FAST PRIVATE SET INTERSECTION
FROM
FULLY HOMOMORPHIC ENCRYPTION

CCS 2017
Private Set Intersection (PSI)
Private Set Intersection (PSI)

“Sender”

Ideal World

“Receiver”

$X \cap Y$
A Sampling of PSI Over the Decades

\[x^a \beta = y^\beta \alpha \]
\[\Rightarrow x = y \]
A Sampling of PSI Over the Decades

\[Q(x) := (x - y) \]

\[Q(x) = 0 \]

\[\Rightarrow x = y \]
A Sampling of PSI Over the Decades
A Sampling of PSI Over the Decades

- [Meadows86]: Private equality test
- [NaorPinkas99]: Semi-honest PSI
- [DeCristofaroKimTsudik10]: Malicious secure
- [FreedmanNissimPinkas04]: Hash table base PSI
- [DachmanMalkinRaykovaYung09]: Malicious secure
- [HuangEvansKatz12]: Garbled Circuit base PSI
- [DongChenWen13]: Oblivious Transfer & Bloom filter base PSI
- [RR17a]: Malicious Oblivious Transfer & Bloom filter base PSI
- [HubermanFranklinHog99]: Private equality test to PSI
- [DachmanMalkinRaykovaYung09]: Malicious secure
A Sampling of PSI Over the Decades

- [Meadows86] First to define private equality test using Diffie-Hellman
- [HubermanFranklinHogg99] Extended Diffie-Hellman private equality test to PSI
- [NaorPinkas99] Oblivious Transfer base PSI using Polynomial Evaluation
- [FaginNaorWinkler96] Bitwise Oblivious Transfer encoding for private equality test
- [FreedmanNissimPinkas04] Homomorphic Enc base PSI using Polynomial Evaluation and hashing
- [DachmanMalkinRaykovaYung09] Homomorphic Enc base PSI using Polynomial Evaluation
- [DeCristofaroKimTsdik10] Diffie-Hellman base PSI
- [DongChenWen13] Oblivious Transfer + Bloom filter base PSI
- [KolesnikovKumaresanRosulekTrieu16] Element-wise Oblivious Transfer encoding PSI
- [PinkasSchneiderZohner14] Cuckoo hashing + Bitwise Oblivious Transfer encoding PSI
- [HuangEvansKatz12] Garbled Circuit base PSI
- [PinkasSchneiderZohner14] Cuckoo hashing + Bitwise Oblivious Transfer encoding PSI
- [KolesnikovKumaresanRosulekTrieu16] Element-wise Oblivious Transfer encoding PSI
- [FreedmanNissimPinkas04] Homomorphic Enc base PSI using Polynomial Evaluation and hashing
App: Contact discovery

Users → PSI → Contacts

WhatsApp Contacts → PSI → WhatsApp
App: Contact discovery

\[|X| \gg |Y| \]

\[X \cap Y \]

Notation:
- \[N = |X| \]
- \[n = |Y| \]
Shortcomings of Prior Work

- Communication linear in both sets \(O(|X| + |Y|) \)
 - What about \(|X| \gg |Y| \)?
 - Insecure solution:
 - Send small set to other party
 - Comm. = \(O(\min(|X|, |Y|)) \)

- Can we match this?
 - Almost…

Some prior works achieve sublinear communication for related problems.
Shortcomings of Prior Work

- Communication linear in both sets $O(|X| + |Y|)$
 - What about $|X| \gg |Y|$?
 - Insecure solution:
 - Send small set to other party
 - Comm. = $O(\min(|X|, |Y|))$

- Can we match this?
 - Almost…

- Computation = $O(|X|)$
- Communication = $O(|Y| \log |X|)$

Some prior works achieve sublinear communication for related problems.
Fully Homomorphic Encryption (FHE)

- Encryption technique that allows computation
 - \(\text{Enc}_k(f(x)) \equiv f(\text{Enc}_k(x)) \)
 - \(f \) can perform \(+, -, *\)

- Addition and subtraction are very cheap.
- Multiplication is very expensive.
 - Limited multiplication depth
 - E.g. \(f(x) = \prod_{i=1}^{8} x_i \)
 - Inefficient beyond depth \(~6\)
Equality Test from FHE

• Want to test if $y = x$

$$[y] := \text{Enc}_k(y)$$

$$[z] := [y] - x$$

• Issue: Receiver can recover $x = y - z$!
 • Need to randomize z

$$z = 0 \iff y = x$$
Equality Test from FHE

- Want to test if \(y = x \)

\[
\begin{align*}
\text{Sample } r & \leftarrow \mathbb{Z}_p^* \\
\llbracket y \rrbracket & := \text{Enc}_k(y) \\
\llbracket z \rrbracket & := (\llbracket y \rrbracket - x)r \\
\text{Given } x & \neq 0,\ z = 0 \iff y = x
\end{align*}
\]

- Issue: Receiver can recover \(x = y - z! \)
 - Need to randomize \(z \)
 - Elements are in the prime field \(\mathbb{Z}_p = \{0, 1, \ldots, p - 1\} \)
 - For a random \(r \in \mathbb{Z}_p^* = \{1, \ldots, p - 1\} \)
 - \(xr \) is a random elements in \(\mathbb{Z}_p^* \), given non-zero \(x \)

[ChenLaineRindal17]
Membership from FHE

• Want to test if \(y \in X \)

\[
\text{Sample } r \leftarrow \mathbb{Z}_p^* \\
[z] := r \prod_{x \in X} ([y] - x)
\]

\[
[y] := \text{Enc}_k(y)
\]

\[
z = 0 \iff y \in X
\]

• Issue: Depth of the computation is \(\log N = \log |X| \)
 • E.g. \(N = 2^{28} \Rightarrow \text{depth} = 28 > 6 \)

• Observe the polynomial
 • Symmetric poly. \(\Rightarrow\) efficiently computable

• Need to compute \(y^N \) in low degree

\[
[z] := f(y) = r \prod_{x \in X} (y - x) \\
= a_N y^N + \cdots + a_2 y^2 + a_1 y + a_0
\]
Windowing: computing y^N in low depth

- Need to compute $[Z] := a_N y^N + \ldots + a_2 y^2 + a_1 y + a_0$

- Depth $\log N$ solution, send $[y]$ and compute:
 - $[y^2] = [y][y]$
 - $[y^4] = [y^2][y^2]$
 - ...

- Depth 0 solution, send all $[y], [y^2], \ldots, [y^N]$
 - $O(N)$ communication…

- Depth $\log \log N$ solution, send $[y], [y^2], [y^4], \ldots, [y^{2^i}], \ldots, [y^{2^\log N}]$
 - Compute all other powers in depth $\log \log N$
 - E.g. $[y^7] = [y^4][y^2][y]$
 - E.g. $N = 2^{2^8}$ \Rightarrow depth $= 5$
 - $O(\log N)$ communication.
Membership from FHE

- Want to test if \(y \in X \):

 \[
 \{\left[y^i \right] \mid i = 1,2,4,8, \ldots, \log N \}
 \]

 \[
 z \equiv \prod_{x \in X} (\left[y \right] - x) \equiv a_N y^N + \cdots + a_1 y + a_0
 \]

 \[z = 0 \iff y \in X\]

- Performance,

 - Computation \(= O(N) \)
 - Depth \(= O(\log \log N) \)
 - Communication \(= O(\log N) \)

- Set intersection: For \(y \in Y \), run set membership protocol

 - Require \(O(nN) \) computation!!
 - Where \(n = |Y| \),
 - e.g. \(n = 1000 \)
Cuckoo Hashing

• Receiver performs Cuckoo hashing

\[h(y_1), h(y_2), \ldots, h(y_n) \]
Cuckoo Hashing

- Receiver performs Cuckoo hashing

\[h(y_1) \]
\[h(y_2) \]
\[\vdots \]
\[h(y_n) \]
Cuckoo Hashing

- Receiver performs Cuckoo hashing

\[h(y_1), h(y_2), \ldots, h(y_n) \]
Cuckoo Hashing

- Receiver performs Cuckoo hashing

\[
\begin{align*}
 h(y_1) \\
 h(y_2) \\
 : \\
 h(y_n)
\end{align*}
\]
Cuckoo Hashing

• Receiver performs Cuckoo hashing

\[x_1, x_2, \ldots, x_n \]
\[y_1, y_2, \ldots, y_n \]

\[h(y_1), h(y_2), \ldots, h(y_n) \]
Cuckoo Hashing

- Receiver performs Cuckoo hashing

\[\begin{align*}
 x_n & \quad x_4 \\
 x_3 & \quad x_1 \\
 y_4 & \\
 y_1 & \quad y_n \\
 y_3 & \\
 y_2 & \\
\end{align*} \]

\[\quad \text{← Collision: } h(y_1) = h(y_n) \]
Cuckoo Hashing

- Receiver performs Cuckoo hashing

- Use two hash functions h, h'

[PinkasScheiderZohner14, ChenLaineRindal17]
Cuckoo Hashing

• Receiver performs Cuckoo hashing

• Use two hash functions h, h'

[PinkasScheiderZohner14, ChenLaineRindal17]
Cuckoo Hashing

- Receiver performs Cuckoo hashing

- Use two hash functions h, h'

[PinkasScheiderZohner14, ChenLaineRindal17]
Cuckoo Hashing

- Receiver performs Cuckoo hashing

- Use two hash functions h, h'

- For each bin, perform 1 membership test
 - When $N \gg n$, bin size $O(N/n)$
 - Overall complexity $O(N)$

[PinkasScheiderZohner14, ChenLaineRindal17]
Optimization: FHE Batching

- Fully homomorphic encryption naturally support “SIMD” type operations
 - A single FHE cipher-text/plaintext can be large…
 - Use Chinese Remainder Theorem (CRT) to pack several items into 1 cipher-text
 - E.g. 4096
Optimization: FHE Batching

- Fully homomorphic encryption naturally support “SIMD” type operations
 - A single FHE cipher-text/plaintext can be large…
 - Use Chinese Remainder Theorem (CRT) to pack several items into 1 cipher-text
 - E.g. 4096
Optimization: FHE Batching

- Fully homomorphic encryption naturally support “SIMD” type operations
 - A single FHE cipher-text/plaintext can be large…
 - Use Chinese Remainder Theorem (CRT) to pack several items into 1 cipher-text
 - E.g. 4096
Optimization: FHE Batching

- Fully homomorphic encryption naturally support “SIMD” type operations
 - A single FHE cipher-text/plaintext can be large…
 - Use Chinese Remainder Theorem (CRT) to pack several items into 1 cipher-text
 - E.g. 4096

\[
\vec{z} := \vec{r} \prod_{\vec{x} \in X} (\vec{y} - \vec{x})
\]

\[
\{ \left[\vec{y}^i \right] \mid i = 1, 2, 4, \ldots \}
\]

\[
\vec{z}[i] = 0 \iff y[i] \in X
\]

\[
\vec{z} = \vec{y} \cdot \vec{x}
\]

4096 items per cipher-text
Optimization: Splitting

- Observe that the communication is unbalanced.
- Partition \vec{X} into s splits $\vec{X}_1, \ldots, \vec{X}_s$
 - Reduces depth to $\log \log N/n_s$
 - Large impact in practice, e.g. depth = 3

For $i = 1, \ldots, s$:

$$\vec{z}[i] = \bigwedge_{x \in \vec{X}_i} (\vec{y} - x)$$

\[\{[\vec{y}^i] \mid i = 1, 2, 4, \ldots \} \]

\[[\vec{z}_1] \ldots, [\vec{z}_s] \]

$z_i[i] = 0 \iff \vec{y}[i] \in X$
Final Protocol

\[
\begin{align*}
\text{For } i = 1, \ldots, s: \quad &\hat{z}_i^x := \hat{r} \prod_{x_i \in \tilde{X}_i} ([y_i] - x_i) \\
\{[\hat{y}_i^y] &| i = 1, 2, 4, \ldots \} &\quad [\hat{z}_1^z], \ldots, [\hat{z}_s^z] \\
\tilde{z}_j[i] = 0 &\iff \hat{y}[i] \in X
\end{align*}
\]

Sender:
- \(O(N) \) Computation w/ quasi-constant depth
- \(O(n \log N) \) communication
- Practical on server

Receiver:
- \(O(n \log N) \) Encryptions/Decryptions
- \(O(n \log N) \) communication
- Practical on cellphone

[ChenLaineRindal17]
Performance

- CLR17 (with unpublished updates to code)
 - Optimized for unequal set sizes

- Semi-honest hash table technique similar to [KKRT16]
- Uses Fully Homomorphic Encryption

- Very low communication when receiver’s set is much smaller than sender’s

- Communication = \(O(n \log N)\) bits
 - Previous approaches required \(O(N + n)\) bits

\[n = 5,000 \text{ vs } N = 16,777,216\]
The End