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Secure Multi-Party Computation

a b

c d

Goal: Compute f(a,b,c,d)
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Properties of secure computation protocols

• Computational model: Boolean/arithmetic circuits, RAM

• Adversary model:
• Passive (semi-honest) or active (malicious)
• Threshold 𝒕𝒕 (number of corrupted parties)

• Efficiency:
• Round/communication complexity
• Computation
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MPC setting in this talk

Main focus:
• Concrete efficiency for large numbers of parties
(e.g. 𝑛𝑛 in 10s, 100s)

Adversary:
• Static, passive
• Dishonest majority (𝑡𝑡 > 𝑛𝑛/2)

Model of Computation:
• Boolean circuits
• Preprocessing phase

Preprocessing

Online
a b

c d

corr.
rand.

4Peter Scholl



Motivation for large-scale, dishonest majority 
MPC
Large number of clients/users want to aggregate data, statistical analysis, 
surveys etc.

• E.g. statistics on Tor network activity, blockchain miners, app users etc.

Peter Scholl 5

MPC between 
all clients

• Outsource to set of servers
• More servers = less trust



Main question
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Can we trade off the number of corrupt parties for a more efficient, 
practical protocol?



Corruption thresholds vs communication 
complexity of practical MPC
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𝑛𝑛/2 𝑛𝑛 − 1 corruptions

𝑂𝑂(𝑛𝑛𝑛𝑛𝑛 𝑛𝑛) 𝑂𝑂(𝑛𝑛2𝑘𝑘/ log 𝑘𝑘)

0

???

𝑛𝑛 parties, security 𝑘𝑘
Passive corruptions
Boolean circuits



2 corruptions:
- Choose committee of size 3
- Secret-share inputs to committee
- Committee runs MPC

Naive committee-based approach for 𝑡𝑡
corruption



Savings from naive committee approach with 
200 parties and GMW protocol
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variant of GMW by [Dessouky Koushanfar Sadeghi Schneider Zeitouni Zohner 17]



An asymptotically better approach using 
random committees
• Suppose 𝑡𝑡 = 𝜖𝜖𝜖𝜖 for constant 𝜖𝜖 ∈ (0,1)
• Sample random committee 𝐶𝐶 of size 𝑘𝑘

• 𝐶𝐶 runs threshold-(𝑛𝑛 − 1) MPC protocol
• Complexity: 𝑂𝑂 𝑘𝑘3 per AND gate

• Pr[𝐶𝐶 is all corrupt]  is 𝑡𝑡
𝑘𝑘 / 𝑛𝑛

𝑘𝑘
• negl(𝑘𝑘) for large enough 𝑛𝑛
• 𝑘𝑘 can be independent of 𝑛𝑛
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[Bracha ’87]

Can we do better? What about for smaller 𝑛𝑛?



New approach: short keys for secure 
computation
• Key idea:

• “Weaken” existing protocol for 𝑛𝑛 − 1
corruptions by shrinking secret keys

• Rely on concatenation of all honest 
parties’ keys for security
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Keys!



New MPC protocols with short keys and 
fewer corruptions

More honesty ⇒ shorter keys ⇒more efficiency

Short 
keys

Multi-party garbled circuits (BMR)Secret-sharing based MPC (GMW)

OT

Key length: ℓ ≥ 1 Key length: ℓ ≥ 8
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• Key distributed across 𝑛𝑛 servers

• Hard to guess 𝑚𝑚 if at least one 𝑘𝑘𝑖𝑖 ∈ 0,1 𝜆𝜆 is unknown

• What is ℎ keys are unknown?
• Can 𝑘𝑘𝑖𝑖 be smaller?

Enc 𝑘𝑘1, … ,𝑘𝑘𝑛𝑛, 𝑥𝑥 = ∑𝑖𝑖 𝐻𝐻𝑖𝑖 𝑘𝑘𝑖𝑖 ⊕𝑚𝑚

𝑆𝑆1 𝑆𝑆2 𝑆𝑆𝑛𝑛…
𝑘𝑘1 𝑘𝑘2 𝑘𝑘𝑛𝑛

Toy example: simple distributed encryption 
scheme

Shrink 
the keys!
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• Let 𝐻𝐻𝑖𝑖: 0,1 ℓ → 0,1 𝑟𝑟 be a hash function
• Want

�
𝑖𝑖=1

𝑛𝑛

𝐻𝐻𝑖𝑖(𝑘𝑘𝑖𝑖)

to be pseudorandom when 𝑘𝑘𝑖𝑖 ← 0,1 ℓ and ℎ keys are unknown

• Intuition:
• For suitable parameters, not much easier than brute force
• Equivalent to variant of syndrome decoding

Why should this work?



• Sample random 𝐻𝐻 ∈ 0,1 𝑟𝑟×𝑚𝑚, and regular 𝑒𝑒 ∈ {0,1}𝑚𝑚 of weight ℎ
• Given 𝐻𝐻 and 𝑦𝑦 = 𝐻𝐻𝑒𝑒 , find 𝑒𝑒.

Regular syndrome decoding problem

H

e

y = wt 1

wt 1

⋮



• Fill columns of 𝐻𝐻 ∈ 0,1 𝑟𝑟×𝑚𝑚 with all hash values 𝐻𝐻𝑖𝑖(𝑗𝑗)
• Regular error vector 𝑒𝑒 corresponds to keys 𝑘𝑘𝑖𝑖

Equivalence of sum of hashes and regular
syndrome decoding

y =
wt 1

⋯

⋯

⋱⋮ ⋮

⋮

0
0
1
0
0
0

𝐻𝐻𝑖𝑖 0 𝐻𝐻𝑖𝑖 1 𝐻𝐻𝑖𝑖 2 ⋯



Hardness of regular syndrome decoding

• Parameters:
• Key length ℓ, # keys ℎ, output length 𝑟𝑟

• Used for SHA-3 candidate FSB [Augot Finiasz Sendrier 03]

• Not much easier than syndrome decoding ⇔ LPN

• Search-to-decision reduction
(finding 𝑒𝑒 as hard as distinguishing 𝐻𝐻𝐻𝐻 from random)

• Statistically hard for small 𝑟𝑟/large ℎ

Peter Scholl 18
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Protocol 1: GMW-style MPC based on OT extension with short keys

[Goldreich Micali Wigderson ’87]



1-out-of-2 Oblivious Transfer

OT

𝑋𝑋0,𝑋𝑋1b ∈ {0,1}

𝑋𝑋𝑏𝑏



1-out-of-2 Oblivious Transfer gives secret-
shared multiplication

OT

b ∈ {0,1}

𝑋𝑋𝑏𝑏

= 1 − 𝑏𝑏 ⋅ 𝑋𝑋0 + 𝑏𝑏 ⋅ 𝑋𝑋1
= 𝑋𝑋0 + 𝑏𝑏 ⋅ (𝑋𝑋1 − 𝑋𝑋0)

𝑎𝑎𝑟𝑟

= 𝑟𝑟 + 𝑎𝑎𝑎𝑎

𝑋𝑋0,𝑋𝑋1 ∈ {0,1}𝑟𝑟, 𝑟𝑟 + a ∈ {0,1}
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“IKNP” OT extension technique: converting 
𝑘𝑘 “seed” OTs into 𝑚𝑚 ≫ 𝑘𝑘 OTs

𝑘𝑘 × OTs on 
𝑘𝑘-bit strings

𝑚𝑚 × random 1-out-of-2 OTs

[Ishai Kilian Nissim Petrank 03]

PRG, hash +
𝑚𝑚𝑚𝑚 bits comm.

Shrink 
the keys!

ℓ

ℓ



Peter Scholl 23

OT extension with short keys and leakage

𝐿𝐿 𝒃𝒃

≈ 𝐻𝐻 Δ ⊕ 𝒃𝒃
for random Δ ∈ 0,1 ℓ

𝑚𝑚 × 1-2 OT

𝑋𝑋01,𝑋𝑋11 , … , 𝑋𝑋0𝑚𝑚,𝑋𝑋1𝑚𝑚 ∈ 0,1 2𝐛𝐛 ∈ 0,1 𝑚𝑚

𝑋𝑋𝑏𝑏1
1 , … ,𝑋𝑋𝑏𝑏𝑚𝑚

𝑚𝑚



Using leaky OT for GMW-style MPC

• First attempt: see what happens
• Multiply shared [𝑥𝑥] and [𝑦𝑦] with GMW
• Every pair (𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗):

• Compute [𝑥𝑥𝑥𝑥] from

𝑥𝑥𝑥𝑥 = 𝑥𝑥1 + ⋯𝑥𝑥𝑛𝑛 𝑦𝑦1 + ⋯+ 𝑦𝑦𝑛𝑛 = 𝑥𝑥1𝑦𝑦1 + ⋯𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 + ⋯+ 𝑥𝑥𝑛𝑛𝑦𝑦𝑛𝑛

Problem: leakage on 𝑥𝑥𝑖𝑖 with every corrupt party 𝑃𝑃𝑗𝑗
⇒ whp 𝑥𝑥𝑖𝑖 leaks entirely if enough corruptions
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OT𝑥𝑥𝑖𝑖 𝑦𝑦𝑗𝑗

[𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗]



Using leaky OT for GMW-style MPC
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• Second attempt: rerandomize shares before multiplying
• 𝑃𝑃𝑖𝑖 inputs (𝑥𝑥𝑖𝑖+𝑠𝑠𝑖𝑖𝑖𝑖) instead of 𝑥𝑥𝑖𝑖
for random 𝑠𝑠𝑖𝑖𝑖𝑖 ∈ {0,1}

(𝑥𝑥1+𝑠𝑠11)𝑦𝑦1 + ⋯+ (𝑥𝑥𝑖𝑖+𝑠𝑠𝑖𝑖𝑖𝑖)𝑦𝑦𝑗𝑗 + ⋯+ (𝑥𝑥𝑛𝑛+𝑠𝑠𝑛𝑛𝑛𝑛)

= 𝑥𝑥𝑥𝑥
+ 𝑠𝑠11 + ⋯+ 𝑠𝑠𝑛𝑛𝑛 𝑦𝑦1

⋯
+ 𝑠𝑠1𝑛𝑛 + ⋯+ 𝑠𝑠𝑛𝑛𝑛𝑛 𝑦𝑦𝑛𝑛

such that ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑖𝑖 = 0

= 𝑥𝑥𝑥𝑥



What about the leakage?

• All inputs with leakage masked by shares of zero
• Only need to consider sum of all leakage on secret 𝑥𝑥 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖
• Leakage is equivalent to:

�
𝑖𝑖

𝐻𝐻 𝑖𝑖,Δ𝑖𝑖 + 𝑥𝑥

Pseudorandom by regular syndrome decoding assumption
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Parameters and efficiency of GMW-based 
protocol

• Typically, each key can be used for 𝑟𝑟 = 300-500 triples
• 1-bit keys when ℎ > 𝑠𝑠 + 𝑟𝑟 (e.g.  𝑠𝑠 = 40 for stat. security)

• Triple cost ≈ 3𝑛𝑛𝑛𝑛 bits comm.
• Assumes OT + OWF only (no RSD)
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Reduction in communication from GMW 
with short keys (200 parties)
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Protocol 2: BMR-based MPC based on multi-party garbled circuits with 
short keys

[Beaver Micali Rogaway ’90]



Garbling an AND gate with Yao
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u v w

0 0 0

0 1 0

1 0 0

1 1 1

u

v
w



Garbling an AND gate with Yao

• Randomly permute entries

• Invariant: evaluator learns one
key per wire throughout the circuit
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𝐴𝐴0,𝐴𝐴1

𝐵𝐵0,𝐵𝐵1

𝐶𝐶0,𝐶𝐶1

𝐸𝐸𝐴𝐴0,𝐵𝐵0 𝐶𝐶0
𝐸𝐸𝐴𝐴0,𝐵𝐵1(𝐶𝐶0)

𝐸𝐸𝐴𝐴1,𝐵𝐵0 𝐶𝐶0
𝐸𝐸𝐴𝐴1,𝐵𝐵1(𝐶𝐶1)

• Pick two random keys for each 
wire

• Encrypt the truth table of each 
gate
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(𝐴𝐴01 , … ,𝐴𝐴0𝑛𝑛), (𝐴𝐴11, … ,𝐴𝐴1𝑛𝑛)
𝐸𝐸𝐴𝐴0,𝐵𝐵0 𝐶𝐶0
𝐸𝐸𝐴𝐴0,𝐵𝐵1(𝐶𝐶0)

𝐸𝐸𝐴𝐴1,𝐵𝐵0 𝐶𝐶0
𝐸𝐸𝐴𝐴1,𝐵𝐵1(𝐶𝐶1)

(𝐵𝐵01, … ,𝐵𝐵0𝑛𝑛), (𝐵𝐵11, … ,𝐵𝐵1𝑛𝑛)

(𝐵𝐵01, … ,𝐵𝐵0𝑛𝑛), (𝐵𝐵11, … ,𝐵𝐵1𝑛𝑛)

Multi-party garbled circuits

𝐻𝐻 1 𝐴𝐴1 𝐵𝐵1
⊕
⋯
⊕

𝐻𝐻 𝑛𝑛 | 𝐴𝐴𝑛𝑛||𝐵𝐵𝑛𝑛)
⊕

(𝐶𝐶1, … ,𝐶𝐶𝑛𝑛)

[Beaver Micali Rogaway90]

Shrink 
the keys!

𝑛𝑛𝑛

Each 𝑃𝑃𝑖𝑖 gets 𝐴𝐴0𝑖𝑖 ,𝐴𝐴1𝑖𝑖 ∈ 0,1 𝑘𝑘 etc

Use distributed encryption:  𝐸𝐸𝐴𝐴,𝐵𝐵 𝐶𝐶 =

For hash function 𝐻𝐻 ∶ 0,1 ∗ → 0,1 𝑛𝑛𝑛𝑛

ℓ



BMR with short keys: a few technical 
challenges

• Reusing keys reduces security in regular syndrome decoding
• Problem for:

• High fan-out
• Free-xor

• Solution:
• Splitter gates [Tate Xu 03] – can be garbled for free
• Local free-XOR offsets
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𝐷𝐷0,𝐷𝐷1

𝐸𝐸0,𝐸𝐸1



BMR with short keys: pros and cons

• Garbled AND gate:
• 4𝑛𝑛𝑛 + 1 bits vs 4𝑛𝑛𝑛𝑛 bits previously
• ℓ as small as 8

• Preprocessing phase:
• Less communication using short keys

• Online phase:
• 𝑂𝑂(𝑛𝑛

2ℓ
𝑘𝑘

) hash evaluations per garbled gate, vs 𝑂𝑂 𝑛𝑛2 previously*
• Need splitter gates: ≈1 splitter per (XOR/AND) gate
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*or 𝑂𝑂(1) using DDH/LWE [Ben-Efraim Lindell Omri 17]



Communication cost of garbling an AND gate 
(200 parties)
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Comparison with [Ben-Efraim Lindell Omri 16]



Conclusion and future directions

• New technique for distributing trust in MPC
• More efficient protocols for 20+ parties

• Also helps large-scale protocols with random committees

Future challenges:

• Active security
• Information-theoretic MACs with short keys

• Arithmetic circuits
• Adaptive security
• Optimizations, cryptanalysis
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