Efficient MPC From Syndrome Decoding

Or: Honey, I Shrunk the Keys

Carmit Hazay, Emmanuela Orsini, Peter Scholl and Eduardo Soria-Vazquez
Secure Multi-Party Computation

Goal: Compute $f(a,b,c,d)$
Properties of secure computation protocols

- Computational model: Boolean/arithmetical circuits, RAM

- Adversary model:
 - Passive (semi-honest) or active (malicious)
 - Threshold t (number of corrupted parties)

- Efficiency:
 - Round/communication complexity
 - Computation
MPC setting in this talk

Main focus:
• Concrete efficiency for large numbers of parties (e.g. n in 10s, 100s)

Adversary:
• Static, passive
• Dishonest majority ($t > n/2$)

Model of Computation:
• Boolean circuits
• Preprocessing phase
Motivation for large-scale, dishonest majority MPC

Large number of clients/users want to aggregate data, statistical analysis, surveys etc.
 • E.g. statistics on Tor network activity, blockchain miners, app users etc.

MPC between all clients

• Outsource to set of servers
 • More servers = less trust
Main question

Can we trade off the number of corrupt parties for a more efficient, practical protocol?
Corruption thresholds vs communication complexity of practical MPC

n parties, security k
 Passive corruptions
 Boolean circuits
Naive committee-based approach for t corruption

2 corruptions:
- Choose committee of size 3
Savings from naive committee approach with 200 parties and GMW protocol

variant of GMW by [Dessouky Koushanfar Sadeghi Schneider Zeitouni Zohner 17]
An asymptotically better approach using random committees

• Suppose $t = \epsilon n$ for constant $\epsilon \in (0,1)$
• Sample random committee C of size k
 • C runs threshold-$(n - 1)$ MPC protocol
 • Complexity: $O(k^3)$ per AND gate
• $\Pr[C$ is all corrupt$] \approx \binom{t}{k}/\binom{n}{k}$
 • $\text{negl}(k)$ for large enough n
 • k can be independent of n

Can we do better? What about for smaller n?
New approach: short keys for secure computation

• Key idea:
 • “Weaken” existing protocol for $n - 1$ corruptions by shrinking secret keys
 • Rely on concatenation of all honest parties’ keys for security
New MPC protocols with short keys and fewer corruptions

More honesty \Rightarrow shorter keys \Rightarrow more efficiency

Secret-sharing based MPC (GMW)

Key length: $\ell \geq 1$

Multi-party garbled circuits (BMR)

Key length: $\ell \geq 8$
Toy example: simple distributed encryption scheme

• Key distributed across n servers

\[
\text{Enc}(k_1, \ldots, k_n, x) = \sum_i H_i(k_i) \oplus m
\]

• Hard to guess m if at least one $k_i \in \{0,1\}^\lambda$ is unknown

• What is h keys are unknown?
 • Can k_i be smaller?
Why should this work?

- Let $H_i : \{0,1\}^\ell \to \{0,1\}^r$ be a hash function
- Want
 \[\sum_{i=1}^{n} H_i(k_i) \]
 to be pseudorandom when $k_i \leftarrow \{0,1\}^\ell$ and h keys are unknown
Regular syndrome decoding problem

- Sample random $H \in \{0,1\}^{r \times m}$, and regular $e \in \{0,1\}^m$ of weight h
- Given H and $y = He$, find e.

\[y = H \]

\[e \]

\[\vdots \]

\[\text{wt 1} \]

\[\text{wt 1} \]
Equivalence of sum of hashes and regular syndrome decoding

- Fill columns of \(H \in \{0,1\}^{r \times m} \) with all hash values \(H_i(j) \)
- Regular error vector \(e \) corresponds to keys \(k_i \)

\[
y = \begin{pmatrix} H_1(0) & H_1(1) & H_1(2) & \cdots \\
0 & 0 & 1 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\
\end{pmatrix}
\]
Hardness of regular syndrome decoding

• Parameters:
 • Key length ℓ, # keys h, output length r

• Used for SHA-3 candidate FSB [Augot Finiasz Sendrier 03]
 • Not much easier than syndrome decoding \Leftrightarrow LPN

• Search-to-decision reduction
 (finding e as hard as distinguishing He from random)

• Statistically hard for small r/large h
Protocol 1: GMW-style MPC based on OT extension with short keys

[Goldreich Micali Wigderson '87]
1-out-of-2 Oblivious Transfer

\[b \in \{0,1\} \rightarrow X_b \quad \text{OT} \quad X_0, X_1 \]
1-out-of-2 Oblivious Transfer gives secret-shared multiplication

\[
b \in \{0, 1\} \quad \rightarrow \quad X_b
\]

\[
\begin{align*}
X_0, rX_1 & \leftarrow a \in \{0, 1\} \\
= (1 - ab) \cdot X_0 + b \cdot X_1 \\
= X_0 + b \cdot (X_1 - X_0)
\end{align*}
\]
“IKNP” OT extension technique: converting k “seed” OTs into $m \gg k$ OTs

[Ishai Kilian Nissim Petrank 03]
OT extension with short keys and leakage

\[L(b) \approx H(\Delta) \oplus b \]
for random \(\Delta \in \{0,1\}^\ell \)

\[(X_0^1, X_1^1), \ldots, (X_0^m, X_1^m) \in \{0,1\}^2 \]

\[b \in \{0,1\}^m \]

\[X_{b_1}^1, \ldots, X_{b_m}^m \]
Using leaky OT for GMW-style MPC

• First attempt: see what happens
 • Multiply shared \([x]\) and \([y]\) with GMW
 • Every pair \((P_i, P_j)\):

\[
x_i \rightarrow \text{OT} \rightarrow y_j
\]

• Compute \([xy]\) from

\[
xy = (x_1 + \cdots + x_n)(y_1 + \cdots + y_n) = x_1y_1 + \cdots + x_iy_j + \cdots + x_ny_n
\]

Problem: leakage on \(x_i\) with every corrupt party \(P_j\)

\[\Rightarrow \text{whp } x_i \text{ leaks entirely if enough corruptions}\]
Using leaky OT for GMW-style MPC

• Second attempt: rerandomize shares before multiplying
 • P_i inputs (x_i+s_{ij}) instead of x_i
 for random $s_{ij} \in \{0,1\}$
 such that $\sum_i s_{ij} = 0$

\[
(x_1+s_{11})y_1 + \cdots + (x_i+s_{ij})y_j + \cdots + (x_n+s_{nn}) = xy \\
+ (s_{11} + \cdots + s_{n1})y_1 \\
\cdots \\
+ (s_{1n} + \cdots + s_{nn})y_n = xy
\]
What about the leakage?

• All inputs with leakage masked by shares of zero
• Only need to consider sum of all leakage on secret \(x = \sum_i x_i \)
• Leakage is equivalent to:
 \[
 \sum_i H(i, \Delta_i) + x
 \]

Pseudorandom by regular syndrome decoding assumption
Parameters and efficiency of GMW-based protocol

- Typically, each key can be used for $r = 300$-500 triples
- **1-bit keys** when $h > s + r$ (e.g. $s = 40$ for stat. security)
 - Triple cost $\approx 3nt$ bits comm.
 - Assumes OT + OWF only (no RSD) $\text{vs } \Theta(n^2k/\log k)$ for full-threshold
Reduction in communication from GMW with short keys (200 parties)
Protocol 2: BMR-based MPC based on multi-party garbled circuits with short keys

[Beaver Micali Rogaway '90]
Garbling an AND gate with Yao

<table>
<thead>
<tr>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Garbling an AND gate with Yao

- Pick two random keys for each wire
- Encrypt the truth table of each gate

- Randomly permute entries
- **Invariant**: evaluator learns one key per wire throughout the circuit

\[
\begin{align*}
E_{A_0,B_0}(C_0) \\
E_{A_0,B_1}(C_0) \\
E_{A_1,B_0}(C_0) \\
E_{A_1,B_1}(C_1)
\end{align*}
\]
Multi-party garbled circuits

\[(A_0^1, ..., A_0^n), (A_1^1, ..., A_1^n)\]
\[(B_0^1, ..., B_0^n), (B_1^1, ..., B_1^n)\]

Each \(P_i\) gets \(A_0^i, A_1^i \in \{0,1\}\) etc

Use distributed encryption:
\[E_{A,B}(C) = H(1 || A^1||B^1) \oplus \ldots \oplus H(n ||A^n||B^n) \oplus (C^1, ..., C^n)\]

For hash function \(H : \{0,1\}^* \rightarrow \{0,1\}^{\ell}\)
BMR with short keys: a few technical challenges

• **Reusing keys** reduces security in regular syndrome decoding
• **Problem for:**
 • High fan-out
 • Free-xor
• **Solution:**
 • Splitter gates [Tate Xu 03] — can be garbled for free
 • Local free-XOR offsets
BMR with short keys: pros and cons

• Garbled AND gate:
 • $4n\ell + 1$ bits vs $4nk$ bits previously
 • ℓ as small as 8

• Preprocessing phase:
 • Less communication using short keys

• Online phase:
 • $O\left(\frac{n^2\ell}{k}\right)$ hash evaluations per garbled gate, vs $O(n^2)$ previously*
 • Need splitter gates: ≈ 1 splitter per (XOR/AND) gate

*or $O(1)$ using DDH/LWE [Ben-Efraim Lindell Omri 17]
Communication cost of garbling an AND gate (200 parties)

Comparison with [Ben-Efraim Lindell Omri 16]

Peter Scholl
Conclusion and future directions

• New technique for distributing trust in MPC
• More efficient protocols for 20+ parties
 • Also helps large-scale protocols with random committees

Future challenges:

• Active security
 • Information-theoretic MACs with short keys
• Arithmetic circuits
• Adaptive security
• Optimizations, cryptanalysis