

Air Quality at Your Street - An air quality map for all addresses in Denmark

<u>Steen Solvang Jensen</u>, Matthias Ketzel, Jørgen Brandt, Thomas Becker, Morten Fuglsang¹, Marlene Plejdrup, Morten Winther, Thomas Ellermann, Ole Hertel

Department of Environmental Science, Aarhus University, Roskilde ¹Now Grontmij, Glostrup

DCE - Danish Centre for Environment and Energy, Aarhus University

Science for the Environment

Presentation

- > Background and objectives
- > User interface of air quality map
- > Air quality models and input data
- > Evaluering of traffic input data and street geometry
- Validation of air quality calculations against measurements
- > Geografic variation of air quality
- > Conclusion

Background

- Citizens have great interest in information about air quality where they live, work, and their kids to kindergarten or school
- A particular interest when buying/renting a new house or apartment
- Authorities also want to get information about AQ in relation to urban planning or complains
- Aarhus Convention from 1998 emphasises citizents' rights to environmental information

Objectives

- an easy to use tool for modelled air quality data for all addresses in Denmark
- focus on geographic variation and relative differences
- popular interpretation of the data related to health risk
- short description of models, data and uncertainties
- NOVANA provides officiel statement of exceedances of air quality limit based on measurements and more QA model data

User interface in GeoExt

Urban background concentrations of NO₂

Science for the Environment

Street concentations of NO₂

Department of Environmental Science

Aarhus University

Street concentation at specific address

Features

- Health related pollutants of NO₂, PM_{2.5} and PM₁₀ as annual mean in 2012
- > Interactive webGIS environment
- > Search AQ at specific address in Denmark
- > Indicative comparison with limit values
- > About data
 - > Brief background information about pollutants and health risks
 - > How AQ is modelled and uncertainties
- > Short user manual
- > Website expected to be launched at later stage

AQ models

- > Regional background concentrations
 - > DEHM (Danish Eulerian Hemispheric Model)
 - > Adjusted for PM mass closure
 - > Geographic resolution 5,6 km x 5,6 km in DK
- > Urban background concentrations
 - > Urban Background Model (UBM)
 - > Coupled to DEHM in one hour time step
 - > Geographic resolution 1km x 1km
- > Street concentrations
 - > OSPM (Operational Street Pollution Model)
 - AirGIS (automatic generation of input data to OSPM about traffic and buildings)
 - > Geographic resolution: address level

Input data for Denmark

> Emission data

- 1x1 km² resolution based a geographic distribution of national emission inventory based on geographic variables (SPREAD)
- > GIS road network based on national traffic model (LTM) at navteq road network from DTU Transport
- Travel speed data from SpeedMap from Danish Road Directorate
- > GIS building polygons with building height estimations based on National Elevation Model
- > GIS national address database

Evaluation of modelled traffic data

Poor correlation between modelled and counted heavy-duty vehicles. Therefore assumed default values:

4.5% for urban streets and 10% for motorways.

Model vs. NOVANA NO₂ measurements

NO₂ - Comparison of model results from Air Quality at Your Street and measurements under NOVANA in 2012 (annual mean)

Unit: μg/m³	Measurements	Model results	Difference	Models
Traffic:				
Copenhagen-HCAB/1103	47/55*	50	-10%-+6%	DEHM/UBM/OSPM
Copenhagen-Jagtvej/1257	38	42	11%	DEHM/UBM/OSPM
Aarhus/6153	35	29	-17%	DEHM/UBM/OSPM
Odense/9155	26	30	17%	DEHM/UBM/OSPM
Aalborg/8151	30	53	75%	DEHM/UBM/OSPM
Urban background:				
Copenhagen/1259	17	18	4%	DEHM/UBM
Aarhus/6159	17	15	-13%	DEHM/UBM
Odense/9159	13	14	5%	DEHM/UBM
Aalborg/8159	13	12	-5%	DEHM/UBM
Regional background:				
Risø-Lille Valby/2090	9	12	29%	DEHM/UBM
Keldsnor/9055	8	8	-4%	DEHM/UBM
Limit value	40			

Note: *Measured level is 55 μ g/m³ at monitor station at HCAB but due to change of street layout the nearest traffic lane has become closer to the monitor station causing a jump in measured concentrations of about 8-9 μ g/m³. Without change in street layout 47 μ g/m³ is expected based on parallel measurements. OSPM is more representative of measurements without the jump as OSPM calculations reflect concentrations at building façades.

Example of large discrepancy in Aalborg

- Street geometry at measuring station at Aalborg
- AirGIS model estimates street
 width to 21 m due to two small
 buildings
- Width of 41 m is more representative
- Modelled concentrations
 become too high

NO₂ with modelled and counted traffic

15.81 - 16.65

15.14 - 15.81

14.62 - 15.14

14.17 - 14.62

13.76 - 14.17

13.34 - 13.76

12 82 - 13 34

Below 12.82

Urban background variations

Traffic sources and > ships emissions clearly visible

Dominated by > long-rang and local sources hardly visible. Gradient from south.

16

Dominated by long-

rang and local sources

hardly visible. Sea salt

>

visible.

Geografic variation at address level

Conclusion

- Air Quality at Your Street gives in general a fairly accurate picture of air quality and its geographic variation and relative difference between areas
- however, it may be very wrong at single addresses due to input data that is not representative

Acknowledgement

- DCE Danish Centre for Environment and Energy under Aarhus University financed by the project
- Technical University of Denmark (DTU Transport)
 provided traffic data from the Danish National Traffic
 Model (LTM)
- > Danish Road Directorate provided data on travel speeds