

Science for the Environment – Environment for Society: bridging the gap between scientists and practitioners in environmental science

Aarhus, Denmark 5-6 October 2011

Integrated assessment of the impact of aqueous contaminant stressors on surface water ecosystems

Impacts of chemical stressors

• Part I: Which contaminated sites are problematic?

- How can we prioritize these sites?
- Which management strategy makes sense?

• Part II: Which chemical stressors are problematic?

- Do groundwater pollutants impact surface water?
 - Chlorinated solvents
 - Pesticides
- Are ecosystems at risk (how do we determine "good" ecological status)?

EU Water Framework Directive

Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000

The Directive establishes a framework for the protection of surface waters and groundwater, and obliges Member States to achieve the objective of good status for all waters by 2015.

Contaminated sites are often < 25 m from surface water

There are 1,326 such contaminated sites in Region Hovedstad alone. (Jensen og Svensson, 2008)

Denmark – planning phase 2010-2015

Miljø- og Planlægningsudvalget 2009-10 MPU alm. del Svar på Spørgsmål 1011 Offentligt

Udkast til Vandplan 2010-15 Hovedvandopland 2.2 Isefjord og Roskilde Fjord

Foreløbig version 9. september 2010

By- og Landskabsstyrelsen

Kemisk tilstand:

Der iværksættes ingen indsats i denne planperiode i relation til grundvandets eventuelle kemiske påvirkning af vandløb, søer, kystvande eller terrestriske naturtyper. Der foreligger ikke et tilstrækkeligt vidensgrundlag til at kunne vurdere eller beskrive kontakten mellem grundvand og overfladevand, - ligesom der ikke findes beregningsmetoder, der med tilstrækkelig sikkerhed kan redegøre for en eventuel påvirkning. Med henvisning til miljømålslovens § 19 udsættes således tidsfristen for målopfyldelsen.

No initiatives will be taken in the planning period with regard to groundwater chemical impact on streams, lakes, coastal waters.

There is insufficient knowledge to adequately describe the contact between surface and groundwater and insufficient methods to model that impact

DTU

Case study – Skensved stream

DTU Environment Department of Environmental Engineering

(Christensen & Raun, 2005)

DTU

Methods to evaluate ecological risk

Skriver, Friberg & Carl (1999): NERI Technical Report, Vol. 266.

Skriver, Friberg & Kirkegaard (2000): Verh. Internat. Verein. Limnol. 27, 1822–1830.

von der Ohe et al. (2007): *J. Environ. Monitor.* 9, 970-978. Beketov & Liess (2008): *Environ. Pollut.* 156, 980-987. Beketov et al. (2009): *Environ. Pollut.* 157, 1841-1848.

Sprenger & Charters (1997): US EPA Guidance document, EPA 540-R-97-006.

Aquatox

Park & Clough (2004): US EPA Technical Documentation, EPA 823-R-04-002

Park et al. (2008): Ecol. Model. 213, 1-15

Field-based methods

Danish Stream Fauna Index (DSFI)

- Official method for biological assessment of running waters
- Primarily developed to detect impact of nutrients: taxa analyzed represent gradient in tolerance to low O2 levels

DSFI

Kick-samples + hand-picked samples used to determine index value on basis of indicator taxa and number of diversity groups in sample

SPEcies At Risk Index (SPEAR)

- Bio-indicator system based on biological traits; focused on various types of contaminants in fresh waters
- Spear organics: for chronic exposures to xenobiotics
 - Indicative of degree of sensitivity of ecosystem community (sensitive towards community shifts)
- SPEAR Spear Spear Spear Spear
- Not currently linked to WFD classes

Spear pesticides: for **pulse** exposures to pesticides

• Linked to WFD water quality classes (>33 = good ecological status)

Field-based methods (1)

DSFI: Moderate status

□ Reference site values: 5-7

Field-based methods (2)

□ **Spear organics:** Not yet linked to WFD classes

- □ Overview: more negative values → ecosystem less sensitive to xenobiotics
 - Indication for xenobiotic pollution → ecosystem has adapted to "pressure"

□ **Reference site values:** Si = -0.30; -0.18; -0.36; <u>-0.46</u>; <u>-0.14</u>; -0.24

Field-based methods (3)

• Spear pesticides:

- March data: "poor" status
- August data: "bad" to "poor" status, upstream "moderate"
- Un-impacted streams should <u>NOT</u> show seasonal differences

Reference site values: SPEAR pest. = 46.5; 43.6; 34.7; <u>32.2</u>; <u>49.7</u>; 38.4

≥33: "good" ecological status

Denmark – planning phase 2010-2015

Miljø- og Planlægningsudvalget 2009-10 MPU alm. del Svar på Spørgsmål 1011 Offentligt

Udkast til Vandplan 2010-15 Hovedvandopland 2.2 Isefjord og Roskilde Fjord

Foreløbig version 9. september 2010

Kemisk tilstand:

Der iværksættes ingen indsats i denne planperiode i relation til grundvandets eventuelle kemiske påvirkning af vandløb, søer, kystvande eller terrestriske naturtyper. Der foreligger ikke et tilstrækkeligt vidensgrundlag til at kunne vurdere eller beskrive kontakten mellem grundvand og overfladevand, - ligesom der ikke findes beregningsmetoder, der med tilstrækkelig sikkerhed kan redegøre for en eventuel påvirkning. Med henvisning til miljømålslovens § 19 udsættes således tidsfristen for målopfyldelsen.

MILJØMINISTERIET

No initiatives will be taken in the planning period with regard to groundwater chemical impact on streams, lakes, coastal waters.

There is insufficient knowledge to adequately describe the contact between surface and groundwater and insufficient methods to model that impact

Integrated modelling approach

Predictive modeling methods: ecosystem health

• Hazard Quotient (HQ) index

- Screening-level risk calculation to compare levels of chemical contamination (at sites) to levels known to cause harm

- HQ_i = Hazard Quotient for compound i
- EEC_i = Environmental concentration
- LC50; = Conc. where 50% species dies

AQUATOX

- **Process-based model**, explicitly simulates biological and ecological processes in an ecosystem
- Predicts the environmental fate and ecological effects of various environmental stressors (nutrients + toxicants)
 - Lots of unknown parameters (used literature values)

Modelling for decision support (DSS)

Compare modeling approaches with different levels of ecosystem complexity

Evaluate necessity of using complex, "fully-functional" models

Determine threshold values for ecological impact

Compare to (contaminated site) source mass flux ranges

Generalize findings

Extend model for additional compounds

Hazard Quotient Index

• HQ_i (LC_{50i}) mortality* [mg/L]

Measured TCE conc.: 0.017 [mg/L] in 2008

Compound	Chironomid	D. Magna	Stonefly	
Benzene	34.0	59.6	130.0	
TCE	42.0	18.0	70.0	
PCE	1.3*	9.1	3.6	
Naphthalene	2.8 2.2		0.011*	
МСРА	55.0	3.0	6.2*	
Metamitron	40.2*	101.7	1.1*	
Glyphosate	0.353*	11.0	0.023*	
4-nonylphenol	0.013*	0.104	0.004*	

*regression necessary to produce ecotoxicity data (Web-ICE, US EPA 2010)

AQUATOX prediction of ecosystem impacts

DTU Environment Department of Environmental Engineering 0g

TCE

TCE

Threshold: 150g to 1500g

Aquatox – threshold values – mass discharge [kg/yr]

Source mass me source mass me 58,400 kg/yr					
	0.0003 (ITRC, 2010)	Chironomid	Stonefly	Brown trout	
	Benzene	55-550	55-550	55-550*	
	TCE	55-550	55-550	55-550*	
	PCE	5.5-55*	55-550	55-550*	
	Naphthalene	55-550	0.5-5.5	5.5-55*	
	МСРА	>55000*	55-550*	>55000	
	Metamitron	550-5500*	55-550*	550-5500*	
	Glyphosate	550-5500	55-550*	0.5-5.5	
	4-nonylphenol	0.2-0.5*	0.02-0.2*	0.5-5.5*	

Aquatox – biomass [g/m2 dry] perturbation concentration [ug/L]

Compound	Chironomid	Stonefly	Brown trout	Concentration in surface water (Location) [ug/L]
Benzene	350	375	500*	11 (Japan)
TCE	400	550	35*	17 (Denmark)
PCE	7*	30	50*	23 (Canada)
Naphthalene	550	1.5	20	1 (Spain)
МСРА	>120,000*	600*	>120,000	3 (Denmark)
Metamitron	6000*	180*	4000*	1 (Denmark)
Glyphosate	4350	160*	5	300** (Denmark)
4-nonylphenol	0.08*	0.14*	1.5*	0.6 (China)

*regression necessary to produce ecotoxicity data (Web-ICE, US EPA, 2010) **Glyphosate: max. conc. value extracted from NOVANA database

Conclusions

• Ecological impact of TCE (contaminated site): seems to be minimal at Skensved. Caution: Spear organics result!

• Need suitable field methods to appropriately characterize <u>ALL</u> stressors acting on an ecosystem: need to distinguish stressor effects and capture seasonal trends. Typically have multiple stressor environments!

 Modelling to predict ecological risk: sufficient methods available! Ongoing research: finalization of DSS (point sources in gw → gw-sw interactions → ecological impacts)

• Which sites/chemical stressors are problematic?

4-nonylphenol & naphthalene: potentially risky to ecosystems

Glyphosate, metamitron & PCE: depends on which organisms/method utilized

- Danish Research Council (RiskPoint Project, grant no. 2104-07-0035)
- Jonathan Clough, Dr. Richard Park & Marjorie C. Wellman (AQUATOX support)

• Field data collected & supported by:

- Stine B. Christensen & Kristian D. Raun
- Simon Bruun & Jonas Rose
- Anna J. Clausen, Mette F. Petersen & Eva M.R. Hedegaard
- Prof. Poul L. Bjerg
- Assoc. Prof. Peter Bauer-Gottwein
- Assoc. Prof. Anders Baun
- Nanna I. Thomsen & Maria L. Loinaz
- Uffe Mensberg & Henrik Stenholt (NERI)

DTU Environment Department of Environmental Engineering