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Setting

I Secret-sharing based MPC
I Multi-party (Nplayers ≥ 3) scenario

I Protocols on top of abstract MPC “arithmetic black box”
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Think of Shamir's secret sharing scheme



Problem Sketch
Consider a matrix A and vector b with integral entries,
secret-shared among the players

Task

I Compute vector x such that Ax = b.

Multiple Problem Variants

I Solution over a finite field F vs. over Q
I Size of A: Square vs. rectangular (“wide” or “tall”)
I Rank of A: full-rank vs. singular, known vs. unknown.
I Consistent vs. inconsistent
I Finding least squared-error solution (over Q):

x ∗ := argmin
x
‖Ax − b‖2
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least-squares only makes sense over Q



no Euclidean distance metric over F



Talk Plan

1. Solution over Q: A is square and has full rank,
2. Solution over a finite field F (A’s rank unknown)

2.1 Oblivious Elimination
2.2 Block-Recursive Decomposition

3. Least-Squares Solution over Q (A’s rank unknown)
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Warmup: Solving Full-Rank System over Q (in MPC)

Motivation
Useful for privacy-preserving data processing / statistics / etc
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Related Work: Secure Linear Algebra over Q

Multi-party case
[Toft, 2009]

2-party case
Several results in the 2-party setting, like
[Nikolaenko et al., 2013, Gascón et al., 2017, Joye, 2017,
Giacomelli et al., 2017]
Nonetheless, we do not target the 2-party scenario in this work.
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Toft: secure linear programming



Solving Ax = b over Q (A full rank)

I Let A ∈ Zn×n

I Then, in general, A−1 ∈ Qn×n .

I Inverse of A can be written as follows:

A−1 =
adjA
detA

where adjA is the adjugate of A
I adjA has integral entries
I Solution x of the system Ax = b can be represented as(

adj(A)b,det(A)
)
∈ Zn × Z

I Representation avoids occurrence of rational entries
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Our Solution (Ax = b over Q, A full rank)

I We work over the finite field Fp := Z/pZ, p prime
I A modification of protocol of [Cramer and Damgård, 2001]

(which is based on [Bar-Ilan and Beaver, 1989])
I Modification: keep adjugate and determinant separate

I p must be large enough to represent detA and entries of
adj(A)b

I Bound on p follows essentially from Hadamard’s
inequality:

Lemma (Hadamard)
For any matrix M ∈ [−B ,B ]n×n

|detM | ≤ Bnnn/2.
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each entry of adj A is defined as the
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Computing (adjA,detA) via Random Self-Reduction

1. Let JAK be Shamir-secret-shared over the field Fp .

2. Sample lower triangular matrix JLK ∈ Fn×n
p

having ones on its diagonal uniformly at random

3. Sample upper triangular matrix JU K ∈ Fn×n
p uniformly at

random such that diagonal does not contain zeros.

4. Compute JRK := JLU K and JdK := [(detR)] = (
∏

i diag(U )i )

5. Compute JRAK and reveal it

6. In the clear, compute adjRA and detRA.

7. Compute JadjAK := adj(RA)JRKJd−1K, JdetAK := det(RA)Jd−1K

L is uni-triangular: simplifies proof in [Cramer and Damgård, 2001]
(and slightly fewer multiplications & saves 1 communication round)
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We call this protocol our



'Random Self-Reducibility protocol', because we exploit



the fact that the problem can be reduced to solving a random instance



Complexity

Solving Ax = b securely over Q, where A is square (n by n)
and full rank.

Our work # Rounds # Secure Mults

Random Self-Reducibility O(1) O(n2)∗

∗ Assuming “cheap” inner products (Shamir LSS)
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Solution over Fp, A’s rank unknown

Oblivious Elimination
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Related Work: Secure Linear Algebra over Fp

Consider the linear system Ax = b, where A is an m by n
matrix over finite field Fp .

Reference # Rounds # Secure Mults

[Cramer and Damgård, 2001] O(1) O(n5)∗

[Cramer et al., 2007] O(1) O(m4 + n2m)

∗ Assumption: n ≥ m
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Motivation (Solution over Fp, Unknown-Rank Case)

I Existing constant-round-solutions have high computational
complexity

I Trade-off: computational complexity vs. round complexity
vs. communication complexity

I What can we get if we drop the constant-rounds property?
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Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank

I Upon exhausting the rank:

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30



Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
36 30 22 45
49 39 33 53
67 51 49 62
45 39 25 63



I Upon exhausting the rank:

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30



Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
36 30 22 45
0 −66 110 −297
0 −174 290 −783
0 54 −90 243



I Upon exhausting the rank:

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30



Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
36 0 −4752 5940
0 −66 110 −297
0 0 0 0
0 0 0 0



I Upon exhausting the rank:

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30



Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



I Upon exhausting the rank:

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30



Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
I Upon exhausting the rank:

I continue elimination with dummy operations (to avoid
leaking the rank)

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30



Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
I Upon exhausting the rank: . . .

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30



Oblivious Elimination
Given, m × n matrix A over F of unknown F-rank and
right-hand side B ∈ Fm×`

Basic idea

I Apply Integer-Preserving Gaussian Elim. [Bareiss, 1968]
I No pivoting (avoid expensive oblivious row/column swaps)
I Keep watching the diagonal elements (pivots), indicator for

when we have “exhausted” the rank
I Upon exhausting the rank: . . .

Problem: Pivot-free GE fails for some matrices

I Success guaranteed iff A has generic rank profile: r leading
principal minors of A are nonzero, where r := rankA

I Can be achieved via Toeplitz preconditioning
[Kaltofen and Saunders, 1991]

14 / 30



Kaltofen–Saunders lemma
Let A ∈ Fn×n be arbitrary and let r := rankA. Consider the
matrix A ′ := UAL with

U :=



1 u2 u3 . . . un
1 u2 . . . un−1

1
. . .

...
. . . u2

1

 , L :=


1
`2 1
`3 `2 1
...

...
. . . . . .

`n `n−1 . . . `2 1

 ,

where ui and `i for all i ∈ {2, . . . ,n} selected independently and
uniformly at random from S ⊆ F.
Then,

Pr(A ′ has generic rank profile) ≥ 1−
r(r + 1)

|S |
.
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Nullspace Computation & Consistency Check

I Apply elimination to augmented matrix

JC K :=
(
U JAKL U JBK

JInK 0n×m

)

Yields basis for the (right) nullspace of A
I Column-wise consistency check by means of checking the

candidate solution X̃i :

vAX̃i − vBi
?
= 0 for a randomly chosen vector v
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Contributions: Solution to the Fp-linear system

Consider the linear system Ax = b, where A is an m by n
matrix over finite field Fp .

Prior work # Rounds # Secure Mults

[Cramer and Damgård, 2001] O(1) O(n5)

[Cramer et al., 2007] O(1) O(m4 + n2m)

Our work # Rounds # Secure Mults

Oblivious Gaussian Elimination O(min(m ,n)) O(n2m)
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Can we use Obliv. GE to obtain solution over Q?
(Unknown-rank case)

I Like in the full-rank case, keep numerators and (common)
denominator of the solution separated

I Coefficient-growth becomes important: Final values must
not wrap around the modulus

I Preconditioning becomes a problem:
I Affects solution’s numerators and common denominator
I Precond. elements sampled from exponentially large set
I Values in GE algorithm will quickly exceed modulus

Open Problem
How to apply pivoting efficiently in an MPC setting, or, how to
perform generic-rank-profile preconditioning without
introducing massive coefficient-growth?

18 / 30
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2 - to get negligible error probability



3 - based on Hadamard's inequality



Solution over Fp, A’s rank unknown

via Block-Recursive Decomposition
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Block-Recursive Decomposition:
Some form of “divide-and-conquer” approach to
(generalized) matrix inversion

Full-rank matrices:
I [Strassen, 1969]: Computing matrix inverse has same

asymptotic complexity as matrix multiplication
I [Bunch and Hopcroft, 1974]
I . . .

Arbitrary-rank matrices:
I [Ibarra et al., 1982]
I Many others, see [Dumas et al., 2015] for overview
I [Malaschonok, 2010]: LEU decomposition

Algorithm is a straight-line program (rank-insensitive
time-complexity) and works over arbitrary field: suitable
for MPC
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Contributions: Solution to the F-linear system

Consider the linear system Ax = b, where A is an m by n
matrix over finite field F.

Prior work # Rounds # Secure Mults

[Cramer and Damgård, 2001] O(1) O(n5)

[Cramer et al., 2007] O(1) O(m4 + n2m)

Our work # Rounds # Secure Mults

Oblivious Gaussian Elimination O(min(m ,n)) O(n2m)

Block-Recursive Decomposition O(max(m ,n)1.59) O(max(m ,n)2)
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Least-Squares Solution over Q,

A’s rank unknown
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Least-Squares Solution over Q
Motivation
Plenty of applications, e.g.,:

I Fitting a line through data
I Solve a “noisy” system

Two Caveats

1. Non-standard scenario: Solution is revealed, followed by a
rational reconstruction step “in the clear” [Wang, 1981]

I Recover numerator r and denominator s via basis reduction
in a 2D lattice (e.g., Lagrange–Gauss algorithm)

I Unique solution iff |r |, |s | ≤
√
p/2

2. Non-standard assumption: the prime p of the finite field is
chosen randomly from a large set, independently of values
of matrix A and vector b.
Makes sense against honest-but-curious adversary
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A generalized Cramer’s rule [Ben-Israel, 1982]

For A ∈ Cm×n and b ∈ Cm consistent with A, solution given by:

xj =
det
[
A(j → b) U
V T(j → 0) 0

]
det
[
A U
V T 0

] ∈ C, j ∈ [n ],

where
I U ∈ Cm×m−r is a basis for KerAT,
I V ∈ Cn×n−r is a basis the KerA,

[Verghese, 1982] proved that the same formula yields
least-squares solution in inconsistent case
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Using Ben-Israel/Verghese’s Cramer’s rule in MPC

High-Level Idea

I Apply Ben-Israel’s Cramer’s rule over Fp
I Obtain solution over Q via rational reconstruction

I Compute determinant in denominator via our random
self-reducibility protocol

I Determinant in the numerator(s) can be viewed as a rank-1
update of denominator:

Lemma (Matrix Determinant Lemma)
Let n ∈ N be arbitrary. Let M ∈ Zn×n be a square matrix
and let u , v ∈ Zn be column vectors. Then, it holds that

det(M + uvT) = det(M ) + vT adj(M )u .
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Using Ben-Israel/Verghese’s Cramer’s rule in MPC

Two problems

1. Matrices in numerator and denominator have
rank-dependent dimensions

(Easily dealt with by padding
with ones on diagonal)

2. Matrices in numerator and denominator might not have
full Fp-rank

I Diagonal preconditioning could avoid self-orthogonality
with high-probability
[Mulmuley, 1986, LaMacchia and Odlyzko, 1990,
Diaz-Toca et al., 2005, Cramer et al., 2007]

I Preconditioning “warps” the space, yields least-squares
solution with respect to a “warped” distance measure
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Using Ben-Israel/Verghese’s Cramer’s rule in MPC

“Way out”

I Omit (diagonal) preconditioning
I Assume: p chosen at random, independently of the

elements of A and b, such that p � max(m ,n)
=⇒ probability of self-orthogonality is small
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Protocol: LeastSq(A, b)

1: (JrK, J
[
U 0

]
K, J
[
V 0

]
K)← LRNullspace(JAK) . over Fp

2: Form the matrix

JM K :=

 A U 0
V T 0 0
0 0 Ir×r

 ∈ F(n+m)×(n+m)
p .

3: (JadjM K, JdetM K)← AdjDet(JM K)
4: Define b◦ as the column vector b padded with zeros up to

length n +m .
For every j ∈ [n ]:
5: Compute

Jx̃j K := 1+ J(detM )−1KJRowj (adjM )K · Jb◦ − Colj (M )K

6: Reveal Jx̃j K to “output parties”
7: xj ← RationalReconstruct(x̃j )
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To instantiate LRNullspace, we can use
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To instantiate LRNullspace, we can use
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Complexity

# Rounds # Secure Mults

Least-Squares Rnullspace +O(1) Mnullspace +O(n2)

where Rnullspace and Mnullspace are the round and sec.-mult.
complexities required for computing right and left nullspace of
A over the finite field
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