

Uncertainties in assessing climate change impacts and adaptation in agriculture

Professor Jørgen E. Olesen

Importance of uncertainties

- ✓ Policy decisions and support for them depend on anticipations of future – and on percieved effects of policy measures
- ✓Anthropogenic climate change has long lead times
- Many different factors will determine the effect of climate change on ecosystem and society
- ✓ Can we quantify the uncertainty of impacts?
- ✓Can we quantify the decision and thus the adaptation process?

Issues for studying agriculture and climate change

- > Impacts on crop yield and quality
 - > Direct effects from changes in CO₂, temperature and rainfall and their variability
 - > Effects of extreme events (drought, flood, storms)
 - > Indirect effects through nutrient availability, pests and diseases
- > Adaptation
 - > Autonomous adaptation (sowing date, crop choice, cultivar choice)
 - > Planned adaptation (water supply for irrigation, breeding, support for adandonment)
- > Environmental and resource effects
 - > Nitrogen and phosphorous losses to the environment
 - > Water overuse from surface and groundwater
 - > Soil degradation
- > Effects on greenhouse gas emissions
 - > Changes in soil carbon from soil and crop management and from climate
 - > Emissions of nitrous oxide and methane from farming systems
- > Mitigating greenhouse gases from agriculture

Methods of studying climate change impacts and adaptation

- > Crop simulation models
- > Empirical (statistical) models
- > Agroclimatic indices
- > Space for time / analogies
- > Expert knowledge
- > Manipulation experiments (controlled environment or free air)
- > Analysis of farm level statistics
- > Questionnaire surveys, stakeholder interviews

Can we trust current crop models?

Data on yield of winter wheat 1992-2008 from Denmark

Winter wheat grain yield – response to climate

Kristensen et al., 2010

Estimated yield change for winter wheat using empirical model

	Climate model	Yield (t/ha)	CV (%)
1985		7.3	16
2020	KNMI	7.2	20
	Met. Office	6.9	33
2040	KNMI	7.0	25
	Met. Office	6.5	46

Change in agroclimatic indicators by 2030

Environmental	al Effective global			Effec	owing	Huglin index			Date of the last			Proportion of dry			Proportion of dry			Proportion of			Proportion of sowing				
Zone	radiation change day			days o	lays change (days)			change (%)			frost change			days in AMJ			days in JJA			sowing days - early			days - fall change		
	(%)									(days)			change (%)			change (%)			spring change (%)			(%)			
	E	H	Ν	E	H	N	E	H	N	E	H	Ν	E	H	N	E	H	N	E	H	N	E	H	Ν	
ALN	3	6	7	15	16	25	12	16	19	-5	-6	-8	0	0	1	-2	-2	-2	5	7	7	0	2	2	
BOR	3	4	7	13	11	17	12	23	14	-4	-6	-4	-2	0	-1	-2	1	-6	4	5	5	3	4	5	
NEM	4	5	4	14	9	20	12	22	13	-5	-5	-5	2	1	1	0	4	-3	5	5	6	5	6	7	
ATN	0	0	3	7	3	17	11	15	11	-5	-7	-8	-1	-1	-3	7	11	3	4	3	5	3	3	4	
ALS	0	1	3	4	2	8	12	16	10	-6	-9	-6	-1	-2	-2	8	9	3	5	5	3	4	4	5	
CON	-3	-3	1	-1	-2	5	11	16	11	-4	-7	-5	-1	-1	-2	9	11	4	4	4	4	4	4	5	
ATC	-2	-3	1	0	-4	7	11	16	10	-6	-9	-8	-3	-3	-6	9	14	5	2	3	3	2	1	3	
PAN	-15	-11	-8	-18	-13	-9	11	15	10	-5	-6	-5	2	2	0	17	16	10	3	3	2	2	3	4	
LUS	-9	-9	-3	-21	-21	-6	12	16	10	-6	-7	-6	4	5	3	22	23	8	3	2	1	2	2	3	
MDM	-10	-7	-3	-10	-7	-3	12	15	10	-2	-3	-2	8	7	4	14	13	7	4	3	2	2	2	2	
MDN	-10	-7	-2	-11	-5	-3	9	12	8	-24	-23	-20	8	6	3	9	7	4	2	1	1	1	-1	2	
MDS	-15	-14	-7	-14	-10	-6	8	12	8	-10	-11	-11	8	8	5	1	1	1	-3	-2	-1	-5	-3	0	

The Environmental Stratification of Europe

Trnka et al., 2011

Probability of temperature and rainfall changes in Denmark in 2061-2080 under A1B

Probabilistic assessment of effects on grain yield and N leaching of winter wheat

AARHUS UNIVERSITY Probabilistic assessment of effects on grain yield and N leaching of winter wheat

Børgesen et al., 2011

Challenges (and opportunities) for research

- > Include indirect effects of climate change into impact studies
- > Study effects of climatic extremes on impacts and adaptation
- Study effects of climate change on resources (soil quality, water availability)
- Study effects of climate change and agricultural management on environmental impacts (N and P losses, GHG emissions)
- > Link impact studies with adaptation and mitigation
- > Estimate costs of adaptation and mitigation measures at regional scale
- > Apply a wider range of methodologies in the studies
- > All this is needed to quantify uncertainties related to impacts and adaptation
- > We have done the easy stuff now lets deal with whats important