
Efficient MPC From
Syndrome Decoding

Or: Honey, I Shrunk the Keys

Carmit Hazay, Emmanuela Orsini, Peter Scholl and Eduardo Soria-
Vazquez

Secure Multi-Party Computation

a b

c d

Goal: Compute f(a,b,c,d)

2Peter Scholl

Properties of secure computation protocols

• Computational model: Boolean/arithmetic circuits, RAM

• Adversary model:
• Passive (semi-honest) or active (malicious)
• Threshold 𝒕𝒕 (number of corrupted parties)

• Efficiency:
• Round/communication complexity
• Computation

Peter Scholl 3

MPC setting in this talk

Main focus:
• Concrete efficiency for large numbers of parties
(e.g. 𝑛𝑛 in 10s, 100s)

Adversary:
• Static, passive
• Dishonest majority (𝑡𝑡 > 𝑛𝑛/2)

Model of Computation:
• Boolean circuits
• Preprocessing phase

Preprocessing

Online
a b

c d

corr.
rand.

4Peter Scholl

Motivation for large-scale, dishonest majority
MPC
Large number of clients/users want to aggregate data, statistical analysis,
surveys etc.

• E.g. statistics on Tor network activity, blockchain miners, app users etc.

Peter Scholl 5

MPC between
all clients

• Outsource to set of servers
• More servers = less trust

Main question

6

Can we trade off the number of corrupt parties for a more efficient,
practical protocol?

Corruption thresholds vs communication
complexity of practical MPC

Peter Scholl 7

𝑛𝑛/2 𝑛𝑛 − 1 corruptions

𝑂𝑂(𝑛𝑛𝑛𝑛𝑛 𝑛𝑛) 𝑂𝑂(𝑛𝑛2𝑘𝑘/ log 𝑘𝑘)

0

???

𝑛𝑛 parties, security 𝑘𝑘
Passive corruptions
Boolean circuits

2 corruptions:
- Choose committee of size 3
- Secret-share inputs to committee
- Committee runs MPC

Naive committee-based approach for 𝑡𝑡
corruption

Savings from naive committee approach with
200 parties and GMW protocol

0

500

1000

1500

2000

2500

3000

1 10 20 30 40 50 60 70 80 90 100

C
om

m
. (

kb
its

/g
at

e)

honest parties

Standard

Peter Scholl 10

variant of GMW by [Dessouky Koushanfar Sadeghi Schneider Zeitouni Zohner 17]

An asymptotically better approach using
random committees
• Suppose 𝑡𝑡 = 𝜖𝜖𝜖𝜖 for constant 𝜖𝜖 ∈ (0,1)
• Sample random committee 𝐶𝐶 of size 𝑘𝑘

• 𝐶𝐶 runs threshold-(𝑛𝑛 − 1) MPC protocol
• Complexity: 𝑂𝑂 𝑘𝑘3 per AND gate

• Pr[𝐶𝐶 is all corrupt] is 𝑡𝑡
𝑘𝑘 / 𝑛𝑛

𝑘𝑘
• negl(𝑘𝑘) for large enough 𝑛𝑛
• 𝑘𝑘 can be independent of 𝑛𝑛

Peter Scholl 11

[Bracha ’87]

Can we do better? What about for smaller 𝑛𝑛?

New approach: short keys for secure
computation
• Key idea:

• “Weaken” existing protocol for 𝑛𝑛 − 1
corruptions by shrinking secret keys

• Rely on concatenation of all honest
parties’ keys for security

Peter Scholl 12

Keys!

New MPC protocols with short keys and
fewer corruptions

More honesty ⇒ shorter keys ⇒more efficiency

Short
keys

Multi-party garbled circuits (BMR)Secret-sharing based MPC (GMW)

OT

Key length: ℓ ≥ 1 Key length: ℓ ≥ 8

14

• Key distributed across 𝑛𝑛 servers

• Hard to guess 𝑚𝑚 if at least one 𝑘𝑘𝑖𝑖 ∈ 0,1 𝜆𝜆 is unknown

• What is ℎ keys are unknown?
• Can 𝑘𝑘𝑖𝑖 be smaller?

Enc 𝑘𝑘1, … ,𝑘𝑘𝑛𝑛, 𝑥𝑥 = ∑𝑖𝑖 𝐻𝐻𝑖𝑖 𝑘𝑘𝑖𝑖 ⊕𝑚𝑚

𝑆𝑆1 𝑆𝑆2 𝑆𝑆𝑛𝑛…
𝑘𝑘1 𝑘𝑘2 𝑘𝑘𝑛𝑛

Toy example: simple distributed encryption
scheme

Shrink
the keys!

15

• Let 𝐻𝐻𝑖𝑖: 0,1 ℓ → 0,1 𝑟𝑟 be a hash function
• Want

�
𝑖𝑖=1

𝑛𝑛

𝐻𝐻𝑖𝑖(𝑘𝑘𝑖𝑖)

to be pseudorandom when 𝑘𝑘𝑖𝑖 ← 0,1 ℓ and ℎ keys are unknown

• Intuition:
• For suitable parameters, not much easier than brute force
• Equivalent to variant of syndrome decoding

Why should this work?

• Sample random 𝐻𝐻 ∈ 0,1 𝑟𝑟×𝑚𝑚, and regular 𝑒𝑒 ∈ {0,1}𝑚𝑚 of weight ℎ
• Given 𝐻𝐻 and 𝑦𝑦 = 𝐻𝐻𝑒𝑒 , find 𝑒𝑒.

Regular syndrome decoding problem

H

e

y = wt 1

wt 1

⋮

• Fill columns of 𝐻𝐻 ∈ 0,1 𝑟𝑟×𝑚𝑚 with all hash values 𝐻𝐻𝑖𝑖(𝑗𝑗)
• Regular error vector 𝑒𝑒 corresponds to keys 𝑘𝑘𝑖𝑖

Equivalence of sum of hashes and regular
syndrome decoding

y =
wt 1

⋯

⋯

⋱⋮ ⋮

⋮

0
0
1
0
0
0

𝐻𝐻𝑖𝑖 0 𝐻𝐻𝑖𝑖 1 𝐻𝐻𝑖𝑖 2 ⋯

Hardness of regular syndrome decoding

• Parameters:
• Key length ℓ, # keys ℎ, output length 𝑟𝑟

• Used for SHA-3 candidate FSB [Augot Finiasz Sendrier 03]

• Not much easier than syndrome decoding ⇔ LPN

• Search-to-decision reduction
(finding 𝑒𝑒 as hard as distinguishing 𝐻𝐻𝐻𝐻 from random)

• Statistically hard for small 𝑟𝑟/large ℎ

Peter Scholl 18

19

Protocol 1: GMW-style MPC based on OT extension with short keys

[Goldreich Micali Wigderson ’87]

1-out-of-2 Oblivious Transfer

OT

𝑋𝑋0,𝑋𝑋1b ∈ {0,1}

𝑋𝑋𝑏𝑏

1-out-of-2 Oblivious Transfer gives secret-
shared multiplication

OT

b ∈ {0,1}

𝑋𝑋𝑏𝑏

= 1 − 𝑏𝑏 ⋅ 𝑋𝑋0 + 𝑏𝑏 ⋅ 𝑋𝑋1
= 𝑋𝑋0 + 𝑏𝑏 ⋅ (𝑋𝑋1 − 𝑋𝑋0)

𝑎𝑎𝑟𝑟

= 𝑟𝑟 + 𝑎𝑎𝑎𝑎

𝑋𝑋0,𝑋𝑋1 ∈ {0,1}𝑟𝑟, 𝑟𝑟 + a ∈ {0,1}

Peter Scholl 22

“IKNP” OT extension technique: converting
𝑘𝑘 “seed” OTs into 𝑚𝑚 ≫ 𝑘𝑘 OTs

𝑘𝑘 × OTs on
𝑘𝑘-bit strings

𝑚𝑚 × random 1-out-of-2 OTs

[Ishai Kilian Nissim Petrank 03]

PRG, hash +
𝑚𝑚𝑚𝑚 bits comm.

Shrink
the keys!

ℓ

ℓ

Peter Scholl 23

OT extension with short keys and leakage

𝐿𝐿 𝒃𝒃

≈ 𝐻𝐻 Δ ⊕ 𝒃𝒃
for random Δ ∈ 0,1 ℓ

𝑚𝑚 × 1-2 OT

𝑋𝑋01,𝑋𝑋11 , … , 𝑋𝑋0𝑚𝑚,𝑋𝑋1𝑚𝑚 ∈ 0,1 2𝐛𝐛 ∈ 0,1 𝑚𝑚

𝑋𝑋𝑏𝑏1
1 , … ,𝑋𝑋𝑏𝑏𝑚𝑚

𝑚𝑚

Using leaky OT for GMW-style MPC

• First attempt: see what happens
• Multiply shared [𝑥𝑥] and [𝑦𝑦] with GMW
• Every pair (𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗):

• Compute [𝑥𝑥𝑥𝑥] from

𝑥𝑥𝑥𝑥 = 𝑥𝑥1 + ⋯𝑥𝑥𝑛𝑛 𝑦𝑦1 + ⋯+ 𝑦𝑦𝑛𝑛 = 𝑥𝑥1𝑦𝑦1 + ⋯𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 + ⋯+ 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛

Problem: leakage on 𝑥𝑥𝑖𝑖 with every corrupt party 𝑃𝑃𝑗𝑗
⇒ whp 𝑥𝑥𝑖𝑖 leaks entirely if enough corruptions

Peter Scholl 24

OT𝑥𝑥𝑖𝑖 𝑦𝑦𝑗𝑗

[𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗]

Using leaky OT for GMW-style MPC

Peter Scholl 25

• Second attempt: rerandomize shares before multiplying
• 𝑃𝑃𝑖𝑖 inputs (𝑥𝑥𝑖𝑖+𝑠𝑠𝑖𝑖𝑖𝑖) instead of 𝑥𝑥𝑖𝑖
for random 𝑠𝑠𝑖𝑖𝑖𝑖 ∈ {0,1}

(𝑥𝑥1+𝑠𝑠11)𝑦𝑦1 + ⋯+ (𝑥𝑥𝑖𝑖+𝑠𝑠𝑖𝑖𝑖𝑖)𝑦𝑦𝑗𝑗 + ⋯+ (𝑥𝑥𝑛𝑛+𝑠𝑠𝑛𝑛𝑛𝑛)

= 𝑥𝑥𝑥𝑥
+ 𝑠𝑠11 + ⋯+ 𝑠𝑠𝑛𝑛𝑛 𝑦𝑦1

⋯
+ 𝑠𝑠1𝑛𝑛 + ⋯+ 𝑠𝑠𝑛𝑛𝑛𝑛 𝑦𝑦𝑛𝑛

such that ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑖𝑖 = 0

= 𝑥𝑥𝑥𝑥

What about the leakage?

• All inputs with leakage masked by shares of zero
• Only need to consider sum of all leakage on secret 𝑥𝑥 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖
• Leakage is equivalent to:

�
𝑖𝑖

𝐻𝐻 𝑖𝑖,Δ𝑖𝑖 + 𝑥𝑥

Pseudorandom by regular syndrome decoding assumption

Peter Scholl 26

Parameters and efficiency of GMW-based
protocol

• Typically, each key can be used for 𝑟𝑟 = 300-500 triples
• 1-bit keys when ℎ > 𝑠𝑠 + 𝑟𝑟 (e.g. 𝑠𝑠 = 40 for stat. security)

• Triple cost ≈ 3𝑛𝑛𝑛𝑛 bits comm.
• Assumes OT + OWF only (no RSD)

Peter Scholl 27

6, 31

80, 10

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90

Ke
y

le
ng

th

honest parties

vs 𝑂𝑂(𝑛𝑛2𝑘𝑘/ log 𝑘𝑘) for full-threshold

Reduction in communication from GMW
with short keys (200 parties)

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 100

Standard

Committee

Short keys

Peter Scholl 28

29

Protocol 2: BMR-based MPC based on multi-party garbled circuits with
short keys

[Beaver Micali Rogaway ’90]

Garbling an AND gate with Yao

Peter Scholl 30

u v w

0 0 0

0 1 0

1 0 0

1 1 1

u

v
w

Garbling an AND gate with Yao

• Randomly permute entries

• Invariant: evaluator learns one
key per wire throughout the circuit

Peter Scholl 31

𝐴𝐴0,𝐴𝐴1

𝐵𝐵0,𝐵𝐵1

𝐶𝐶0,𝐶𝐶1

𝐸𝐸𝐴𝐴0,𝐵𝐵0 𝐶𝐶0
𝐸𝐸𝐴𝐴0,𝐵𝐵1(𝐶𝐶0)

𝐸𝐸𝐴𝐴1,𝐵𝐵0 𝐶𝐶0
𝐸𝐸𝐴𝐴1,𝐵𝐵1(𝐶𝐶1)

• Pick two random keys for each
wire

• Encrypt the truth table of each
gate

Peter Scholl 32

(𝐴𝐴01 , … ,𝐴𝐴0𝑛𝑛), (𝐴𝐴11, … ,𝐴𝐴1𝑛𝑛)
𝐸𝐸𝐴𝐴0,𝐵𝐵0 𝐶𝐶0
𝐸𝐸𝐴𝐴0,𝐵𝐵1(𝐶𝐶0)

𝐸𝐸𝐴𝐴1,𝐵𝐵0 𝐶𝐶0
𝐸𝐸𝐴𝐴1,𝐵𝐵1(𝐶𝐶1)

(𝐵𝐵01, … ,𝐵𝐵0𝑛𝑛), (𝐵𝐵11, … ,𝐵𝐵1𝑛𝑛)

(𝐵𝐵01, … ,𝐵𝐵0𝑛𝑛), (𝐵𝐵11, … ,𝐵𝐵1𝑛𝑛)

Multi-party garbled circuits

𝐻𝐻 1 𝐴𝐴1 𝐵𝐵1
⊕
⋯
⊕

𝐻𝐻 𝑛𝑛 | 𝐴𝐴𝑛𝑛||𝐵𝐵𝑛𝑛)
⊕

(𝐶𝐶1, … ,𝐶𝐶𝑛𝑛)

[Beaver Micali Rogaway90]

Shrink
the keys!

𝑛𝑛𝑛

Each 𝑃𝑃𝑖𝑖 gets 𝐴𝐴0𝑖𝑖 ,𝐴𝐴1𝑖𝑖 ∈ 0,1 𝑘𝑘 etc

Use distributed encryption: 𝐸𝐸𝐴𝐴,𝐵𝐵 𝐶𝐶 =

For hash function 𝐻𝐻 ∶ 0,1 ∗ → 0,1 𝑛𝑛𝑛𝑛

ℓ

BMR with short keys: a few technical
challenges

• Reusing keys reduces security in regular syndrome decoding
• Problem for:

• High fan-out
• Free-xor

• Solution:
• Splitter gates [Tate Xu 03] – can be garbled for free
• Local free-XOR offsets

Peter Scholl 33

𝐷𝐷0,𝐷𝐷1

𝐸𝐸0,𝐸𝐸1

BMR with short keys: pros and cons

• Garbled AND gate:
• 4𝑛𝑛𝑛 + 1 bits vs 4𝑛𝑛𝑛𝑛 bits previously
• ℓ as small as 8

• Preprocessing phase:
• Less communication using short keys

• Online phase:
• 𝑂𝑂(𝑛𝑛

2ℓ
𝑘𝑘

) hash evaluations per garbled gate, vs 𝑂𝑂 𝑛𝑛2 previously*
• Need splitter gates: ≈1 splitter per (XOR/AND) gate

Peter Scholl 34

*or 𝑂𝑂(1) using DDH/LWE [Ben-Efraim Lindell Omri 17]

Communication cost of garbling an AND gate
(200 parties)

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90

C
om

m
s

(k
bi

t)

honest parties

Standard

Short keys

Peter Scholl 35

Comparison with [Ben-Efraim Lindell Omri 16]

Conclusion and future directions

• New technique for distributing trust in MPC
• More efficient protocols for 20+ parties

• Also helps large-scale protocols with random committees

Future challenges:

• Active security
• Information-theoretic MACs with short keys

• Arithmetic circuits
• Adaptive security
• Optimizations, cryptanalysis

Peter Scholl 36

	Efficient MPC From Syndrome Decoding
	Secure Multi-Party Computation
	Properties of secure computation protocols
	MPC setting in this talk
	Motivation for large-scale, dishonest majority MPC
	Main question
	Corruption thresholds vs communication complexity of practical MPC
	Slide Number 9
	Savings from naive committee approach with 200 parties and GMW protocol
	An asymptotically better approach using random committees
	New approach: short keys for secure computation
	New MPC protocols with short keys and fewer corruptions
	Slide Number 14
	Slide Number 15
	Regular syndrome decoding problem
	Equivalence of sum of hashes and regular�syndrome decoding
	Hardness of regular syndrome decoding
	Slide Number 19
	1-out-of-2 Oblivious Transfer
	1-out-of-2 Oblivious Transfer gives secret-shared multiplication
	“IKNP” OT extension technique: converting 𝑘 “seed” OTs into 𝑚≫𝑘 OTs
	OT extension with short keys and leakage
	Using leaky OT for GMW-style MPC
	Using leaky OT for GMW-style MPC
	What about the leakage?
	Parameters and efficiency of GMW-based protocol
	Reduction in communication from GMW with short keys (200 parties)
	Slide Number 29
	Garbling an AND gate with Yao
	Garbling an AND gate with Yao
	Slide Number 32
	BMR with short keys: a few technical challenges
	BMR with short keys: pros and cons
	Communication cost of garbling an AND gate (200 parties)
	Conclusion and future directions

