Spectroscopic Studies of 5d_{3/2}*n*d ¹D_{0,2} Autoionization Lines of Barium under Collision with Rare Gases

K. Afrousheh¹, M. Marafi¹, Y. Makdisi¹, J. Kokaj¹, J. Mathew¹, R. Nair¹ and <u>G. Pichler¹</u>

¹Physics Department, Kuwait University, P.O.Box 5969, 13060 – Safat, Kuwait pichler@ifs.hr

The spectroscopic behavior of $5d_{3/2}$ nd (1D_0 and 1D_2) autoionizing Rydberg series of barium were studied under collision with rare gases [1]. The series members from n=8 to n=64 were observed using two-photon excitation of the two valence electrons in the $6s^2$ 1S_0 ground state of barium. The barium vapor was produced in a heat pipe-like oven, and a tunable dye laser pumped by an excimer laser was used as the excitation source. The obtained spectral data have Beutler-Fano profiles. These spectral lines were investigated when inert gases Ar, Kr and Xe at different pressures were introduced into the oven as perturbing gases. The collision-induced line shifts were measured and the shift parameters for the even parity $5d_{3/2}$ nd 1D_0 and $5d_{3/2}$ nd 1D_2 (n=8 - 35) autoionizing states were extracted from the data [2]. The collision-induced change in the spectral line shape at different Xe pressure was also explored.

References:

[1] M. Marafi, K. Afrousheh, Y. Makdisi, Z. Suji, J. Mathew, J. Phys.B: At. Mol. Opt. Phys. **42**, 145003 (2009).

[2] K. Afrousheh, M. Marafi, J. Kokaj, Y. Makdisi, J. Mathew. Phys. Rev. A, 85, 052517(2012).