TARGETED REGULATION OF AGRICULTURAL N LOAD TO DANISH MARINE WATERS

Casestudy for testing two model prototypes for diffentiated regulation

Jonas Rolighed, Gitte Blicher-Mathiesen *Aarhus University, Department of Bioscience*Nikolaj Ludvigsen, Hans Kjær *Environmental Protection Agency, Danish Ministry of the Environment*Carl Åge Pedersen, Søren Kolind Hvid, Irene Asta Wiborg, *SEGES*

BACKGROUND - PRESENT REGULATION

Blicher-Mathiesen et al., 2014

BACKGROUND - TARGETS OF MARINE RECIPIENTS

- Varying vulnerability towards N-loading
 - Certain estuaries may be particularly vulnerable
- Work in progress, no final map yet

BACKGROUND - N RETENTION PROPERTIES

DEVELOPING TWO NEW MODELS - QUOTA MODEL

- Total N-load of the catchment must reach set targets
 - Base Quota (15 % of catchment quota is distributed evenly among farms – rest is differentiated)
- 160 kg N ha⁻¹

- Adjustment for catchment retention properties
- Adjustment for catchment N-load targets
- = Adjusted base Quota
- + Adjustment due to mitigation measures

- 3 kg N ha⁻¹
- 10 kg N ha⁻¹
- 147 kg N ha⁻¹
- 25 kg N ha⁻¹

= Final N-Quota

172 kg N ha⁻¹

AVAILABLE MEASURES – QUOTA MODEL

	Quota conversion factor (Kg N ha ⁻¹)
Catch crops	93
Undersown grass	48
Energy crops	150
Fallow	143
Bufferstrips	143
Early sowing	18.6
Fodder beets	120
Wetland, reestablished	263
Wetland, N-reduction	143
Drain connected to wetland	62

DEVELOPING TWO NEW MODELS - N-LOAD MODEL

- Total N-load of the catchment must reach set targets
 - Each farm must reach targets for N-load
 - N-retention properties and N-leaching from the rootzone determines N-load
 - N-leaching is calculated for each field
 - Crop rotation and application of fertilizer have direct effect N-leaching
 - Farmers are encouraged to place mitigation measures on fields with low Nretention and apply fertilizer on fields with high N-retention

CALCULATING N-LEACHING FROM THE ROOTZONE

$$\mathbf{Y} = \{U + V^k\} [\mathbf{1} - \exp(-\delta_1 A_0)] \exp(-\delta_2 A_1) \exp(-\delta_3 H) \exp(-\delta_4 A_L) \hat{\mathbf{c}}$$

- Empirical model NLES3
- Based on data from Danish field experiments and monitoring data (n=1299)
- Additive effects of crop rotation and applied N
- Multiplicative effect of percolation and soil attributes
- Implemented in system for evaluating environmental impact of farm expansions

Kristensen et al., 2003

Developing two models for regulation

	Current regulation	Quota model	Load model	
Regulation parameter	N-quota (applied N ha ⁻¹)	N-quota (applied N ha ⁻¹)	N-Load Quota (N ha ⁻¹)	
Required measures	Catch crops	Optional	Optional	
Amount of fertilizer	Suboptimal	Optimal	Optimal	
Differentiation depending on reduction target of catchment	None	+	+	
Differentiation of regulation parameter between farms	None	Partly	Complete	
Effect of targeted measures	None	+	+	

Each of the 30 farmers d	eveloped crop	rotatio	nsfor	22,5						
 Present regulation 										
 4 levels of catchment 	reduction tard	rêts ¹⁰⁰								
	4 28 35 40 34 34 42 35 353536 40 55 42 42 42 35 35 42 42	9 - 10								
While optimizingYieldEconomy										
Use of meaures										
And still meeting the requ	uirements for t	he catc	hmer	nt N-loo	ıd reduc	ction	2			
49 49 65 82 82 82 82 60 40 50										

CHOICE OF MEASURES

■ Norsminde, Present Regulation

Norsminde, N-Load Model -6% N-load

Norsminde, Quota Model -6% N-load

LOCATION AND CHOICE OF MEASURES IN NORSMINDE

- Catch crops
- Early sowing
- Undersown grass
- Drain connected to wetland
- Fallow

- Economy
- Filsø, -11% N-Load

- Economy
- Norsminde, -11% N-Loas

- Economy
- Tissø, -9 % N-load

References

Blicher-Mathiesen, G., Andersen, H.E., Carstensen, J., Børgesen, C.D., Has-ler, B., Windolf, J. (2014). Mapping of nitrogen risk areas. Agriculture, Eco-systems and Environment 195 (2014) 149–160.

Kristensen, K., Jørgensen, U. & Grant, R. (2003) Genberegning af modellen N-LES. Baggrundsnotat til VMPII-slutevaluering. Danmarks Jordbrugs-Forskning og Danmarks Miljøundersøgelser.

Concluisons from testing two model prototypes

- Differentiated N-load reduction effort can be targeted to the marine recipients
- 50-90% of the farms reduces N-load and increases profit
- All types of measures are used. Catch crops are most prefered
- Wetlands are used in Norsminde that has tile drainage
- Distribution of the N-load reduction effort between farms has potentially great consequences – not all are winners
- The current project does not convert well to national scale

Thank you

