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Machine Learning

Applications:

recommendation systems
antispam software

bioinformatics & medicine
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-personalized medicine (pharmacogenetic)
-adverse drug event detection,
-disease/disorder prevention
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Privacy Information Sharing
confidential data VS improved results
proprietary models larger usability
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Training

Detection of a pattern (model) in data via a learning algorithm
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The efficacy of the learned model is improved by training
on of



Privacy-Preserving Training

Training data = merge of private data silos

Goal: Train a model on D =D UDr U --- U Dy,
while keeping each D; secret!

Same as in MPC: run a function (training algorithm) on private inputs (Ds, ..., D;),

revealing no extra info beside what is leaked from the function output (model)
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Privacy-Preserving (PP) Training

In 2000,
Lindell and Pinkas, CRYPTO 2000

(ID3 algorithm for learning a tree on the merge of 2 silos)
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Privacy-Preserving (PP) Training

In 2000,
Lindell and Pinkas, CRYPTO 2000

(ID3 algorithm for learning a tree on the merge of 2 silos)

after that, a large number of works propose! privacy-preserving
training systems for different ML models in diverse settings.
E.g., ridge regression:

Nikolaenko et al, S&P 2013

Gascon et al, PoPETS 2017
Mohassel and Zhang, S&P 2017
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Abstract. Lincar regression with 2-norm regularization (i.c., ridge re-
gression) is an important statistical technique that models the relationship
between some explanatory values and an outcome value using a linear
fanction. In many applications (c.g., predictive modeling in personalized
health-care), these values represent sensitive data. owned by several dif-
forent parties who are unwilling to share them. In this setting, training a
lincar regression model becomes challenging and needs specific crypto-
graphic solutions. This problem was elegantly addressed by Nikolaenko et
al. in S&P (Oakland) 2013. They suggested a two-server system that uses
linearly-homomorphic encryption (LHE) and Yao's two-party protocol
{garbled circuits). In this work, we propose a novel system that can train
a ridge linear regression model using only LHE (i.e., without using Yao's
‘protocol). This greatly improves the overall performance (both in compu-
tation and communication) as Yao's protocol was the main bottleneck in
the previous solution. The efficiency of the proposed system is validated
both on synthetically-generated and real-world datasets.

Keywords: Ridge regression; linear regression; privacy; homomorphic
encryption.

to appear at ACNS 2018 (ePrint Report 2017/979)



Ridge Regression

Data point: (x,y), x ¢ R? and y € R
Model: w € RY vector of weights

Scoring: y & fiu(x) = (w, x)
d

Datapoints
Regression
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Ridge Regression

Data point: (x,y), x ¢ R? and y € R
Model: w € RY vector of weights

Scoring: y & fiu(x) = (w, x)
d

= > w()x())

Jj=1

Example: warfarin maintenance dose

4 -
Datapoints
Regression

x=(VKORC1 and CYP2C9 genotypes, age, bodyweight, ...)

y = dose



Ridge Regression

Training: given D = {(x;, yi)}i=1,...n
find argmin of F(w) = Z(y/' — (W, x;))? +A

Iwl[3
i=1 ™

mean squared error

This can be done in two steps:

n
Compute the matrix A = ZX,TX,' + Al and
i=1
n
the vector b = Zy; X;
i=1
Solve the linear system A-w =b
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Linearly-Homomorphic Encryption (LHE)

> Key Generation: (sk, pk) < Gen(k)
» Encryption: ¢ < Encpx(m)
» Decryption: m = Decg(c)

pk k
m =hello! 4).—> c =6a7#387t H.S—> hello!

9/18



Linearly-Homomorphic Encryption (LHE)

Key Generation: (sk, pk) < Gen(k)
Encryption: ¢ < Encpx(m)
Decryption: m = Decg(c)

pk k
m =hello! —).—> ¢ —6aT#8T7t —)@S—> hello!

Addition of ciphertexts:
Encpk(my) B Encpi(m2) = Encpr(my + my)

Multiplication of a ciphertext by a plaintext:
mp X Encpk(mg) = Encpk(ml X m2)

/18



2-Server Model

Two non-colluding servers:

I0

Crypto Provider

I0

ML Server

NOT trusted to handle data
trusted to follow the protocol

trusted to generate keys and store sk

NOT trusted to handle data

trusted to follow the protocol
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System Overview

-\ -

ML Server

0

Crypto Provider
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System Overview
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System Overview
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System Overview
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System Overview
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System Overview

D wsuch that
[— o]

A-w=Db
ML Server

Q (sk, pk)

Crypto Provider
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Phase 1: merging the local data silos

Input: User i/ with data D; (i = 1,2,...)
Output: Encpi(A), Encpi(b) for the ML Server

n
— x
A= xxi+ M %
i=1 ~ xs
n .
b=> yix :
i=1 - Xn

1
Y2
y3

Yn
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Phase 1: merging the local data silos

n n
Goal: compute the encryption of A = Zx,-Tx,- + Al and b = Zy,- X;

i=1 i=1
It depends on the
- X1 — N
- X2 — ¥
- X3 — )3
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Phase 1: merging the local data silos

n n
Goal: compute the encryption of A = Zx,-Tx,- + A and b = Zy,- X;

i=1 i=1
It depends on the
horizontally-partitioned datasets
T
B Encpr(x; x;) - X1 - n
— Xp — Yn
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Phase 1: merging the local data silos

n n
Goal: compute the encryption of A = Zx,-Tx,- + A and b = Zy,- X;

i=1 i=1
It depends on the
horizontally-partitioned datasets
T
B Encpr(x; x;) — - n
. .. - X2 -
arbitrarily-partitioned datasets 2

Encpk(x;(j)) : Encpk(xk(h))

(1 multiplication done via Labeled Encryption,
Barbosa et al. ESORICS 2017)
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Phase 2: solving A-w =Db

ML Server: Encpk(A), Encpr(b)
Crypto Provider: sk

Interactive protocol:
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Phase 2: solving A-w =Db

ML Server: Encpk(A), Encpr(b)
Crypto Provider: sk

Interactive protocol:

ML Server “masks inside the encryption”
Encpk(A) = Encpr(A - R)
Encpi(b) — Encpr(b+ A-r)

Crypto Provider decrypts, gets A= A" R, b=b+A-rand
computes a “masked model”, W = A~1b

ML Server computes the real model w from the masked one

w=R-wW-—r

14 /18



Efficiency: communication

n data points, d features

Phase 1

horizontally-partitioned data: O(d®log(nd)) bits
vertically-partitioned data: O((nd? + d*)log(nd)) bits

Phase 2: O(d®log(nd)) bits
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Efficiency: communication

n data points, d features

Phase 1

horizontally-partitioned data: O(d®log(nd)) bits
vertically-partitioned data: O((nd? + d*)log(nd)) bits

Phase 2: O(d®log(nd)) bits

horizontally-partitioned, d = 20 vertically-partitioned, d = 100

- Our (phase 1+2) — 1.3 MB - Our (phase 1+2) — 1.3 GB

(n = 10 millions) (n = 5 thousands)

- Nikoleanko et al — > 270 MB - Gascén et al - > 3 GB (garbled
(garbled circuit) circuit)

SecureML (with LHE pre-processing): O(nd + n)
if n = ©(d*®), then “nd + d > d*log(nd)"
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Efficiency: running time

Results for seven UCI datasets (time in seconds):

Dataset n d ¢ logp(N) Rmsg Phase 1 Phase 2
Time kB Time kB
air 6252 13 1 2048 4.15E-09 199 53.24 365 96.51
beijing 37582 14 2 2048 529E-07 237 60.93 426 110.10
boston 456 13 4 2048 234E-06 200 5324 376 96.51
energy 17762 25 3 2724 5.63E-07 1299 23826 37.73 451
forest 466 12 3 2048 357E-09 166 4608 2.81 8294
student 356 30 1 2048 4.63E-07 936 253.44 3040 483.84
wine 4409 11 4 2048 2.62E-05 1.71 3942 238 70.40

LHE: Paillier's scheme with > 100-bit security
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Conclusions

We described a new system to train a on
the merge of encrypted datasets held by mutually distrustful
parties. The system is designed in the 2-server model and is the
first one based only on LHE.
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Conclusions

We described a new system to train a on
the merge of encrypted datasets held by mutually distrustful
parties. The system is designed in the 2-server model and is the
first one based only on LHE.

Next
modifying the masking to improve efficiency
extension to non-differentiable regularization terms

active security
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