Photolysis of the water radical ion H₂O⁺ in the XUV studied with the free-electron laser FLASH

<u>H. B. Pedersen¹</u>, C. Domesle², L. Lammich¹, S. Dziarzhytski³, N. Guerassimova³, R. Treusch³, L. S. Harbo¹, O. Heber⁴, T. Arion⁵, M. Förstel⁵, U. Hergenhahn⁵, M. Stier⁵ and A. Wolf²

¹Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark ²Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany

³HASYLAB at DESY, Hamburg, Germany

⁴Weizmann Institute of Science, 76100 Rehovot, Israel.

⁵Max-Planck-Institut für Plasmaphysik, EURATOM Association, 85748 Garching, Germany hbjp@phys.au.dk

The photofragmentation of the atmospherically and astrophysically important water radical ion H_2O^+ through di-cationic states has been studied at 35.0 ± 0.2 nm (35.4 ± 0.3 eV) and at 21.8 ± 0.2 nm (56.8 ± 0.5 eV) with crossed ion-photon beams experiment [1] at the free electron laser FLASH [2-3].

With a newly developed fragment analyzing system, the dissociation of the di-cations was found to proceed into $O^0 + 2H^+$, $OH^+ + H^+$, and $O^+ + H_2^+$, with determined ratios $\sigma(OH^+ + H^+) / \sigma(O^+ + H_2^+) = 4.2 \pm 0.3$ and $\sigma(OH^+ + H^+) / \sigma(O^0 + 2H^+) > 0.7$. The measured kinetic energy releases for the fragmentation into $O^0 + 2H^+$ (see Figure 1(a)) and $OH^+ + H^+$ are consistent with recent theoretical predictions [4], while the fragmentation into $O^+ + H_2^+$ has so far not been considered. For the three-body channel $O^0 + 2H^+$, we also report on the angular correlation of the fragment (Figure 2(b)) which has also not yet been addressed by theory: we find the dissociation dynamics of the dication to be dominated by a symmetric departure of the two protons that carry most of the released momentum.

Figure 1. Photofragmentation H_2O^+ at 35.0 nm leading to $O^0 + 2H^+$ [1]. (a) Observed distribution of total kinetic energy release. The ladders above the experimental distribution show the expected kinetic energy releases [4] for vertical transitions from the vibronic ground state of H_2O^+ to five states of H_2O^{2+} followed by dissociation into three possible final states of $O^0 + 2H^+$. The blue lines marks the states for which three-body dissociation into $O^0 + 2H^+$ has been predicted [4]. (b) Dalitz plot representing the sharing of energy among the three emerging fragments.

References:

- [1] H. B. Pedersen et al., Phys. Rev. A 87, 013402 (2013).
- [2] W. Ackermann et al., Nat. Photon. 1, 336 (2007).
- [3] K. Tiedtke et al., New J. Phys. 11, 023029 (2009).
- [4] B. Gervais, et al., J. Chem. Phys. 131, 024302 (2009).