm

training data

learning
algorithm

model

The efficacy of the learned model is improved by training
on larger number of more diverse data
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Privacy-Preserving Training

D1 D2

. . .

Dt

Training data = merge of private data silos

Goal: Train a model on D = D1 ∪ D2 ∪ · · · ∪ Dt ,
while keeping each Di secret!

Same as in MPC: run a function (training algorithm) on private inputs (D1, . . . ,Dt),

revealing no extra info beside what is leaked from the function output (model)
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Privacy-Preserving (PP) Training

In 2000,

I “PP Data Mining” Lindell and Pinkas, CRYPTO 2000
(ID3 algorithm for learning a tree on the merge of 2 silos)

after that, a large number of works propose1 privacy-preserving
training systems for different ML models in diverse settings.
E.g., ridge regression:

I “PP Ridge Regression on Hundreds of Millions of Records”
Nikolaenko et al, S&P 2013

I “PP distributed Linear Regression on High-Dimensional Data”
Gascón et al, PoPETS 2017

I “SecureML” Mohassel and Zhang, S&P 2017

1Cappe, I love u
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to appear at ACNS 2018 (ePrint Report 2017/979)
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Ridge Regression

Data point: (x, y), x ∈ Rd and y ∈ R

Model: w ∈ Rd vector of weights

Scoring: y ≈ fw(x) = 〈w, x〉

=
d∑

j=1

w(j)x(j)

Example: warfarin maintenance dose

x=(VKORC1 and CYP2C9 genotypes, age, bodyweight, ...)
y = dose
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Ridge Regression

Training: given D = {(xi , yi )}i=1,...,n

find argmin of F (w) =
n∑

i=1

(yi − 〈w, xi 〉)2︸ ︷︷ ︸
mean squared error

+λ ||w||22︸ ︷︷ ︸
regularization

This can be done in two steps:

I Step 1: Compute the matrix A =
n∑

i=1

x>i xi + λI and

the vector b =
n∑

i=1

yi xi

I Step 2: Solve the linear system A ·w = b
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Linearly-Homomorphic Encryption (LHE)

I Key Generation: (sk , pk)← Gen(κ)

I Encryption: c← Encpk(m)

I Decryption: m = Decsk(c)

m =hello! Enc c =6a7#87t
pk

Dec hello!
pk sk

I Addition of ciphertexts:
Encpk(m1)� Encpk(m2) = Encpk(m1 + m2)

I Multiplication of a ciphertext by a plaintext: (m1 is public!)
m1 � Encpk(m2) = Encpk(m1 ×m2)
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2-Server Model

Two non-colluding servers:

Crypto Provider

I NOT trusted to handle data

I trusted to follow the protocol

I trusted to generate keys and store sk

ML Server

I NOT trusted to handle data

I trusted to follow the protocol
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System Overview

...

D1

D2

Dt

ML Server

Crypto Provider

(sk , pk)

pk

pk

pk

pk

pk

pk

pk

Encpk(D1)

Encpk(D2)

Encpk(Dt)

Encpk(A)
Encpk(b)

wsuch that
A ·w = b

interactive
protocol
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Phase 1: merging the local data silos

Input: User i with data Di (i = 1, 2, . . . )

Output: Encpk(A), Encpk(b) for the ML Server

A =
n∑

i=1

x>i xi + λI

b =
n∑

i=1

yi xi


− x1 − y1
− x2 − y2
− x3 − y3
...

...
...

− xn − yn


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Phase 1: merging the local data silos

Goal: compute the encryption of A =
n∑
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x>i xi + λI and b =
n∑
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yi xi

It depends on the distributed setting:

I horizontally-partitioned datasets

�n
i=1Encpk(x>i xi )

I arbitrarily-partitioned datasets

Encpk(xi (j)) · Encpk(xk(h))

(1 multiplication done via Labeled Encryption,
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Phase 2: solving A ·w = b

ML Server: Encpk(A),Encpk(b)
Crypto Provider: sk

Interactive protocol:

1. ML Server “masks inside the encryption”
Encpk(A)→ Encpk(A · R)
Encpk(b)→ Encpk(b + A · r)

2. Crypto Provider decrypts, gets Ã = A · R, b̃ = b + A · r and
computes a “masked model”, w̃ = Ã−1b̃

3. ML Server computes the real model w from the masked one

w = R · w̃ − r
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Efficiency: communication

n data points, d features

I Phase 1

- horizontally-partitioned data: O(d3 log(nd)) bits
- vertically-partitioned data: O((nd2 + d3) log(nd)) bits

I Phase 2: O(d3 log(nd)) bits

horizontally-partitioned, d = 20

- Our (phase 1+2) → 1.3 MB
(n = 10 millions)

- Nikoleanko et al → > 270 MB
(garbled circuit)

vertically-partitioned, d = 100

- Our (phase 1+2) → 1.3 GB
(n = 5 thousands)

- Gascón et al → > 3 GB (garbled
circuit)

SecureML (with LHE pre-processing): O(nd + n)
if n = Θ(d2.5), then “nd + d > d3 log(nd)”
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Efficiency: running time

Results for seven UCI datasets (time in seconds):

LHE: Paillier’s scheme with ≥ 100-bit security

16 / 18



Conclusions

We described a new system to train a ridge regression model on
the merge of encrypted datasets held by mutually distrustful
parties. The system is designed in the 2-server model and is the
first one based only on LHE.

Next

I modifying the masking to improve efficiency

I extension to non-differentiable regularization terms

I active security
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Thanks for your attention!
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