
Conclave
Secure Multi-Party Computation on Big Data

1
Nikolaj Volgushev Malte Schwarzkopf Ben Getchell 

Andrei Lapets Mayank Varia Azer Bestavros

Image: National Geographic

Pre-presentation
disclaimers/ confessions

• Less focus on developing new MPC protocols

• Instead focus on integrating MPC into big data analytics
domain where the current roadblocks are:

- Accessibility (data analysts are not MPC experts)

- Scalability (large data volumes)

• Semi-honest adversaries throughout! 😈

2

🏛#

$🚕

&🚗 
How concentrated is the market for

hired vehicles in NYC?

&🚙
3

Is there healthy competition?

A dangerous monopoly forming?

Secure MPC
🏛#

$🚕

&🚙

🔒

4

A solution: Secure MPC

&🚗

🔒

🔒

🔒

🔒

🔒

How concentrated is the market for
hired vehicles in NYC?

📊

🔒

🔒

🔒

🔒?!?

5

PROJECT

SUM

a 11 3

a 12 4

c 23 1

a 1

b 2

b 0

a 3

JOIN

a 11

a 12

c 23

a 4

b 2

a 11 a 4

a 12 a 2

DECLARE TABLE trips (start_lat int, start_lon int, …);
SELECT SUM(mkt_share*mkt_share) AS hhi, SUM(trips.price) AS …  
 WHERE start_lat = … AND …;

Secure MPC
🏛#

$

&

🚕

🚗

&🚙

🔒

175M annual trips!

6

Does MPC scale? — Agg: SUM

7

be
tte

r

N.B. 
log-scale!

Does MPC scale? — Join

8

be
tte

r

Our TODO list

• Make MPC more accessible to data analysts

• Make MPC scale for common analytics queries

9

Conclave

10

Key insight: 
 

For most queries, only some of the work must 
happen under MPC.

Automatically rewrite query to combine scalable local
computation and MPC.

Contributions

11

1. MPC query compilation: relational query compiler
that optimizes for efficient MPC.

2. Automated analysis to minimize MPC use while
maintaining required guarantees.

3. Hybrid operators: new MPC protocols that give the
option to relax privacy requirements to further
accelerate expensive operators under MPC.

4. Prototype query compiler implementation using
Spark and Sharemind & performance evaluation.

$🚕 &🚗 &🚙

12

Conclave 
compiler

Conclave 
compiler

Conclave 
compiler

DECLARE TABLE trips (start_lat int, start_lon int, …);
SELECT SUM(mkt_share*mkt_share) AS hhi, SUM(trips.price) AS …  
 WHERE start_lat = … AND …;

Conclave 
dispatcher

Conclave 
dispatcher

Conclave 
dispatcher

Secure MPC 🔒

compute the Herfindahl-Hirschman Index (HHI) 
rev = taxi_data.project(["companyID", "price"])  
 .sum("local_rev", group=[“companyID”], over="price")  
 .project([0, "local_rev"])  
market_size = rev.sum(“total_rev", over=“local_rev")  
share = rev.join(market_size, left=[“companyID"],  
 right=[“companyID"])  
 .divide("m_share", "local_rev", by="total_rev")  
hhi = share.multiply(share, "ms_squared", "m_share")  
 .sum(“hhi", on="ms_squared")  
hhi.writeToCSV()

13

Relational query specification
Parties’ data
treated as single
relation

import conclave as cc  
pA, pB, pC = cc.Party(mpc.a.com), […], cc.Party(mpc.c.org)  
schema = [Column("companyID", cc.INTEGER), …  
 Column("price", cc.INTEGER)]
3 parties each contribute inputs with the same schema 
taxi_data = cc.defineTable(schema, at=[pA, pB, pC])

compute the Herfindahl-Hirschman Index (HHI)  
rev = taxi_data.project(["companyID", "price"])  
 .sum("local_rev", group=[“companyID”], over="price")  
 .project([0, "local_rev"])  
market_size = rev.sum(“total_rev", over=“local_rev")  
share = rev.join(market_size, left=[“companyID"],  
 right=[“companyID"])  
 .divide("m_share", "local_rev", by="total_rev")  
hhi = share.multiply(share, "ms_squared", "m_share")  
 .sum(“hhi", on="ms_squared")  
hhi.writeToCSV(to=[pA])

14

Relational query specification

Contributions

15

1. MPC query compilation: relational query compiler
that optimizes for efficient MPC.

2. Automated analysis to minimize MPC use while
maintaining required guarantees.

3. Hybrid operators: new MPC protocols that give the
option to relax privacy requirements to further
accelerate expensive operators under MPC.

4. Prototype query compiler implementation using
Spark and Sharemind & performance evaluation.

16

🔒

$🚕 &🚗 &🚙

🏛#

SUM🔒

MULTIPLY🔒

DIVIDE🔒

JOIN🔒

PROJECT🔒

 CONCATENATE🔒

SUM🔒

DIVIDE by 10k🔒

PROJECT🔒

 CONCATENATE🔒

proj(concat(a, b)) =
concat(proj(a), proj(b))

17

🔒

$🚕 &🚗 &🚙

🏛#

SUM🔒

MULTIPLY🔒

DIVIDE🔒

JOIN🔒

PROJECT🔒

 CONCATENATE🔒
SUM🔒

DIVIDE by 10k🔒

PROJECT🔒 PROJECT🔒

PROJECT🔒

proj(concat(a, b)) =
concat(proj(a), proj(b))

18

🔒

$🚕 &🚗 &🚙

🏛#

SUM🔒

MULTIPLY🔒

DIVIDE🔒

JOIN🔒

PROJECT

 CONCATENATE🔒
SUM🔒

DIVIDE by 10k🔒

PROJECT PROJECT

PROJECT🔒

sum(concat(a, b)) =
sum(concat(sum(a), sum(b)))

19

🔒

$🚕 &🚗 &🚙

🏛#

SUM🔒

MULTIPLY🔒

DIVIDE🔒
JOIN🔒

PROJECT

 CONCATENATE🔒

SUM🔒

DIVIDE by 10k🔒

PROJECT PROJECT

PROJECT🔒

SUMSUM SUM

Contributions

20

1. MPC query compilation: relational query
compiler that optimizes for efficient MPC.

2. Automated analyses to determine which parts
of a query must run under MPC.

3. Hybrid operators: new MPC protocols that give
the option to relax privacy requirements to further
accelerate expensive operators under MPC.

4. Prototype query compiler implementation using
Spark and Sharemind & performance evaluation.

21

🏛+ &
💳

$
💳(ssn, zip) (ssn, assets) (ssn, assets)

JOIN ON ssn🔒

import conclave as cc  
pA, pB, pC = cc.Party(“mpc.ftc.gov"), cc.Party(“mpc.a.com"), \
 cc.Party(“mpc.b.cash”)
demo_schema = [Column(“ssn", cc.INTEGER),
 Column(“zip”, cc.INTEGER)]
demographics = cc.defineTable(demo_schema, at=pA)
credit card companies trust the regulator to compute on SSNs
bank_schema = [Column("ssn", cc.INTEGER, trust=[pA]),
 Column("assets", cc.INTEGER)]
scores-1 = cc.defineTable(bank_schema, at=[pB])
…

22

Regulator trusted
with SSN columns

🏛+ &
💳

$
💳(ssn, zip) (ssn, assets) (ssn, assets)

CONCATENATE🔒

(ssn)

…🔒

🔒 HYBRID JOIN 🔒

23

Hybrid operators
• Two roles in hybrid operator scenario:

- Semi-trusted party (STP) may learn a specific column in
the clear; does not collude with other parties

- Untrusted parties may not learn anything

• Goal:

- Outsource expensive sub-steps to STP for local
processing

- Without leaking information to untrusted parties

23

24

Complexity
(Oblivious)

Complexity
(Hybrid)

Bottle-neck
operation
(Oblivious)

Bottle-neck
operation
(Hybrid)

Join O(n2)

comparisons

O(n+m log (n+m))

multiplications

(where m is size
of result)

Pair-wise
comparison

between all rows

Batched oblivious
array access

Aggregation O(n log2 n)

comparisons

O(n log n)

multiplications Oblivious sort Oblivious shuffle

Evaluation
1. How does Conclave scale to increasingly large inputs?

2. How much does automatic MPC frontier placement
reduce query runtime?

3. What impact do hybrid operators have on query
runtime?

• Three parties 
3 VM Spark cluster + Sharemind endpoint at each

• Two queries
1. Taxi market concentration: up to 1.3B trip records

2. Credit card regulation: up to 100k SSNs

25

26

Taxi market concentration query
be

tte
r

Five orders of magnitude!

27

Credit card regulation query
be

tte
r

Four orders of
magnitude!

Related work

• Mixed-mode MPC: Wysteria [S&P 2014] — custom DSL

• Query rewriting for MPC

• SMCQL [VLDB 2017]: binary public/private columns,
no hybrid operators

• Opaque [NSDI 2017]: computation under SGX, focus
on reducing oblivious shuffles

28

Summary
• Conclave is a query compiler for efficient MPC on “big

data”

• Automatically shrinks MPC step to be as small as possible

• New hybrid MPC-cleartext protocols speed up operators

• Scales up to 5 orders of magnitude better than pure MPC

https://github.com/multiparty/conclave

29

https://github.com/multiparty/conclave

Conclave Implementation

• Relational front-end

• Rewrite rules on intermediate DAG of operators

• Back-ends generate code

- Cleartext: Spark, sequential Python

- MPC: Sharemind, Obliv-C (partial support)

• ~5,000 lines of Python

30

31

Hybrid MPC-cleartext operator impact

Join Aggregation

