### A Novel Approach to Dual Execution for YGC With Applications to Fuzzy PAKE

Sophia Yakoubov <sub>joint work with</sub> Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin

Published at Eurocrypt 2018

1

#### A Novel Approach

- Our contribution: eliminating this leakage...
  - in a limited, interesting setting -

- To Dual Execution [Mohassel-Franklin-06, Huang-Katz-Evans-12] Efficient transformation making YGC malicious-secure
- Downside: it leaks a bit!

#### For Yao's Garbled Circuits

- YGC: efficient two-party computation
- Problem: YGC is not malicious-secure!

With Applications to Fuzzy PAKE <

#### A Novel Approach

- Our contribution: eliminating this leakage...
  - in a limited, interesting setting -

- To Dual Execution [Mohassel-Franklin-06, Huang-Katz-Evans-12] Efficient transformation making YGC malicious-secure
- Downside: it leaks a bit!

#### For Yao's Garbled Circuits

- YGC: efficient two-party computation
- Problem: YGC is not malicious-secure!

With Applications to Fuzzy PAKE <

### Motivation

p@\$\$w0rd12

- Want: secure communication
- Over insecure, unauthenticated channel
- Shared secret: password
- The password is...
  - Low-entropy



p@\$\$w0rd12

### Motivation

| 2 |
|---|

p@\$\$w0rd12

- Want: secure communication
- Over insecure, unauthenticated channel
- Shared secret: password
- The password is...
  - Low-entropy
  - Possibly noisy





p@\$\$w0rd12

- Goal: Agree on high-entropy cryptographic key
- Man-in-the-middle security: Nothing leaks about...
  - Password
  - Кеу

# Applications



### • Mistyped passwords

e.g. [Chatterjee-Athalye-Akhawe-Juels-Ristenpart-16]



p@\$\$w0rd12

# Applications: Not Just Passwords!

- Mistyped passwords
- Biometric authentication

Bob has a resource Alice is trying to access









### Applications: Not Just Passwords!

- Mistyped passwords
- Biometric authentication
  - Location-based authentication e.g. [Han-Harishankar-Wang-Chung-Tague-17]



"radiator springs has 4 potholes"

9



"radiation stinks has 3 potholes"







are the passwords **low-entropy**? **low-entropy**: can hit correct password by brute-force enumeration





are the passwords low-entropy?

| دu ius<br>ع              |             | Low-entropy password | High-entropy password |
|--------------------------|-------------|----------------------|-----------------------|
| passw<br>e <b>nois</b> e | Exact match |                      |                       |
| uu une<br>havi           | Fuzzy match |                      |                       |





|             | Low-entropy password | High-entropy password              |
|-------------|----------------------|------------------------------------|
| Exact match |                      | privacy amplification [Maurer-97,] |
| Fuzzy match |                      |                                    |





|             | Low-entropy password<br>(no leakage allowed) | High-entropy password<br>(some leakage ok) |
|-------------|----------------------------------------------|--------------------------------------------|
| Exact match |                                              | privacy amplification [Maurer-97,]         |
| Fuzzy match |                                              |                                            |





|             | Low-entropy password<br>(no leakage allowed)                        | High-entropy password<br>(some leakage ok) |
|-------------|---------------------------------------------------------------------|--------------------------------------------|
| Exact match | PAKE [Bellare-Pointcheval-Rogaway-00,<br>Boyko-MacKenzie-Patel-00,] | privacy amplification [Maurer-97,]         |
| Fuzzy match |                                                                     |                                            |

Secure against off-line dictionary attacks against the password





|             | Low-entropy password<br>(no leakage allowed)                        | High-entropy password<br>(some leakage ok)                                                                           |
|-------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Exact match | PAKE [Bellare-Pointcheval-Rogaway-00,<br>Boyko-MacKenzie-Patel-00,] | privacy amplification [Maurer-97,]                                                                                   |
| Fuzzy match |                                                                     | information reconciliation<br>[Renner-Wolf-04,]<br>robust fuzzy extractors<br>[Boyen-Dodis-Katz-Ostrovsky-Smith-05,] |





|             | Low-entropy password<br>(no leakage allowed)                        | High-entropy password<br>(some leakage ok)                                                                           |
|-------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Exact match | PAKE [Bellare-Pointcheval-Rogaway-00,<br>Boyko-MacKenzie-Patel-00,] | privacy amplification [Maurer-97,]                                                                                   |
| Fuzzy match | ?                                                                   | information reconciliation<br>[Renner-Wolf-04,]<br>robust fuzzy extractors<br>[Boyen-Dodis-Katz-Ostrovsky-Smith-05,] |



### Fuzzy PAKE



|             | Low-entropy password<br>(no leakage allowed)                        | High-entropy password<br>(some leakage ok)                                                                           |
|-------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Exact match | PAKE [Bellare-Pointcheval-Rogaway-00,<br>Boyko-MacKenzie-Patel-00,] | privacy amplification [Maurer-97,]                                                                                   |
| Fuzzy match | New Primitive - Fuzzy PAKE                                          | information reconciliation<br>[Renner-Wolf-04,]<br>robust fuzzy extractors<br>[Boyen-Dodis-Katz-Ostrovsky-Smith-05,] |



### Fuzzy PAKE



| Exact match PAKE [Bellare-Pointer<br>Boyko-MacKenzie-Pat | heval-Rogaway-00,<br>el-00,] | privacy amplification [Maurer-97,]                                                                                   |
|----------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Fuzzy match<br>New Primitiv                              | e - Fuzzy PAKE               | information reconciliation<br>[Renner-Wolf-04,]<br>robust fuzzy extractors<br>[Boyen-Dodis-Katz-Ostrovsky-Smith-05,] |

### **Our Contributions**

- Security definition
- Efficient constructions

of Fuzzy Password Authenticated Key Exchange



### Fuzzy PAKE



| Exact match PAKE<br>Boyko | [Bellare-Pointcheval-Rogaway-00,<br>-MacKenzie-Patel-00,] | privacy amplification [Maurer-97,]                                                                                   |
|---------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Fuzzy match               | lew Primitive - Fuzzy PAKE                                | information reconciliation<br>[Renner-Wolf-04,]<br>robust fuzzy extractors<br>[Boyen-Dodis-Katz-Ostrovsky-Smith-05,] |

### **Our Contributions**

- Security definition
- Efficient constructions

of Fuzzy Password Authenticated Key Exchange



### What to do?





• Problem: unauthenticated channels!



- Problem: unauthenticated channels!
- Solution: secure computation without authentication [Barak-Canetti-Lindell-Pass-Rabin-05]
  - Generic transformation for MPC\*
  - Cheap: just add digital signatures (without PKI)!



- Problem: unauthenticated channels!
- Solution: secure computation without authentication [Barak-Canetti-Lindell-Pass-Rabin-05]
- Q: Which MPC?
- A: Yao's Garbled Circuits!

A Novel Approach

**To Dual Execution** 

#### **For Yao's Garbled Circuits**

With Applications to Fuzzy PAKE





garbler





Yao's Garbled Circuits are an asymmetric 2PC protocol: they are secure against a malicious evaluator, but only against a semi-honest garbler



<u>semi-honest</u> garbler



Yao's Garbled Circuits are an asymmetric 2PC protocol: they are secure against a malicious evaluator, but only against a semi-honest garbler





Yao's Garbled Circuits are an asymmetric 2PC protocol: they are secure against a malicious evaluator, but only against a semi-honest garbler

### From Semi-Honest to Malicious

| Correctness | Privacy | Computation<br>Overhead |
|-------------|---------|-------------------------|
|             |         |                         |

### From Semi-Honest to Malicious

| Transformation   | Correctness | Privacy | Computation<br>Overhead        |
|------------------|-------------|---------|--------------------------------|
| None             |             |         |                                |
| Commit-and-Prove |             |         |                                |
| Cut-and-Choose   |             |         |                                |
| LEGO             |             |         | (including pre-<br>processing) |
|                  |             |         |                                |

- Transformations gain efficiency using...
  - Amortization
  - Pre-processing
- We can't afford either!

### From Semi-Honest to Malicious

| Transformation                                                   | Correctness | Privacy       | Computation<br>Overhead        |
|------------------------------------------------------------------|-------------|---------------|--------------------------------|
| None                                                             |             |               |                                |
| Commit-and-Prove                                                 |             |               |                                |
| Cut-and-Choose                                                   |             |               |                                |
| LEGO                                                             |             |               | (including pre-<br>processing) |
|                                                                  |             |               |                                |
| Dual Execution<br>[Mohassel-Franklin-06,<br>Huang-Katz-Evans-12] |             | 1 bit leakage | Only 2x!<br>(+ constant)       |

1 bit of leakage about a low-entropy password can be crucial!

A Novel Approach

To **Dual Execution** (for yes-no circuits)

For Yao's Garbled Circuits

With Applications to Fuzzy PAKE

### **Dual Execution**

[Mohassel-Franklin-06, Huang-Katz-Evans-12]





Alice's circuit

circuit that outputs yes/no and a label

















### **A Novel Approach**

**To Dual Execution** 

### For Yao's Garbled Circuits

With Applications to Fuzzy PAKE

# Dual Execution for FPAKE: Privacy-Correctness Tradeoff for Boolean Functions



| [MF'06,<br>HKE'12]<br>Dual<br>Execution | Correct output | Comp. output        | Privacy       |
|-----------------------------------------|----------------|---------------------|---------------|
|                                         | "yes"          | "yes" or "cheating" | 1-bit leakage |
|                                         | "no"           | "no" or "cheating"  | 1-bit leakage |
| ₩ c                                     | Correct output | Comp. output        | Privacy       |
| PAH<br>Ial<br>Jtio                      | "woo"          |                     | 1 hit lookage |
| Our F<br>Du<br>Execu                    | yes            | yes or no           | T-DIT leakage |
|                                         | "no"           | "no"                | VAS           |

This is the perfect tradeoff for fuzzy PAKE!

 Only care about security against adversary who doesn't know a close-enough password – the "no" case



Do not reveal output to parties before comparison – always pretend that it is yes!

- Before: "Equal" => "computation correct", "Not equal" => "cheating"
- Now: "Equal" => "yes", "Not equal" => "no"











# Dual Execution for FPAKE: Privacy-Correctness Tradeoff for Boolean Functions



| [MF'06,<br>HKE'12]<br>Dual<br>Execution | Correct output | Comp. output        | Privacy       |
|-----------------------------------------|----------------|---------------------|---------------|
|                                         | "yes"          | "yes" or "cheating" | 1-bit leakage |
|                                         | "no"           | "no" or "cheating"  | 1-bit leakage |
| ₩ c                                     | Correct output | Comp. output        | Privacy       |
| PAH<br>Ial<br>Jtio                      | "woo"          |                     | 1 hit lookage |
| Our F<br>Du<br>Execu                    | yes            | yes or no           | T-DIT leakage |
|                                         | "no"           | "no"                | VAS           |

This is the perfect tradeoff for fuzzy PAKE!

 Only care about security against adversary who doesn't know a close-enough password – the "no" case







### Modified Dual Execution: More Generally

- Useful for functions where...
  - One output requires less security
  - The output is
    - Boolean, or
    - Same random / independent random
- E.g.:
  - Authentication
  - Mutual proofs of knowledge

# Another Fuzzy PAKE Solution!

| FPAKE construction   | PAKE/Secret Sharing | Yao's Garbled Circuits |
|----------------------|---------------------|------------------------|
| Notion of similarity | Hamming             | Any                    |
| # rounds             | 2                   | 5                      |
| # exponentiations    | 2n + constant       | 3n + constant          |

This talk



# Conclusion



|             | Low-entropy password       | High-entropy password                                  |
|-------------|----------------------------|--------------------------------------------------------|
| Exact match | PAKE                       | privacy amplification                                  |
| Fuzzy match | New Primitive - Fuzzy PAKE | information reconciliation,<br>robust fuzzy extractors |
|             |                            |                                                        |

### **Our Contributions**

- UC security definition of Fuzzy PAKE
- 2 efficient constructions
  - Including YGC with Modified Dual Execution