

Drainage filter technologies and constructed wetlands to mitigate site-specific nutrient losses

Charlotte Kjaergaard¹, Carl Christian Hoffmann¹, Bo V. Iversen¹, Goswin Heckrath¹, Eriona Canga¹, Gry Lyngsie², Peter Nielsen², Flemming Gertz³, Hans Christian B. Hansen²

Aarhus University, Faculty of Science and Technology

Relevance of drainage filter technologies!

Danish "Green growth plan" - reductions

- 19000 (9.000) t N/year
- 210 t P/year

Nutrient load through drainage systems

- More than 60% of DK farm land is drained
- Drainage loss of nutrients
- 33% of total P (~ 400 t P/year)
- TP < 1 mg/L (PO_4 -P and PP)
- 45-60% of total N (~ 22.000 t N/year)
- TN~ 3-20 mg/L (average 13 mg/L)

Drainage filters disconnects the direct transport pathway between field and aquatic systems and retains or transforms nutrients before they reaches the aquatic ecosystems

Implementation of drainage filter solutions?

Questions

 Which type of drainage filter technologies (DFT) should we apply?

• Where should drainage filter solutions be applied?

What is the retention efficiency for various
 DFT - requirements for documentation?

- Other concerns GHG emissions?
- Are DFT cost-effective solutions?
- What is the long-term efficiency?
- Requirements for maintenance?

Danish research projects on drainage filter technologies

Danish Strategic Research project

DSF funding: 20 mill DKK

Sustainable Phosphorus and Nitrogen Remediation and Recycling Technologies in the Landscape (2010-2015)

www.supreme-tech.dk

Research: Drainage filter technologies, P retention, N removal, GHG emissions, recycling, modelling, cost-efficiency analysis

Green development and demonstration program

GUDP funding: 13 mill DKK

Implementing and optimizing drainage filter solutions (2011-2015)

Content: Subcatchment tools for implementing and optimizing filter functions. Technical solutions.

Types of drainage filter technologies SupremeTech

Constructed wetlands:

Surface-flow constructed wetlands
 Known from Sweden, Norway, New Zealand, USA

2. Subsurface-flow constructed wetland
Known mainly from wastewater treatment
systems. Only very few pilot investigations
treating diffuse drainage discharge.

In-line drainage filter systems

3. Drainage well filters

New innovative filter technologies targeting both suspended solids and nutrient removal

Surface-flow constructed wetlands (SF-CWs)

- 1. Deep sedimentation basin (~1 m)
- Reduces water velocity / increases HRT
- Sedimentation of particles and PP
- 2. Shallow vegetation zone (0.3 m)
- Stimulates biological denitrification

$$2NO_3^- + 10e^- + 12H^+ \rightarrow N_{2(q)} + 6H_2O$$

NO₃-N denitrification rates:

0.001-0.48 g m⁻² d⁻¹ (Fleischer et al., 1994) up to 0.28 g m⁻² d⁻¹ (Xue et al., 1999) 0.22 g m⁻² d⁻¹ (Kovacic et al., 2006)

Danish experiences with SF-CWs

About 10-20 SF-CWs established – but without monitoring until last year

SUPREME-TECH - just started

- One-year measurements of two SF-CWs established by Vejle municipality
- Planned construction and 2-years monitoring of ~10 SF-CW (2012-2014)

Famous Danish SF-CW "Rodstenseje" in Norsminde Fjord catchment

Nutrient retention efficiency in SF-CWs is controlled by system parameters as well as local variable

- Wetland design, hydraulic efficiency
- Temperature ~biological activity
- Form of nutrient (soluble or particulate)
- Nutrient load and seasonal variation
- Retention time wetland volume vs. water discharge

	TN mass removal (%)	TP mass retention (%)
USA	23 to 44	40 to 88
New Zealand	21 to 79	-101 to 80
Norway	3 to 15	16 to 83
Sweden	<3 to >60	1 to 38

Water retention time is generally considered the most critical single factor for removal of nitrogen. A major challenges treating diffuse discharge is that most transport occurs druing high flow periods in winter.

Nitrogen removal efficiency in Swedish ponds

Reference: Fleischer et al. 1994

Nitrogen removal – New Zealand guidelines

Drainage discharge is a key controlling parameter

Drainage discharge is highly variable in time and space
We need tools for predicting drainage discharge (GUDP-funded project)

Subsurface-flow constructed wetlands (SSF-CWs)

Two wetland components

- 1. Deep sedimentation basin (1 m)
- Reduces water velocity
- Increases retention time
- Sedimentation of particulate P

2. Infiltration matrix

- Optimizing P retention
- Optimizing N-removal by denitrification
- Sufficient hydraulic capacity required

Optimizing SSF-CWs for nutrient retention

Supreme-Tech experimental SSF-CWs are constructed in autumn 2011

- Optimizing N removal (filter amendments, vegetation, retention time)
- Optiming P retention (filter P-affinity, retention time)
- Ensure sufficient hydraulic capacity and hydraulic efficiency
- Optimize removal of suspended sediments and PP

Saturated hydraulic conductivity of filters

The discharge (Q) of water is given by:

$$Q = K_{sat} A \left(\frac{\Delta H}{L} \right)$$

K_{sat} is saturated hydraulic conductivity A is the cross sectional area of the filter <u>AH/L</u> the hydraulic gradient

Challenges

- K_{sat} increases with D₅₀
- Filter reactivity decreases with D₅₀

Canga, E., B.V. Iversen, C. Kjaergaard. In prep.

Estimating filter dimensions as function of K_{sat}

Required K_{sat} as a function of filter cross sectional area (A), pressure head (H) and catchment area controlling discharge (Q)

$$Q = K_{sat} A \left(\frac{\Delta H}{L} \right)$$

Filters with vertical up-wards flow (L=100 cm)

Filter hydraulic efficiency – ³H₂O BTC

Poiseuille's law (r is pore radius): $Q \propto f^4$

Monodisperse system, n=0.48

Equlibirum flow -Large active flow volume

Polydisperse

Non-equlibirum flow -Small active flow volume

Filters having identical K_{sat} but differs in active flow volume

Filter hydraulic efficiency and HRT

Active flow volume from 3H_2O - BTC

Filter hydraulic efficiency and HRT

Active flow volume from ³H₂O- BTC

Retention time in porous filters

Scientific and pratical challenges ahead

Is drainage filter technologies cost-efficient solutions?

Existing drainage loss of nutrients

• TN loss: 18.000-25.200 t N/year

• TP loss: 400 t P/year

Potential filter reduction efficiency: 30-70%

Potential nutrient mass reduction

•TN reduction: 5400-17.600 t N/year

• TP reduction: 120-280 t P/year

DFT are quantitatively relevant solutions

Estimated costs and cost-efficiency

- Assuming catchment load of 500-2000 kg/TN year
- DFT costs: 150.000-300.000 DKK (amortized over 10 years)
- Assuming reduction efficiency: 30-70%
- Estimated cost-efficiency: 11-200 DKK/kg TN

Drainage filter solutions are potential cost-efficient solutions, BUT local parameters (nutrient load, retention efficiency and costs) determines.

