
Secure Linear Algebra
over Finite Fields and over the Rationals

Frank Blom, Niek J. Bouman,
Berry Schoenmakers, Niels de Vreede

Wednesday, May 30, 2018

Funded by EU H2020 SODA
1 / 30

Setting

I Secret-sharing based MPC
I Multi-party (Nplayers ≥ 3) scenario

I Protocols on top of abstract MPC “arithmetic black box”

2 / 30

Think of Shamir's secret sharing scheme

Setting

I Secret-sharing based MPC
I Multi-party (Nplayers ≥ 3) scenario
I Protocols on top of abstract MPC “arithmetic black box”

2 / 30

Think of Shamir's secret sharing scheme

Problem Sketch
Consider a matrix A and vector b with integral entries,
secret-shared among the players

Task

I Compute vector x such that Ax = b.

Multiple Problem Variants

I Solution over a finite field F vs. over Q
I Size of A: Square vs. rectangular (“wide” or “tall”)
I Rank of A: full-rank vs. singular, known vs. unknown.
I Consistent vs. inconsistent
I Finding least squared-error solution (over Q):

x ∗ := argmin
x
‖Ax − b‖2

3 / 30

least-squares only makes sense over Q

no Euclidean distance metric over F

Problem Sketch
Consider a matrix A and vector b with integral entries,
secret-shared among the players

Task

I Compute vector x such that Ax = b.

Multiple Problem Variants

I Solution over a finite field F vs. over Q

I Size of A: Square vs. rectangular (“wide” or “tall”)
I Rank of A: full-rank vs. singular, known vs. unknown.
I Consistent vs. inconsistent
I Finding least squared-error solution (over Q):

x ∗ := argmin
x
‖Ax − b‖2

3 / 30

least-squares only makes sense over Q

no Euclidean distance metric over F

Problem Sketch
Consider a matrix A and vector b with integral entries,
secret-shared among the players

Task

I Compute vector x such that Ax = b.

Multiple Problem Variants

I Solution over a finite field F vs. over Q
I Size of A: Square vs. rectangular (“wide” or “tall”)
I Rank of A: full-rank vs. singular, known vs. unknown.

I Consistent vs. inconsistent
I Finding least squared-error solution (over Q):

x ∗ := argmin
x
‖Ax − b‖2

3 / 30

least-squares only makes sense over Q

no Euclidean distance metric over F

Problem Sketch
Consider a matrix A and vector b with integral entries,
secret-shared among the players

Task

I Compute vector x such that Ax = b.

Multiple Problem Variants

I Solution over a finite field F vs. over Q
I Size of A: Square vs. rectangular (“wide” or “tall”)
I Rank of A: full-rank vs. singular, known vs. unknown.
I Consistent vs. inconsistent

I Finding least squared-error solution (over Q):

x ∗ := argmin
x
‖Ax − b‖2

3 / 30

least-squares only makes sense over Q

no Euclidean distance metric over F

Problem Sketch
Consider a matrix A and vector b with integral entries,
secret-shared among the players

Task

I Compute vector x such that Ax = b.

Multiple Problem Variants

I Solution over a finite field F vs. over Q
I Size of A: Square vs. rectangular (“wide” or “tall”)
I Rank of A: full-rank vs. singular, known vs. unknown.
I Consistent vs. inconsistent
I Finding least squared-error solution (over Q):

x ∗ := argmin
x
‖Ax − b‖2

3 / 30

least-squares only makes sense over Q

no Euclidean distance metric over F

Talk Plan

1. Solution over Q: A is square and has full rank,
2. Solution over a finite field F (A’s rank unknown)

2.1 Oblivious Elimination
2.2 Block-Recursive Decomposition

3. Least-Squares Solution over Q (A’s rank unknown)

4 / 30

Warmup: Solving Full-Rank System over Q (in MPC)

Motivation
Useful for privacy-preserving data processing / statistics / etc

5 / 30

Related Work: Secure Linear Algebra over Q

Multi-party case
[Toft, 2009]

2-party case
Several results in the 2-party setting, like
[Nikolaenko et al., 2013, Gascón et al., 2017, Joye, 2017,
Giacomelli et al., 2017]
Nonetheless, we do not target the 2-party scenario in this work.

6 / 30

Toft: secure linear programming

Solving Ax = b over Q (A full rank)

I Let A ∈ Zn×n

I Then, in general, A−1 ∈ Qn×n .

I Inverse of A can be written as follows:

A−1 =
adjA
detA

where adjA is the adjugate of A
I adjA has integral entries
I Solution x of the system Ax = b can be represented as(

adj(A)b,det(A)
)
∈ Zn × Z

I Representation avoids occurrence of rational entries

7 / 30

Solving Ax = b over Q (A full rank)

I Let A ∈ Zn×n

I Then, in general, A−1 ∈ Qn×n .
I Inverse of A can be written as follows:

A−1 =
adjA
detA

where adjA is the adjugate of A

I adjA has integral entries
I Solution x of the system Ax = b can be represented as(

adj(A)b,det(A)
)
∈ Zn × Z

I Representation avoids occurrence of rational entries

7 / 30

Solving Ax = b over Q (A full rank)

I Let A ∈ Zn×n

I Then, in general, A−1 ∈ Qn×n .
I Inverse of A can be written as follows:

A−1 =
adjA
detA

where adjA is the adjugate of A
I adjA has integral entries

I Solution x of the system Ax = b can be represented as(
adj(A)b,det(A)

)
∈ Zn × Z

I Representation avoids occurrence of rational entries

7 / 30

Solving Ax = b over Q (A full rank)

I Let A ∈ Zn×n

I Then, in general, A−1 ∈ Qn×n .
I Inverse of A can be written as follows:

A−1 =
adjA
detA

where adjA is the adjugate of A
I adjA has integral entries
I Solution x of the system Ax = b can be represented as(

adj(A)b,det(A)
)
∈ Zn × Z

I Representation avoids occurrence of rational entries

7 / 30

Our Solution (Ax = b over Q, A full rank)

I We work over the finite field Fp := Z/pZ, p prime
I A modification of protocol of [Cramer and Damgård, 2001]

(which is based on [Bar-Ilan and Beaver, 1989])
I Modification: keep adjugate and determinant separate

I p must be large enough to represent detA and entries of
adj(A)b

I Bound on p follows essentially from Hadamard’s
inequality:

Lemma (Hadamard)
For any matrix M ∈ [−B ,B]n×n

|detM | ≤ Bnnn/2.

8 / 30

each entry of adj A is defined as the

determinant of a particular submatrix of A

Our Solution (Ax = b over Q, A full rank)

I We work over the finite field Fp := Z/pZ, p prime
I A modification of protocol of [Cramer and Damgård, 2001]

(which is based on [Bar-Ilan and Beaver, 1989])
I Modification: keep adjugate and determinant separate
I p must be large enough to represent detA and entries of

adj(A)b

I Bound on p follows essentially from Hadamard’s
inequality:

Lemma (Hadamard)
For any matrix M ∈ [−B ,B]n×n

|detM | ≤ Bnnn/2.

8 / 30

each entry of adj A is defined as the

determinant of a particular submatrix of A

Our Solution (Ax = b over Q, A full rank)

I We work over the finite field Fp := Z/pZ, p prime
I A modification of protocol of [Cramer and Damgård, 2001]

(which is based on [Bar-Ilan and Beaver, 1989])
I Modification: keep adjugate and determinant separate
I p must be large enough to represent detA and entries of

adj(A)b
I Bound on p follows essentially from Hadamard’s

inequality:

Lemma (Hadamard)
For any matrix M ∈ [−B ,B]n×n

|detM | ≤ Bnnn/2.

8 / 30

each entry of adj A is defined as the

determinant of a particular submatrix of A

Computing (adjA,detA) via Random Self-Reduction

1. Let JAK be Shamir-secret-shared over the field Fp .

2. Sample lower triangular matrix JLK ∈ Fn×n
p

having ones on its diagonal uniformly at random

3. Sample upper triangular matrix JU K ∈ Fn×n
p uniformly at

random such that diagonal does not contain zeros.

4. Compute JRK := JLU K and JdK := [(detR)] = (
∏

i diag(U)i)

5. Compute JRAK and reveal it

6. In the clear, compute adjRA and detRA.

7. Compute JadjAK := adj(RA)JRKJd−1K, JdetAK := det(RA)Jd−1K

L is uni-triangular: simplifies proof in [Cramer and Damgård, 2001]
(and slightly fewer multiplications & saves 1 communication round)

9 / 30

We call this protocol our

'Random Self-Reducibility protocol', because we exploit

the fact that the problem can be reduced to solving a random instance

Computing (adjA,detA) via Random Self-Reduction

1. Let JAK be Shamir-secret-shared over the field Fp .

2. Sample lower triangular matrix JLK ∈ Fn×n
p

having ones on its diagonal uniformly at random

3. Sample upper triangular matrix JU K ∈ Fn×n
p uniformly at

random such that diagonal does not contain zeros.

4. Compute JRK := JLU K and JdK := [(detR)] = (
∏

i diag(U)i)

5. Compute JRAK and reveal it

6. In the clear, compute adjRA and detRA.

7. Compute JadjAK := adj(RA)JRKJd−1K, JdetAK := det(RA)Jd−1K

L is uni-triangular: simplifies proof in [Cramer and Damgård, 2001]
(and slightly fewer multiplications & saves 1 communication round)

9 / 30

We call this protocol our

'Random Self-Reducibility protocol', because we exploit

the fact that the problem can be reduced to solving a random instance

Computing (adjA,detA) via Random Self-Reduction

1. Let JAK be Shamir-secret-shared over the field Fp .

2. Sample lower triangular matrix JLK ∈ Fn×n
p

having ones on its diagonal uniformly at random

3. Sample upper triangular matrix JU K ∈ Fn×n
p uniformly at

random such that diagonal does not contain zeros.

4. Compute JRK := JLU K and JdK := [(detR)] = (
∏

i diag(U)i)

5. Compute JRAK and reveal it

6. In the clear, compute adjRA and detRA.

7. Compute JadjAK := adj(RA)JRKJd−1K, JdetAK := det(RA)Jd−1K

L is uni-triangular: simplifies proof in [Cramer and Damgård, 2001]
(and slightly fewer multiplications & saves 1 communication round)

9 / 30

We call this protocol our

'Random Self-Reducibility protocol', because we exploit

the fact that the problem can be reduced to solving a random instance

Computing (adjA,detA) via Random Self-Reduction

1. Let JAK be Shamir-secret-shared over the field Fp .

2. Sample lower triangular matrix JLK ∈ Fn×n
p

having ones on its diagonal uniformly at random

3. Sample upper triangular matrix JU K ∈ Fn×n
p uniformly at

random such that diagonal does not contain zeros.

4. Compute JRK := JLU K and JdK := [(detR)] = (
∏

i diag(U)i)

5. Compute JRAK and reveal it

6. In the clear, compute adjRA and detRA.

7. Compute JadjAK := adj(RA)JRKJd−1K, JdetAK := det(RA)Jd−1K

L is uni-triangular: simplifies proof in [Cramer and Damgård, 2001]
(and slightly fewer multiplications & saves 1 communication round)

9 / 30

We call this protocol our

'Random Self-Reducibility protocol', because we exploit

the fact that the problem can be reduced to solving a random instance

Computing (adjA,detA) via Random Self-Reduction

1. Let JAK be Shamir-secret-shared over the field Fp .

2. Sample lower triangular matrix JLK ∈ Fn×n
p

having ones on its diagonal uniformly at random

3. Sample upper triangular matrix JU K ∈ Fn×n
p uniformly at

random such that diagonal does not contain zeros.

4. Compute JRK := JLU K and JdK := [(detR)] = (
∏

i diag(U)i)

5. Compute JRAK and reveal it

6. In the clear, compute adjRA and detRA.

7. Compute JadjAK := adj(RA)JRKJd−1K, JdetAK := det(RA)Jd−1K

L is uni-triangular: simplifies proof in [Cramer and Damgård, 2001]
(and slightly fewer multiplications & saves 1 communication round)

9 / 30

We call this protocol our

'Random Self-Reducibility protocol', because we exploit

the fact that the problem can be reduced to solving a random instance

Computing (adjA,detA) via Random Self-Reduction

1. Let JAK be Shamir-secret-shared over the field Fp .

2. Sample lower triangular matrix JLK ∈ Fn×n
p

having ones on its diagonal uniformly at random

3. Sample upper triangular matrix JU K ∈ Fn×n
p uniformly at

random such that diagonal does not contain zeros.

4. Compute JRK := JLU K and JdK := [(detR)] = (
∏

i diag(U)i)

5. Compute JRAK and reveal it

6. In the clear, compute adjRA and detRA.

7. Compute JadjAK := adj(RA)JRKJd−1K, JdetAK := det(RA)Jd−1K

L is uni-triangular: simplifies proof in [Cramer and Damgård, 2001]
(and slightly fewer multiplications & saves 1 communication round)

9 / 30

We call this protocol our

'Random Self-Reducibility protocol', because we exploit

the fact that the problem can be reduced to solving a random instance

Complexity

Solving Ax = b securely over Q, where A is square (n by n)
and full rank.

Our work # Rounds # Secure Mults

Random Self-Reducibility O(1) O(n2)∗

∗ Assuming “cheap” inner products (Shamir LSS)

10 / 30

Solution over Fp, A’s rank unknown

Oblivious Elimination

11 / 30

Related Work: Secure Linear Algebra over Fp

Consider the linear system Ax = b, where A is an m by n
matrix over finite field Fp .

Reference # Rounds # Secure Mults

[Cramer and Damgård, 2001] O(1) O(n5)∗

[Cramer et al., 2007] O(1) O(m4 + n2m)

∗ Assumption: n ≥ m

12 / 30

Motivation (Solution over Fp, Unknown-Rank Case)

I Existing constant-round-solutions have high computational
complexity

I Trade-off: computational complexity vs. round complexity
vs. communication complexity

I What can we get if we drop the constant-rounds property?

13 / 30

Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank

I Upon exhausting the rank:

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30

Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
36 30 22 45
49 39 33 53
67 51 49 62
45 39 25 63



I Upon exhausting the rank:

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30

Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
36 30 22 45
0 −66 110 −297
0 −174 290 −783
0 54 −90 243



I Upon exhausting the rank:

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30

Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
36 0 −4752 5940
0 −66 110 −297
0 0 0 0
0 0 0 0



I Upon exhausting the rank:

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30

Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



I Upon exhausting the rank:

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30

Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
I Upon exhausting the rank:

I continue elimination with dummy operations (to avoid
leaking the rank)

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30

Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
I Upon exhausting the rank: . . .

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30

Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
I Upon exhausting the rank: . . .

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30

Kaltofen–Saunders lemma
Let A ∈ Fn×n be arbitrary and let r := rankA. Consider the
matrix A ′ := UAL with

U :=



1 u2 u3 . . . un
1 u2 . . . un−1

1
. . .

...
. . . u2

1

 , L :=


1
`2 1
`3 `2 1
...

...
.

`n `n−1 . . . `2 1

 ,

where ui and `i for all i ∈ {2, . . . ,n} selected independently and
uniformly at random from S ⊆ F.
Then,

Pr(A ′ has generic rank profile) ≥ 1−
r(r + 1)

|S |
.

15 / 30

Nullspace Computation & Consistency Check

I Apply elimination to augmented matrix

JC K :=
(
U JAKL U JBK

JInK 0n×m

)

Yields basis for the (right) nullspace of A
I Column-wise consistency check by means of checking the

candidate solution X̃i :

vAX̃i − vBi
?
= 0 for a randomly chosen vector v

16 / 30

Nullspace Computation & Consistency Check

I Apply elimination to augmented matrix

JC K :=
(
U JAKL U JBK

JInK 0n×m

)
Yields basis for the (right) nullspace of A

I Column-wise consistency check by means of checking the
candidate solution X̃i :

vAX̃i − vBi
?
= 0 for a randomly chosen vector v

16 / 30

Nullspace Computation & Consistency Check

I Apply elimination to augmented matrix

JC K :=
(
U JAKL U JBK

JInK 0n×m

)

Yields basis for the (right) nullspace of A

I Column-wise consistency check by means of checking the
candidate solution X̃i :

vAX̃i − vBi
?
= 0 for a randomly chosen vector v

16 / 30

Contributions: Solution to the Fp-linear system

Consider the linear system Ax = b, where A is an m by n
matrix over finite field Fp .

Prior work # Rounds # Secure Mults

[Cramer and Damgård, 2001] O(1) O(n5)

[Cramer et al., 2007] O(1) O(m4 + n2m)

Our work # Rounds # Secure Mults

Oblivious Gaussian Elimination O(min(m ,n)) O(n2m)

17 / 30

Can we use Obliv. GE to obtain solution over Q?
(Unknown-rank case)

I Like in the full-rank case, keep numerators and (common)
denominator of the solution separated

I Coefficient-growth becomes important: Final values must
not wrap around the modulus

I Preconditioning becomes a problem:
I Affects solution’s numerators and common denominator
I Precond. elements sampled from exponentially large set
I Values in GE algorithm will quickly exceed modulus

Open Problem
How to apply pivoting efficiently in an MPC setting, or, how to
perform generic-rank-profile preconditioning without
introducing massive coefficient-growth?

18 / 30

2 - to get negligible error probability

3 - based on Hadamard's inequality

Can we use Obliv. GE to obtain solution over Q?
(Unknown-rank case)

I Like in the full-rank case, keep numerators and (common)
denominator of the solution separated

I Coefficient-growth becomes important: Final values must
not wrap around the modulus

I Preconditioning becomes a problem:
I Affects solution’s numerators and common denominator
I Precond. elements sampled from exponentially large set
I Values in GE algorithm will quickly exceed modulus

Open Problem
How to apply pivoting efficiently in an MPC setting, or, how to
perform generic-rank-profile preconditioning without
introducing massive coefficient-growth?

18 / 30

2 - to get negligible error probability

3 - based on Hadamard's inequality

Can we use Obliv. GE to obtain solution over Q?
(Unknown-rank case)

I Like in the full-rank case, keep numerators and (common)
denominator of the solution separated

I Coefficient-growth becomes important: Final values must
not wrap around the modulus

I Preconditioning becomes a problem:
I Affects solution’s numerators and common denominator
I Precond. elements sampled from exponentially large set
I Values in GE algorithm will quickly exceed modulus

Open Problem
How to apply pivoting efficiently in an MPC setting, or, how to
perform generic-rank-profile preconditioning without
introducing massive coefficient-growth?

18 / 30

2 - to get negligible error probability

3 - based on Hadamard's inequality

Solution over Fp, A’s rank unknown

via Block-Recursive Decomposition

19 / 30

Block-Recursive Decomposition:
Some form of “divide-and-conquer” approach to
(generalized) matrix inversion

Full-rank matrices:
I [Strassen, 1969]: Computing matrix inverse has same

asymptotic complexity as matrix multiplication
I [Bunch and Hopcroft, 1974]
I . . .

Arbitrary-rank matrices:
I [Ibarra et al., 1982]
I Many others, see [Dumas et al., 2015] for overview
I [Malaschonok, 2010]: LEU decomposition

Algorithm is a straight-line program (rank-insensitive
time-complexity) and works over arbitrary field: suitable
for MPC

20 / 30

Block-Recursive Decomposition:
Some form of “divide-and-conquer” approach to
(generalized) matrix inversion
Full-rank matrices:

I [Strassen, 1969]: Computing matrix inverse has same
asymptotic complexity as matrix multiplication

I [Bunch and Hopcroft, 1974]
I . . .

Arbitrary-rank matrices:
I [Ibarra et al., 1982]
I Many others, see [Dumas et al., 2015] for overview
I [Malaschonok, 2010]: LEU decomposition

Algorithm is a straight-line program (rank-insensitive
time-complexity) and works over arbitrary field: suitable
for MPC

20 / 30

Block-Recursive Decomposition:
Some form of “divide-and-conquer” approach to
(generalized) matrix inversion
Full-rank matrices:

I [Strassen, 1969]: Computing matrix inverse has same
asymptotic complexity as matrix multiplication

I [Bunch and Hopcroft, 1974]
I . . .

Arbitrary-rank matrices:
I [Ibarra et al., 1982]
I Many others, see [Dumas et al., 2015] for overview
I [Malaschonok, 2010]: LEU decomposition

Algorithm is a straight-line program (rank-insensitive
time-complexity) and works over arbitrary field: suitable
for MPC

20 / 30

Contributions: Solution to the F-linear system

Consider the linear system Ax = b, where A is an m by n
matrix over finite field F.

Prior work # Rounds # Secure Mults

[Cramer and Damgård, 2001] O(1) O(n5)

[Cramer et al., 2007] O(1) O(m4 + n2m)

Our work # Rounds # Secure Mults

Oblivious Gaussian Elimination O(min(m ,n)) O(n2m)

Block-Recursive Decomposition O(max(m ,n)1.59) O(max(m ,n)2)

21 / 30

Least-Squares Solution over Q,

A’s rank unknown

22 / 30

Least-Squares Solution over Q
Motivation
Plenty of applications, e.g.,:

I Fitting a line through data
I Solve a “noisy” system

Two Caveats

1. Non-standard scenario: Solution is revealed, followed by a
rational reconstruction step “in the clear” [Wang, 1981]

I Recover numerator r and denominator s via basis reduction
in a 2D lattice (e.g., Lagrange–Gauss algorithm)

I Unique solution iff |r |, |s | ≤
√
p/2

2. Non-standard assumption: the prime p of the finite field is
chosen randomly from a large set, independently of values
of matrix A and vector b.
Makes sense against honest-but-curious adversary

23 / 30

Least-Squares Solution over Q
Motivation
Plenty of applications, e.g.,:

I Fitting a line through data
I Solve a “noisy” system

Two Caveats

1. Non-standard scenario: Solution is revealed, followed by a
rational reconstruction step “in the clear” [Wang, 1981]

I Recover numerator r and denominator s via basis reduction
in a 2D lattice (e.g., Lagrange–Gauss algorithm)

I Unique solution iff |r |, |s | ≤
√
p/2

2. Non-standard assumption: the prime p of the finite field is
chosen randomly from a large set, independently of values
of matrix A and vector b.
Makes sense against honest-but-curious adversary

23 / 30

Least-Squares Solution over Q
Motivation
Plenty of applications, e.g.,:

I Fitting a line through data
I Solve a “noisy” system

Two Caveats

1. Non-standard scenario: Solution is revealed, followed by a
rational reconstruction step “in the clear” [Wang, 1981]

I Recover numerator r and denominator s via basis reduction
in a 2D lattice (e.g., Lagrange–Gauss algorithm)

I Unique solution iff |r |, |s | ≤
√
p/2

2. Non-standard assumption: the prime p of the finite field is
chosen randomly from a large set, independently of values
of matrix A and vector b.
Makes sense against honest-but-curious adversary

23 / 30

Least-Squares Solution over Q
Motivation
Plenty of applications, e.g.,:

I Fitting a line through data
I Solve a “noisy” system

Two Caveats

1. Non-standard scenario: Solution is revealed, followed by a
rational reconstruction step “in the clear” [Wang, 1981]

I Recover numerator r and denominator s via basis reduction
in a 2D lattice (e.g., Lagrange–Gauss algorithm)

I Unique solution iff |r |, |s | ≤
√
p/2

2. Non-standard assumption: the prime p of the finite field is
chosen randomly from a large set, independently of values
of matrix A and vector b.
Makes sense against honest-but-curious adversary

23 / 30

Least-Squares Solution over Q
Motivation
Plenty of applications, e.g.,:

I Fitting a line through data
I Solve a “noisy” system

Two Caveats

1. Non-standard scenario: Solution is revealed, followed by a
rational reconstruction step “in the clear” [Wang, 1981]

I Recover numerator r and denominator s via basis reduction
in a 2D lattice (e.g., Lagrange–Gauss algorithm)

I Unique solution iff |r |, |s | ≤
√
p/2

2. Non-standard assumption: the prime p of the finite field is
chosen randomly from a large set, independently of values
of matrix A and vector b.
Makes sense against honest-but-curious adversary

23 / 30

A generalized Cramer’s rule [Ben-Israel, 1982]

For A ∈ Cm×n and b ∈ Cm consistent with A, solution given by:

xj =
det
[
A(j → b) U
V T(j → 0) 0

]
det
[
A U
V T 0

] ∈ C, j ∈ [n],

where
I U ∈ Cm×m−r is a basis for KerAT,
I V ∈ Cn×n−r is a basis the KerA,

[Verghese, 1982] proved that the same formula yields
least-squares solution in inconsistent case

24 / 30

A generalized Cramer’s rule [Ben-Israel, 1982]

For A ∈ Cm×n and b ∈ Cm consistent with A, solution given by:

xj =
det
[
A(j → b) U
V T(j → 0) 0

]
det
[
A U
V T 0

] ∈ C, j ∈ [n],

where
I U ∈ Cm×m−r is a basis for KerAT,
I V ∈ Cn×n−r is a basis the KerA,

[Verghese, 1982] proved that the same formula yields
least-squares solution in inconsistent case

24 / 30

Using Ben-Israel/Verghese’s Cramer’s rule in MPC

High-Level Idea

I Apply Ben-Israel’s Cramer’s rule over Fp
I Obtain solution over Q via rational reconstruction

I Compute determinant in denominator via our random
self-reducibility protocol

I Determinant in the numerator(s) can be viewed as a rank-1
update of denominator:

Lemma (Matrix Determinant Lemma)
Let n ∈ N be arbitrary. Let M ∈ Zn×n be a square matrix
and let u , v ∈ Zn be column vectors. Then, it holds that

det(M + uvT) = det(M) + vT adj(M)u .

25 / 30

Using Ben-Israel/Verghese’s Cramer’s rule in MPC

High-Level Idea

I Apply Ben-Israel’s Cramer’s rule over Fp
I Obtain solution over Q via rational reconstruction
I Compute determinant in denominator via our random

self-reducibility protocol

I Determinant in the numerator(s) can be viewed as a rank-1
update of denominator:

Lemma (Matrix Determinant Lemma)
Let n ∈ N be arbitrary. Let M ∈ Zn×n be a square matrix
and let u , v ∈ Zn be column vectors. Then, it holds that

det(M + uvT) = det(M) + vT adj(M)u .

25 / 30

Using Ben-Israel/Verghese’s Cramer’s rule in MPC

High-Level Idea

I Apply Ben-Israel’s Cramer’s rule over Fp
I Obtain solution over Q via rational reconstruction
I Compute determinant in denominator via our random

self-reducibility protocol
I Determinant in the numerator(s) can be viewed as a rank-1

update of denominator:

Lemma (Matrix Determinant Lemma)
Let n ∈ N be arbitrary. Let M ∈ Zn×n be a square matrix
and let u , v ∈ Zn be column vectors. Then, it holds that

det(M + uvT) = det(M) + vT adj(M)u .

25 / 30

Using Ben-Israel/Verghese’s Cramer’s rule in MPC

High-Level Idea

I Apply Ben-Israel’s Cramer’s rule over Fp
I Obtain solution over Q via rational reconstruction
I Compute determinant in denominator via our random

self-reducibility protocol
I Determinant in the numerator(s) can be viewed as a rank-1

update of denominator:

Lemma (Matrix Determinant Lemma)
Let n ∈ N be arbitrary. Let M ∈ Zn×n be a square matrix
and let u , v ∈ Zn be column vectors. Then, it holds that

det(M + uvT) = det(M) + vT adj(M)u .

25 / 30

Using Ben-Israel/Verghese’s Cramer’s rule in MPC

Two problems

1. Matrices in numerator and denominator have
rank-dependent dimensions

(Easily dealt with by padding
with ones on diagonal)

2. Matrices in numerator and denominator might not have
full Fp-rank

I Diagonal preconditioning could avoid self-orthogonality
with high-probability
[Mulmuley, 1986, LaMacchia and Odlyzko, 1990,
Diaz-Toca et al., 2005, Cramer et al., 2007]

I Preconditioning “warps” the space, yields least-squares
solution with respect to a “warped” distance measure

26 / 30

Using Ben-Israel/Verghese’s Cramer’s rule in MPC

Two problems

1. Matrices in numerator and denominator have
rank-dependent dimensions (Easily dealt with by padding
with ones on diagonal)

2. Matrices in numerator and denominator might not have
full Fp-rank

I Diagonal preconditioning could avoid self-orthogonality
with high-probability
[Mulmuley, 1986, LaMacchia and Odlyzko, 1990,
Diaz-Toca et al., 2005, Cramer et al., 2007]

I Preconditioning “warps” the space, yields least-squares
solution with respect to a “warped” distance measure

26 / 30

Using Ben-Israel/Verghese’s Cramer’s rule in MPC

Two problems

1. Matrices in numerator and denominator have
rank-dependent dimensions (Easily dealt with by padding
with ones on diagonal)

2. Matrices in numerator and denominator might not have
full Fp-rank

I Diagonal preconditioning could avoid self-orthogonality
with high-probability
[Mulmuley, 1986, LaMacchia and Odlyzko, 1990,
Diaz-Toca et al., 2005, Cramer et al., 2007]

I Preconditioning “warps” the space, yields least-squares
solution with respect to a “warped” distance measure

26 / 30

Using Ben-Israel/Verghese’s Cramer’s rule in MPC

“Way out”

I Omit (diagonal) preconditioning
I Assume: p chosen at random, independently of the

elements of A and b, such that p � max(m ,n)
=⇒ probability of self-orthogonality is small

27 / 30

Protocol: LeastSq(A, b)

1: (JrK, J
[
U 0

]
K, J
[
V 0

]
K)← LRNullspace(JAK) . over Fp

2: Form the matrix

JM K :=

 A U 0
V T 0 0
0 0 Ir×r

 ∈ F(n+m)×(n+m)
p .

3: (JadjM K, JdetM K)← AdjDet(JM K)
4: Define b◦ as the column vector b padded with zeros up to

length n +m .
For every j ∈ [n]:
5: Compute

Jx̃j K := 1+ J(detM)−1KJRowj (adjM)K · Jb◦ − Colj (M)K

6: Reveal Jx̃j K to “output parties”
7: xj ← RationalReconstruct(x̃j)

28 / 30

To instantiate LRNullspace, we can use

oblivious elimination or Malaschonok's decomposition.

Protocol: LeastSq(A, b)

1: (JrK, J
[
U 0

]
K, J
[
V 0

]
K)← LRNullspace(JAK) . over Fp

2: Form the matrix

JM K :=

 A U 0
V T 0 0
0 0 Ir×r

 ∈ F(n+m)×(n+m)
p .

3: (JadjM K, JdetM K)← AdjDet(JM K)
4: Define b◦ as the column vector b padded with zeros up to

length n +m .
For every j ∈ [n]:
5: Compute

Jx̃j K := 1+ J(detM)−1KJRowj (adjM)K · Jb◦ − Colj (M)K

6: Reveal Jx̃j K to “output parties”
7: xj ← RationalReconstruct(x̃j)

28 / 30

To instantiate LRNullspace, we can use

oblivious elimination or Malaschonok's decomposition.

Protocol: LeastSq(A, b)

1: (JrK, J
[
U 0

]
K, J
[
V 0

]
K)← LRNullspace(JAK) . over Fp

2: Form the matrix

JM K :=

 A U 0
V T 0 0
0 0 Ir×r

 ∈ F(n+m)×(n+m)
p .

3: (JadjM K, JdetM K)← AdjDet(JM K)

4: Define b◦ as the column vector b padded with zeros up to
length n +m .

For every j ∈ [n]:
5: Compute

Jx̃j K := 1+ J(detM)−1KJRowj (adjM)K · Jb◦ − Colj (M)K

6: Reveal Jx̃j K to “output parties”
7: xj ← RationalReconstruct(x̃j)

28 / 30

To instantiate LRNullspace, we can use

oblivious elimination or Malaschonok's decomposition.

Protocol: LeastSq(A, b)

1: (JrK, J
[
U 0

]
K, J
[
V 0

]
K)← LRNullspace(JAK) . over Fp

2: Form the matrix

JM K :=

 A U 0
V T 0 0
0 0 Ir×r

 ∈ F(n+m)×(n+m)
p .

3: (JadjM K, JdetM K)← AdjDet(JM K)
4: Define b◦ as the column vector b padded with zeros up to

length n +m .
For every j ∈ [n]:
5: Compute

Jx̃j K := 1+ J(detM)−1KJRowj (adjM)K · Jb◦ − Colj (M)K

6: Reveal Jx̃j K to “output parties”
7: xj ← RationalReconstruct(x̃j)

28 / 30

To instantiate LRNullspace, we can use

oblivious elimination or Malaschonok's decomposition.

Protocol: LeastSq(A, b)

1: (JrK, J
[
U 0

]
K, J
[
V 0

]
K)← LRNullspace(JAK) . over Fp

2: Form the matrix

JM K :=

 A U 0
V T 0 0
0 0 Ir×r

 ∈ F(n+m)×(n+m)
p .

3: (JadjM K, JdetM K)← AdjDet(JM K)
4: Define b◦ as the column vector b padded with zeros up to

length n +m .
For every j ∈ [n]:
5: Compute

Jx̃j K := 1+ J(detM)−1KJRowj (adjM)K · Jb◦ − Colj (M)K

6: Reveal Jx̃j K to “output parties”
7: xj ← RationalReconstruct(x̃j) 28 / 30

To instantiate LRNullspace, we can use

oblivious elimination or Malaschonok's decomposition.

Complexity

Rounds # Secure Mults

Least-Squares Rnullspace +O(1) Mnullspace +O(n2)

where Rnullspace and Mnullspace are the round and sec.-mult.
complexities required for computing right and left nullspace of
A over the finite field

29 / 30

Questions?

30 / 30

References I

Bar-Ilan, J. and Beaver, D. (1989).
Non-cryptographic fault-tolerant computing in constant number of rounds of
interaction.
In Proc. 8th Symp. on Princip. of Distr. Comp., pages 201–209, NY. ACM.

Bareiss, E. H. (1968).
Sylvester’s identity and multistep integer-preserving gaussian elimination.
Mathematics of Computation, 22(103):565–578.

Ben-Israel, A. (1982).
A cramer rule for least-norm solutions of consistent linear equations.
Linear Algebra and its Applications, 43:223–226.

Bunch, J. R. and Hopcroft, J. E. (1974).
Triangular factorization and inversion by fast matrix multiplication.
Mathematics of Computation, 28(125):231–236.

Cramer, R. and Damgård, I. (2001).
Secure distributed linear algebra in a constant number of rounds.
In Proc. CRYPTO 2001, Santa Barbara, USA, pages 119–136. Springer.

31 / 30

References II

Cramer, R., Kiltz, E., and Padró, C. (2007).
A note on secure computation of the Moore–Penrose pseudoinverse and its
application to secure linear algebra.
In Proc. CRYPTO 2007, Santa Barbara, USA, pages 613–630. Springer.

Diaz-Toca, G. M., Gonzalez-Vega, L., and Lombardi, H. (2005).
Generalizing cramer’s rule: Solving uniformly linear systems of equations.
SIAM journal on matrix analysis and applications, 27(3):621–637.

Dumas, J.-G., Pernet, C., and Sultan, Z. (2015).
Computing the rank profile matrix.
In Proceedings of the 2015 ACM on International Symposium on Symbolic
and Algebraic Computation, pages 149–156. ACM.

Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur, S.,
and Evans, D. (2017).
Privacy-preserving distributed linear regression on high-dimensional data.
Proceedings on Privacy Enhancing Technologies, 2017(4):345–364.

Giacomelli, I., Jha, S., Joye, M., Page, C. D., and Yoon, K. (2017).
Privacy-preserving ridge regression over distributed data from LHE.
Cryptology ePrint Archive, Report 2017/979.

32 / 30

References III

Giesbrecht, M., Lobo, A., and Saunders, B. D. (1998).
Certifying inconsistency of sparse linear systems.
In Proceedings of the 1998 international symposium on Symbolic and
algebraic computation, pages 113–119. ACM.

Ibarra, O. H., Moran, S., and Hui, R. (1982).
A generalization of the fast LUP matrix decomposition algorithm and
applications.
Journal of Algorithms, 3(1):45–56.

Joye, M. (2017).
Privacy-preserving ridge regression without garbled circuits.
Cryptology ePrint Archive, Report 2017/732.

Kaltofen, E. and Saunders, B. D. (1991).
On Wiedemann’s method of solving sparse linear systems.
In International Symposium on Applied Algebra, Algebraic Algorithms, and
Error-Correcting Codes, pages 29–38. Springer.

LaMacchia, B. A. and Odlyzko, A. M. (1990).
Solving large sparse linear systems over finite fields.
In Conference on the Theory and Application of Cryptography, pages
109–133. Springer.

33 / 30

References IV

Malaschonok, G. (2010).
Fast generalized Bruhat decomposition.
In International Workshop on Computer Algebra in Scientific Computing,
pages 194–202. Springer.

Mulmuley, K. (1986).
A fast parallel algorithm to compute the rank of a matrix over an arbitrary
field.
In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, STOC ’86, pages 338–339, New York, NY, USA. ACM.

Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., and Taft,
N. (2013).
Privacy-preserving ridge regression on hundreds of millions of records.
In Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP
’13, pages 334–348, Washington, DC, USA. IEEE Computer Society.

Strassen, V. (1969).
Gaussian elimination is not optimal.
Numerische mathematik, 13(4):354–356.

34 / 30

References V

Toft, T. (2009).
Solving linear programs using multiparty computation.
In International Conference on Financial Cryptography and Data Security,
pages 90–107. Springer.

Verghese, G. C. (1982).
A "Cramer rule" for the least-norm, least-squared-error solution of
inconsistent linear equations.
Linear Algebra and its Applications, 48:315–316.

Wang, P. S. (1981).
A p-adic algorithm for univariate partial fractions.
In Proceedings of the Fourth ACM Symposium on Symbolic and Algebraic
Computation, SYMSAC ’81, pages 212–217, NY, USA. ACM.

35 / 30

