
Conclave
Secure Multi-Party Computation on Big Data

1
Nikolaj Volgushev    Malte Schwarzkopf    Ben Getchell 

Andrei Lapets     Mayank Varia     Azer Bestavros

Image: National Geographic



Pre-presentation 
disclaimers/ confessions

• Less focus on developing new MPC protocols


• Instead focus on integrating MPC into big data analytics 
domain where the current roadblocks are:


- Accessibility (data analysts are not MPC experts)


- Scalability (large data volumes)


• Semi-honest adversaries throughout! 😈
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Is there healthy competition? 

A dangerous monopoly forming?



Secure MPC 
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A solution: Secure MPC
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PROJECT

SUM

a 11 3

a 12 4

c 23 1

a 1

b 2

b 0

a 3


JOIN

a 11

a 12

c 23

a 4

b 2

a 11 a 4

a 12 a 2

DECLARE TABLE trips (start_lat int, start_lon int, … );
SELECT SUM(mkt_share*mkt_share) AS hhi, SUM(trips.price) AS …  
       WHERE start_lat = … AND …;
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Does MPC scale? — Agg: SUM
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log-scale!



Does MPC scale? — Join
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Our TODO list

• Make MPC more accessible to data analysts


• Make MPC scale for common analytics queries
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Conclave
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Key insight: 
 

For most queries, only some of the work must 
happen under MPC.

Automatically rewrite query to combine scalable local 
computation and MPC.




Contributions
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1. MPC query compilation: relational query compiler 
that optimizes for efficient MPC.


2. Automated analysis to minimize MPC use while 
maintaining required guarantees.


3. Hybrid operators: new MPC protocols that give the 
option to relax privacy requirements to further 
accelerate expensive operators under MPC.


4. Prototype query compiler implementation using 
Spark and Sharemind & performance evaluation.
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Conclave 
compiler

Conclave 
compiler

Conclave 
compiler

DECLARE TABLE trips (start_lat int, start_lon int, … );
SELECT SUM(mkt_share*mkt_share) AS hhi, SUM(trips.price) AS …  
       WHERE start_lat = … AND …;

Conclave 
dispatcher

Conclave 
dispatcher

Conclave 
dispatcher

Secure MPC 🔒



# compute the Herfindahl-Hirschman Index (HHI) 
rev = taxi_data.project(["companyID", "price"])  
          .sum("local_rev", group=[“companyID”], over="price")  
          .project([0, "local_rev"])  
market_size = rev.sum(“total_rev", over=“local_rev")  
share = rev.join(market_size, left=[“companyID"],  
                 right=[“companyID"])  
           .divide("m_share", "local_rev", by="total_rev")  
hhi = share.multiply(share, "ms_squared", "m_share")  
           .sum(“hhi", on="ms_squared")  
hhi.writeToCSV()
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Relational query specification
Parties’ data  
treated as single  
relation



import conclave as cc  
pA, pB, pC = cc.Party(mpc.a.com), […], cc.Party(mpc.c.org)  
schema = [Column("companyID", cc.INTEGER), …  
          Column("price", cc.INTEGER)] 
# 3 parties each contribute inputs with the same schema 
taxi_data = cc.defineTable(schema, at=[pA, pB, pC])

# compute the Herfindahl-Hirschman Index (HHI)  
rev = taxi_data.project(["companyID", "price"])  
          .sum("local_rev", group=[“companyID”], over="price")  
          .project([0, "local_rev"])  
market_size = rev.sum(“total_rev", over=“local_rev")  
share = rev.join(market_size, left=[“companyID"],  
                 right=[“companyID"])  
           .divide("m_share", "local_rev", by="total_rev")  
hhi = share.multiply(share, "ms_squared", "m_share")  
           .sum(“hhi", on="ms_squared")  
hhi.writeToCSV(to=[pA])
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Relational query specification



Contributions
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1. MPC query compilation: relational query compiler 
that optimizes for efficient MPC.


2. Automated analysis to minimize MPC use while 
maintaining required guarantees.


3. Hybrid operators: new MPC protocols that give the 
option to relax privacy requirements to further 
accelerate expensive operators under MPC.


4. Prototype query compiler implementation using 
Spark and Sharemind & performance evaluation.
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DIVIDE by 10k🔒

PROJECT PROJECT

PROJECT🔒

sum(concat(a, b)) = 
sum(concat(sum(a), sum(b)))
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Contributions
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1. MPC query compilation: relational query 
compiler that optimizes for efficient MPC.


2. Automated analyses to determine which parts 
of a query must run under MPC.


3. Hybrid operators: new MPC protocols that give 
the option to relax privacy requirements to further 
accelerate expensive operators under MPC.


4. Prototype query compiler implementation using 
Spark and Sharemind & performance evaluation.
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JOIN ON ssn🔒

import conclave as cc  
pA, pB, pC = cc.Party(“mpc.ftc.gov"), cc.Party(“mpc.a.com"), \
             cc.Party(“mpc.b.cash”)
demo_schema = [Column(“ssn", cc.INTEGER),
               Column(“zip”, cc.INTEGER)] 
demographics = cc.defineTable(demo_schema, at=pA) 
# credit card companies trust the regulator to compute on SSNs 
bank_schema = [Column("ssn", cc.INTEGER, trust=[pA]), 
               Column("assets", cc.INTEGER)]
scores-1 = cc.defineTable(bank_schema, at=[pB])
…
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Regulator trusted  
with SSN columns
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Hybrid operators
• Two roles in hybrid operator scenario:


- Semi-trusted party (STP) may learn a specific column in 
the clear; does not collude with other parties


- Untrusted parties may not learn anything


• Goal:


- Outsource expensive sub-steps to STP for local 
processing


- Without leaking information to untrusted parties
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Complexity 
(Oblivious)

Complexity 
(Hybrid)

Bottle-neck 
operation 
(Oblivious)

Bottle-neck 
operation  
(Hybrid)

Join O(n2)

comparisons

O(n+m log (n+m))

multiplications


(where m is size 
of result)

Pair-wise 
comparison 

between all rows

Batched oblivious 
array access

Aggregation O(n log2 n)

comparisons

O(n log n)

multiplications Oblivious sort Oblivious shuffle



Evaluation
1. How does Conclave scale to increasingly large inputs?


2. How much does automatic MPC frontier placement 
reduce query runtime?


3. What impact do hybrid operators have on query 
runtime?

• Three parties 
3 VM Spark cluster + Sharemind endpoint at each


• Two queries 
1. Taxi market concentration: up to 1.3B trip records

2. Credit card regulation: up to 100k SSNs
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Taxi market concentration query
be
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Five orders of magnitude!
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Credit card regulation query
be
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r

Four orders of 
magnitude!



Related work

• Mixed-mode MPC: Wysteria [S&P 2014] — custom DSL


• Query rewriting for MPC


• SMCQL [VLDB 2017]: binary public/private columns, 
no hybrid operators


• Opaque [NSDI 2017]: computation under SGX, focus 
on reducing oblivious shuffles
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Summary
• Conclave is a query compiler for efficient MPC on “big 

data”


• Automatically shrinks MPC step to be as small as possible


• New hybrid MPC-cleartext protocols speed up operators


• Scales up to 5 orders of magnitude better than pure MPC

https://github.com/multiparty/conclave
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https://github.com/multiparty/conclave


Conclave Implementation

• Relational front-end


• Rewrite rules on intermediate DAG of operators


• Back-ends generate code


- Cleartext: Spark, sequential Python


- MPC: Sharemind, Obliv-C (partial support)


• ~5,000 lines of Python
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Hybrid MPC-cleartext operator impact

Join Aggregation


