
Electronic Notes in Theoretical Computer Science

The Thirty-second Conference on the Mathe-
matical Foundations of Programming Seman-
tics

MFPS XXXII

Pittsburgh, USA

May 23-26, 2016

Guest Editor:

Lars Birkedal

ii

Contents

Preface v

David Mestel and Bill Roscoe
Reducing complex CSP models to traces via priority 1

Richard Statman
On the representation of semigroups and other congruences in the lambda
calculus . 16

Fabio Zanasi
The algebra of partial equivalence relations . 24

Richard Statman
How to think of intersection types as Cartesian products 45

Tetsuya Sato
Approximate Relational Hoare Logic for Continuous Random Samplings 55

Jurriaan Rot
Coalgebraic minimization of automata by initiality and finality 70

Bart Jacobs and Fabio Zanasi
A predicate/state transformer semantics for Bayesian learning 94

Tomáš Jakl, Achim Jung and Aleš Pultr
Bitopology and four-valued logic . 109

Bart Jacobs
Effectuses from Monads . 127

Barry Jay
Programs as Data Structures in λSF -Calculus . 141

Tyler Barker
A Monad for Randomized Algorithms . 156

Arthur Azevedo de Amorim
Binding Operators for Nominal Sets . 171

Bram Geron and Paul Blain Levy
Iteration and labelled iteration . 195

Fredrik Dahlqvist, Vincent Danos and Ilias Garnier
Giry and the Machine . 213

iii

Sergey Goncharov, Stefan Milius and Christoph Rauch
Complete Elgot Monads and Coalgebraic Resumptions 238

Jonas Frey
Classical realizability in the CPS target language . 259

Robin Cockett and Jonathan Gallagher
Categorical Models of the Differential λ-Calculus Revisited 274

Marc Bagnol, Richard Blute, J.R.B. Cockett and J.S. Lemay
The shuffle quasimonad and modules with differentiation and integra-
tion . 295

iv

Preface

This volume contains the proceedings of the The Thirty-second Conference on
the Mathematical Foundations of Programming Semantics (MFPS XXXII). The
conference is held in Pittsburgh, USA, between May 23 and May 26th. MFPS
conferences are devoted to those areas of mathematics, logic, and computer sci-
ence that are related to models of computation, in general, and to the semantics
of programming languages, in particular. The series has particularly stressed
providing a forum where researchers in mathematics and computer science can
meet and exchange ideas about problems of common interest. As the series
also strives to maintain breadth in its scope, the conference strongly encourages
participation by researchers in neighbouring areas. The program committee of
MFPS XXXII consisted of

• Achim Jung, Birmingham, UK

• Andre Scedrov, UPenn, USA

• Andrej Bauer, Ljubljana, Slovenia

• Andrzej Murawski, Warwick, UK,

• Bart Jacobs, Radboud U, Netherlands

• Bob Coecke, Oxford, UK

• Cameron Freer, Cambridge MA, USA

• Catherine Meadows, NRL , USA

• Catuscia Palamidessi, INRIA, France

• Christine Tasson, PPS Paris, France

• Claudio Russo, MSR Cambridge, UK

• Dusko Pavlovic, Hawaii, US

• Helle Hvid Hansen, TU Delft, Netherlands

• Hugo Herbelin, Paris, France

• Jean Krivine, Paris, France,

• Joel Ouaknine, Oxford, UK

• Lars Birkedal (Chair), Aarhus, Denmark

• Michael Mislove, Tulane, USA

• Neel Krishnaswami, Birmingham, UK

• Paul Blain Levy, Birmingham, UK,

v

• Peter Dybjer, Chalmers, Sweden

• Prakash Panangaden, Montreal, Canada

• Stefan Milius, Erlangen, Germany

• Steve Brookes, CMU, USA

• Steve Zdancewic, UPenn, USA

The papers were refereed by the program committee and by several outside
referees, whose help is gratefully acknowledged. The invited speakers at the
conference were

• Peter Selinger, Dalhousie, Canada

• Brigitte Pientka, McGill, Canada

• Steve Brookes, CMU, USA

• Nathalie Bertrand, Inria, France

The conference also included four special sessions, one celebrating the 60th
Birthday of Steve Brookes, and three featuring invited tutorials given by the
special session organisers:

• Concurrency, special session in honour of Steve Brookes’ 60th Birthday,
organized by Peter O’Hearn (Facebook, UK) which included talks by Sir
Tony Hoare (Microsoft, UK), Bill Roscoe (Oxford, UK), Viktor Vafeiadis
(MPI, Germany).

• Verification, organized by Andrew Appel (Princeton, USA), which in-
cluded talks by Steve Zdancewic (UPenn, USA), Gordon Stewart (Ohio,
USA), Jan Hoffmann (CMU, USA).

• Security, organized by Stephen Chong (Harvard, USA) which included
talks by Aslan Askarov (Aarhus, Denmark), Andrew Myers (Cornell,
USA), Geoffrey Smith (Florida, USA).

• Probabilistic Programming, organized by Dan Roy (Toronto, Canada)
which included talks by Johannes Borgstrom (Uppsala, Sweden), Sam
Staton (Oxford, UK), Ken Shan (Indiana, USA).

MFPS gratefully acknowledges the financial support of the U.S. Office of Naval
Research, and Carnegie Mellon University, USA. We also thank the local orga-
nizer Steve Brookes and his team for their organization of the conference.

Aarhus, May 3, 2016 Lars Birkedal

vi

MFPS 2016

Reducing complex CSP models to traces via
priority

David Mestel1 A.W. Roscoe2

Department of Computer Science, University of Oxford

Abstract

Hoare’s Communicating Sequential Processes (CSP) [6] admits a rich universe of semantic models. In this
paper we study finite observational models, of which at least six have been identified for CSP, namely traces,
failures, revivals, acceptances, refusal testing and finite linear observations [11]. We show how to use the
recently-introduced priority operator ([12], ch.20) to transform refinement questions in these models into
trace refinement (language inclusion) tests. Furthermore, we are able to generalise this to any (rational)
finite observational model. As well as being of theoretical interest, this is of practical significance since the
state-of-the-art refinement checking tool FDR3 [4] currently only supports two such models.

Keywords: CSP, denotational semantics, priority

1 Introduction

A number of different forms of process calculus have been developed for the mod-

eling of concurrent programs, including Hoare’s Communicating Sequential Pro-

cesses (CSP) [6], Milner’s Calculus of Communicating Systems (CCS) [7], and the

π-calculus [8]. Unlike the latter two, CSP’s semantics are traditionally given in

behavioural semantic models coarser than bisimulation.

In this paper, we study finite linear-time observational models for CSP; that is,

models where all observations considered can be determined in a finite time by an

experimenter who can see the visible events a process communicates and the sets of

events it can offer in any stable state. While the experimenter can run the process

arbitrarily often, he or she can only record the results of individual finite executions.

Thus each behaviour recorded can be deduced from a single finite sequence of events

together with the sets of events accepted in stable states during and immediately

after this trace.

At least six such models have been considered for CSP, but the state-of-the

art refinement checking tool, FDR3 [4], currently only supports two, namely traces

1 Email: david.mestel@cs.ox.ac.uk
2 Email: bill.roscoe@cs.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:david.mestel@cs.ox.ac.uk
mailto:bill.roscoe@cs.ox.ac.uk

D. Mestel, A.W. Roscoe

and failures (it also supports the failures-divergences model, which is not finite

observational).

We present a construction which produces a context C such that refinement

questions in the failures model correspond to trace refinement questions under the

application of C. We are able to generalise this to show (Theorem 5.4) that a similar

construction is possible not only for the six models which have been studied, but

also for any sensible finite observational model (where ‘sensible’ means that the

model can be recognised by a finite-memory computer, in a sense which we shall

make precise).

We first briefly describe the language of CSP. We next give an informal de-

scription of our construction for the failures model. To prove the result in full

generality, we first give a formal definition of a finite observational model, and of

the notion of rationality. We then describe our general construction. Finally we

discuss performance and optimisation issues.

2 The CSP language

We provide a brief outline of the language, largely taken from [11]; the reader is

encouraged to consult [12] for a more comprehensive treatment.

Throughout, Σ is taken to be a finite nonempty set of communications that are

visible and can only happen when the observing environment permits via hand-

shaken communication. The actions of every process are taken from Σ∪{τ}, where

τ is the invisible internal action that cannot be prevented by the environment.

Note that the usual treatment of CSP permits sequential composition by including

another un-preventable event X to represent termination; this adds slight compli-

cations to each model and we omit it for simplicity. It could be added back without

any significant alteration to the results of this paper.

The constant processes of CSP are

• STOP which does nothing—a representation of deadlock.

• div which performs (only) an infinite sequence of internal τ actions—a represen-

tation of divergence or livelock.

• CHAOS which can do anything except diverge.

The prefixing operator introduces communication:

• a→ P communicates the event a before behaving like P .

There are two forms of binary choice between a pair of processes:

• P u Q lets the process decide to behave like P or like Q: this is nondeterministic

or internal choice.

• P 2 Q offers the environment the choice between the initial Σ-events of P and Q.

If the one selected is unambiguous then it continues to behave like the one chosen;

if it is an initial event of both then the subsequent behaviour is nondeterministic.

The occurence of τ in one of P and Q does not resolve the choice (unlike CCS

+). This is external choice.

We only have a single parallel operator in our core language since all the usual

2

D. Mestel, A.W. Roscoe

ones of CSP can be defined in terms of it as discussed in Chapter 2 etc. of [12].

• P ‖
X

Q runs P and Q in parallel, allowing each of them to perform any action in

Σ \ X independently, whereas actions in X must be synchronised between the

two.

There are two operators that change the nature of a process’s communications.

• P \ X, for X ⊆ Σ, hides X by turning all P ’s X-actions into τs.

• P [[R]] applies the renaming relation R ⊆ Σ × Σ to P : if (a, b) ∈ R and P can

perform a, then P [[R]] can perform b. The domain of R must include all visible

events used by P . Renaming by the relation {(a, b)} is denoted [[a/b]].

There is another operator that allows one process to follow another:

• PΘAQ behaves like P until an event in the set A occurs, at which point P is shut

down and Q is started. This is the throw operator.

The final CSP construct is recursion: this can be single or mutual (including

mutual recursions over infinite parameter spaces), can be defined by systems of

equations or (in the case of single recursion) in line via the notation µ p.P , for a

term P that may include the free process identifier p. Recursion can be interpreted

operationally as having a τ -action corresponding to a single unwinding. Denation-

ally, we regard P as a function on the space of denotations, and interpret µ p.P as

the least fixed point of this function.

We also make use of the interleaving operator |||, which allows processes to

perform actions independently and is equivalent to ‖
∅

, and the process RUN X , which

always offers every element of the set X and is defined by RUN X = 2
x∈X

x →
RUN X .

2.1 Priority

The prioritisation operator is discussed in detail in Chapter 20 of [12]. It allows

us to specify an ordering on the set of visible events Σ, and prevents lower-priority

events from occuring whenever a higher-priority event or τ is available.

The operator described in [12] as implemented in FDR3 [4] is parametrised by

three arguments: a process P , a partial order ≤ on the event set Σ, and a subset

X ⊆ Σ of events that can occur when a τ is available. We require that all elements

of X are maximal with respect to ≤. Writing initials(P) ⊆ Σ ∪ {τ} for the set

of events that P can immediately perform, and extending ≤ to a partial order on

Σ∪{τ} by adding y ≤ τ ∀ y ∈ Σ\X, we define the operational semantics of prioritise

as follows:

P
a−→ P ′ ∧ ∀ b 6= a.a ≤ b⇒ b /∈ initials(P)

prioritise(P,≤, X)
a−→ prioritise(P ′,≤, X)

(a ∈ Σ ∪ {τ}).

Note that prioritise is not compositional over denotational models other than

the most precise model FL, so we think of it as an optional addition to CSP rather

than an integral part of it; when we refer below to particular types of observation

as giving rise to valid models for CSP, we will mean CSP without priority.

3

D. Mestel, A.W. Roscoe

3 Example: the failures model

We first demonstrate our construction using the failures model: we will produce a

context C such that for any processes P,Q, we have that Q refines P in the failures

model if and only C[Q] refines C[P] in the traces model.

3.1 The traces and failures models

The traces model T is familiar from automata theory, and represents a process

by the set of (finite) strings of events it is able to accept. Thus each process is

associated (for fixed alphabet Σ) to a subset of Σ∗ the set of finite words over Σ.

The failures model F also records sets X of events that the process is able to

stably refuse after a trace s (that is, the process is able after trace s to be in a

state where no τ events are possible, and where the set of initial events does not

meet X). Thus a process is associated to a subset of Σ∗ × (P(Σ) ∪ {•}), where

• represents the absence of a recorded refusal set. 3 Note that recording • does

not imply that there is no refusal to observe, simply that we have not observed

stability. The observation of the refusal ∅ implies that the process can be stable

after the present trace, whereas • does not.

In any model M, we say that Q M-refines P , and write P vM Q, if the set

associated to Q is a subset of that corresponding to P .

3.2 Model shifting for the failures model

The construction is as follows:

Lemma 3.1 For each finite alphabet Σ there exists a context C (over an expanded

alphabet) such that for any processes P and Q we have that P vF Q if and only if

C[P] vT C[Q].

Proof. Step 1: We use priority to produce a process (over an expanded alphabet)

that can communicate an event x′ if and only if the original process P is able to

stably refuse x.

This is done by expanding the alphabet Σ to Σ ∪ Σ′ (where Σ′ contains a cor-

responding primed event for every event in Σ), and prioritising with respect to a

partial order which prioritises each x over the corresponding x′. Recall that the

definition of the priority operator means that this also causes τ to be promoted

over the primed events.

We must also introduce an event stab to signify stability without requiring any

refusals to be possible. This is necessary in order to be able to record an empty

refusal set. Let the partial order ≤1 be defined by x′ <1 x ∀x ∈ Σ, and let the

context C1 be defined by

C1[P] = prioritise(P ||| RUN Σ′∪{stab},≤1,Σ).

This process has a state ξ′ for each state ξ of P , where ξ′ has the same unprimed

events (and corresponding transitions) as ξ. Furthermore ξ′ can communicate x′

just when ξ is stable and can refuse X, and stab just when ξ is stable.

3 This is equivalent to the standard presentation in which a process is represented by a subset of Σ∗ and
one of Σ∗ × P(Σ): the trace component is just {s : (s, •) ∈ P}.

4

D. Mestel, A.W. Roscoe

Step 2: We now recall that the definition of the failures model only allows a

refusal set to be recorded at the end of a trace, and is not interested in (so does not

record) what happens after the refusal set.

We gain this effect by using a regulator process to prevent a primed event (or

stab) from being followed by an unprimed event. Let

UNSTABLE =2
x∈Σ

x→ UNSTABLE

22
x∈Σ′∪{stab}

x→ STABLE

STABLE =2
x∈Σ′∪{stab}

x→ STABLE ,

and define C by

C[P] = C1[P] ‖
Σ∪Σ′∪{stab}

UNSTABLE .

A trace of C[P] consists of: firstly, a trace s of P ; followed by, if P can after s

be in a stable state, then for some such state σ0 any string formed from the events

that can be refused in σ0, together with stab. The lemma clearly follows. 2

It is clear that any such context must involve an operator that is not compo-

sitional over traces, for otherwise we would have P vT Q implies C[P] vT C[Q],

which is equivalent to P vF Q, and this is not true for general P and Q (consider

for instance P = a → STOP , Q = (a → STOP) u STOP). It follows that only

contexts which like ours involve priority can achieve this.

4 Semantic models

In order to generalise this construction to arbitrary finite observational semantic

models, we must give formal definitions not only of particular models but of the

very notion of a finite observational model.

4.1 Finite observations

We consider only models arising from finite linear observations. Intuitively, we

postulate that we are able to observe the process performing a finite number of

visible actions, and that where the process was stable (unable to perform a τ)

immediately before an action, we are able to observe the acceptance set of actions

it was willing to perform.

Note that we are unable to finitely observe instability : the most we are able

to record from an action in an unstable state is that we did not observe stability.

Thus in any context where we can observe stability we can also fail to observe it by

simply not looking.

We take models to be defined over finite alphabets Σ, and take an arbitrary

ordering on each finite Σ to be alphabetical.

The most precise finite observational model is that considering all finite linear

observations, and is denoted FL:

5

D. Mestel, A.W. Roscoe

Definition 4.1 The set of finite linear observations over an alphabet Σ is

FLΣ := {〈A0, a1, A1, . . . , An−1, an, An〉 : n ∈ N, ai ∈ Σ, Ai ⊆ Σ or Ai =•},

where the ai are interpreted as a sequence of communicated events, and the Ai

denote stable acceptance sets, or in the case of • failure to observe stability. Let

the set of such observations corresponding to a process P be denoted FLΣ(P).

(Sometimes we will drop the Σ and just write FL(P)).

More formally, FL(P) can be defined inductively; for instance

FL(P 2 Q) := {〈A ∪B〉̂ α, 〈A ∪B〉̂ β : 〈A〉̂ α ∈ FL(P), 〈B〉̂ β ∈ FL(Q)}

(where X ∪ • := • for any set X). See Section 11.1.1 of [12] for further details.

Observe that FL has a natural partial order corresponding to prefixes (where

α̂ 〈•〉̂ β and α̂ 〈A〉 are both considered prefixes of α̂ 〈A〉̂ β for any set A and any α

and β). Note that for any process P we have that FL(P) is downwards-closed with

respect to this partial order. This can be interpreted as saying that α ≤ β if the

presence of the observation β implies that α is an observation that could have been

made of the same experiment on P .

4.2 Finite observational models

We consider precisely the models which are derivable from the observations of FL,

which are well-defined in the sense that they are compositional over CSP syntax

(other than priority), and which respect extension of the alphabet Σ.

Definition 4.2 A finite observational pre-model M consists for each (finite) al-

phabet Σ of a set of observations, obsΣ(M), together with a relation MΣ ⊆
FL(Σ) × obsΣ(M). The representation of a process P in MΣ is denoted MΣ(P),

and is given by

MΣ(P) :=MΣ(FLΣ(P)) = {y ∈ obsΣ(M) : ∃x ∈ FLΣ(P).(x, y) ∈MΣ}.

For processes P and Q over alphabet Σ, if we have MΣ(Q) ⊆MΣ(P) then we say

QM-refines P , and write P vM Q.

(As before we will sometimes drop the Σ).

Note that this definition is less general than if we had defined a pre-model to

be any equivalence relation on P (FLΣ). For example, the equivalence relating sets

of the same cardinality has no corresponding pre-model. Definition 4.2 agrees with

that sketched in [12].

Without loss of generality,MΣ does not identify any elements of obsΣ(M); that

is, we haveM−1
Σ (x) =M−1

Σ (y) only if x = y (otherwise quotient by this equivalence

relation). Subject to this assumption, MΣ induces a partial order on obsΣ(M):

Definition 4.3 The partial order induced by MΣ on obsΣ(M) is given by: x ≤ y

if and only if for all b ∈M−1
Σ (y) there exists a ∈M−1

Σ (x) with a ≤ b.

Observe that for any process P it follows from this definition that M(P) is

downwards-closed with respect to this partial order (since FL(P) is downwards-

closed).

6

D. Mestel, A.W. Roscoe

Definition 4.4 A pre-modelM is compositional if for all CSP operators
⊕

, say of

arity k, and for all processes P1, . . . , Pk and Q1, . . . , Qk such that M(Pi) =M(Qi)

for all i, we have

M
(⊕

(Pi)i=1...k

)
=M

(⊕
(Qi)i=1...k

)
.

This means that the operator defined on processes in obs(M) by taking the

pushforward of
⊕

along M is well-defined: for any sets X1, . . . , Xk ⊆ obs(M)

which correspond to the images of CSP processes, take processes P1, . . . , Pk such

that Xi =M(Pi), and let⊕
(Xi)i=1...k =M

(⊕
(Pi)i=1...k

)
.

Definition 4.4 says that the result of this does not depend on the choice of the Pi.

Note that it is not necessary to require the equivalent of Definition 4.4 for re-

cursion in the definition of a model, because of the following lemma which shows

that least fixed point recursion is automatically well-defined (and formalises some

arguments given in [12]):

Lemma 4.5 LetM be a compositional pre-model. Let C1, C2 be CSP contexts, such

that for any process P we have M(C1[P]) = M(C2[P]). Let the least fixed points

of C1 and C2 (viewed as functions on P(FL) under the subset order) be P1 and P2

respectively. Then M(P1) =M(P2).

Proof. Using the fact that CSP contexts induce Scott-continuous functions on

P(FL) (see [6], Section 2.8.2), the Kleene fixed point theorem gives that Pi =⋃∞
n=0 Cni (⊥). Now any x ∈ M(P1) is in the union taken up to some finite N , and

since finite unions correspond to internal choice, and ⊥ to the process div, we have

that the unions up to N of C1 and C2 agree under M by compositionality. Hence

x ∈M(P2), so M(P1) ⊆M(P2). Similarly M(P2) ⊆M(P1). 2

Definition 4.6 A pre-modelM is extensional if for all alphabets Σ1 ⊆ Σ2 we have

that obsΣ1(M) ⊆ obsΣ2(M), and MΣ2 agrees with MΣ1 on FL(Σ1)× obsΣ1(M).

Definition 4.7 A pre-model is a model if it is compositional and extensional.

In this setting, we now describe the five main finite observational models coarser

than FL: traces, failures, revivals, acceptances and refusal testing.

4.2.1 The traces model

The coarsest model measures only the traces of a process; that is, the sequences

of events it is able to accept. This corresponds to the language of the process viewed

as a nondeterministic finite automaton (NFA).

Definition 4.8 The traces model, T , is given by

obsΣ(T) = Σ∗, TΣ = traceΣ

where trace is the equivalence relation which relates the observation

〈A0, a1, A1, . . . , an, An〉 to the string a1 . . . an.

7

D. Mestel, A.W. Roscoe

4.2.2 Failures

The traces model gives us information about what a process is allowed to do, but

it in some sense tells us nothing about what it is required to do. In particular, the

process STOP trace-refines any other process.

In order to specify liveness properties, we can incorporate some information

about the events the process is allowed to refuse, begining with the failures model.

Intuitively, this captures traces s, together with the sets of events the process is

allowed to stably refuse after s.

Definition 4.9 The failures model, F , is given by

obsΣ(F) = Σ∗ × (P(Σ) ∪ {•}), FΣ = failΣ,

where failΣ relates the observation 〈A0, . . . , an, An〉 to all pairs (a1 . . . an, X), for all

X ⊆ Σ \An if An 6= •, and for X = • otherwise.

4.2.3 Revivals

The next coarsest model, first introduced in [11], is the revivals model. Intuitively

this captures traces s, together with sets X that can be stably refused after s, and

events a (if any) that can then be accepted.

Definition 4.10 The revivals model, R, is given by

obsΣ(R) = Σ∗ × (P(Σ) ∪ {•})× (Σ ∪ {•}), RΣ = revΣ),

where revΣ relates the observation 〈A0, a1, . . . , an−1, An−1, an, An〉 to

(i) the triples (a1 . . . an−1, X, an), for all X ⊆ Σ \An−1 if An−1 6= • and for X = •
otherwise, and

(ii) the triples (a1 . . . an, X, •), for allX ⊆ Σ\An ifAn 6= • and forX = • otherwise.

A finite linear observation is related to all triples consisting of: its initial trace;

a stable refusal that could have been observed, or • if the original observation did

not observe stability; and optionally (part (i) above) a single further event that can

be accepted.

4.2.4 Acceptances

All the models considered up to now refer only to sets of refusals, which in partic-

ular are closed under subsets. The next model, acceptances (also known as ‘ready

sets’), refines the previous three and also considers the precise sets of events that

can be stably accepted at the ends of traces.

Definition 4.11 The acceptances model, A, is given by

obsΣ(A) = Σ∗ × (P(Σ) ∪ {•}), AΣ = accΣ,

where accΣ relates the observation 〈A0, a1, . . . , an, An〉 to the pair (a1 . . . an, An).

4.2.5 Refusal testing

The final model we consider is that of refusal testing, first introduced in [9]. This

refines F and R by considering an entire history of events and stable refusal sets.

It is incomparable to A, because it does not capture precise acceptance sets.

8

D. Mestel, A.W. Roscoe

Definition 4.12 The refusal testing model, RT , is given by

obsΣ(RT) = {〈X0, a1, X1, . . . , an, Xn〉 : n ∈ N, ai ∈ Σ, Xi ⊆ Σ or Xi =•}
RT Σ = rtΣ,

where rtΣ relates the observation 〈A0, . . . , an, An〉 to 〈X0, . . . , an, Xn〉, for all Xi ⊆
Σ \Ai if Ai 6= •, and for Xi = • otherwise.

4.3 Rational models

We will later on wish to consider only models M for which the correspondence

between FL-observations andM observations is decidable by a finite memory com-

puter. We will interpret this notion as saying the the relation MΣ corresponds to

the language accepted by some finite state automaton. In order to do this, we must

first decide how to convert elements of FLΣ to words in a language. We do this

in the obvious way (the reasons for using fresh variables to represent the Ai will

become apparent in Section 5).

Definition 4.13 The canonical encoding of FLΣ is over the alphabet Ξ := Σ ∪
Σ′′ ∪ Sym, where Σ′′ := {a′′ : a ∈ Σ} and Sym = {〈, 〉, ‘,’, •}. 4 It is given by the

representation in Definition 4.1, where sets Ai are expressed by listing the elements

of Σ′′ corresponding to the members of Ai in alphabetical order. We denote this

encoding by φΣ : FLΣ → Ξ∗.

We now define a model to be rational (borrowing a term from automata the-

ory) if its defining relation can be recognised (when suitably encoded) by some

nondeterministic finite automaton.

Definition 4.14 A model M is rational if for every alphabet Σ, there is

a partial order embedding 5 ψΣ : obsΣ(M) → Θ∗ of obsΣ(M) in some

finite alphabet Θ, and a (nondeterministic) finite automaton A recognising

{(φΣ(x), ψΣ(y)) : (x, y) ∈MΣ}.

What does it mean for an automaton to ‘recognise’ a relation?

Definition 4.15 For alphabets Σ and T , a relation R ⊆ Σ∗ × T ∗ is recognised by

an automaton A just when:

(i) The event-set of A is left.Σ ∪ right.T , and

(ii) For any s ∈ Σ∗, t ∈ T ∗, we have sRt if and only if there is some interleaving

of left.s and right.t accepted by A.

Note that FL itself (viewing FLΣ as the prefix relation) is trivially rational.

Lemma 4.16 The models T ,F ,R,A and RT are rational.

Proof. By inspection of Definitions 4.8–4.12. We take Θ = Σ∪Σ′∪Σ′′∪Sym, with

Σ′′ and the expression of acceptance sets as in the canonical encoding of FL, and

refusal sets expressed in the corresponding way over Σ′ := {a′ : a ∈ Σ}. 2

4 Note that this somewhat unsatisfactory notation denotes a set of four elements: the angle brackets 〈 and
〉, the comma , and the symbol •.
5 Recall that a partial order embedding is a map of partial orders which is an isomorphism onto its image.

9

D. Mestel, A.W. Roscoe

Note that not all relations are rational. For instance, the ‘counting relation’

mapping each finite linear observation to its length is clearly not rational. We do

not know whether the additional constraint of being a finite observational model

necessarily implies rationality; however, no irrational models are known. We there-

fore venture the following conjecture:

Conjecture 4.17 (Rationality of finite observational models) Let M be a

finite observational model. Then M is rational.

5 Model shifting

We now come to the main substance of this paper: we prove results on ‘model

shifting’, showing that there exist contexts allowing us to pass between different

semantic models and the basic traces model. The main result is Theorem 5.4,

which shows that this is possible for any rational model.

5.1 Model shifting for FL

We begin by proving the result for the finest model, FL. We show that there

exists a context CFL such that for any process P , the finite linear observations of P

correspond to the traces of CFL(P).

Lemma 5.1 (Model shifting for FL) For every alphabet Σ, there exists a con-

text CFL over alphabet T := Σ ∪ Σ′ ∪ Σ′′ ∪ {done}, and a partial order embedding

π : FLΣ → T ∗ (with respect to the prefix partial order on each set) such that for

any process P over Σ we have T (CFL[P]) = pref(π(FL(P))) (where pref(X) is the

prefix-closure of the set X).

Proof. We will use the unprimed alphabet Σ to denote communicated events from

the original trace, and the double-primed alphabet Σ′′ to denote stable acceptances.

Σ′ will be used in an intermediate step to denote refusals, and done will be used to

distinguish ∅ (representing an empty acceptance set) from • (representing a failure

to observe anything).

Step 1: We first produce a process which is able to communicate events x′i, just

when the original process can stably refuse the corresponding xi. Define the partial

order ≤1= 〈x′ <1 x : x ∈ Σ〉, which prevents refusal events when the corresponding

event can occur.

Let the context C1 be given by

C1[X] = prioritise(X ||| RUN Σ′ ,≤1,Σ).

Note that the third argument prevents primed events from occurring in unstable

states.

Step 2: We now similarly introduce acceptance events, which can happen in

stable states when the corresponding refusal can’t.

Similarly define the partial order ≤2= 〈x′′ <2 x′ : x ∈ Σ〉, which prevents

acceptance events when the corresponding refusal is possible. Let the context C2 be

defined by

C2[X] = prioritise(C1[X] ||| RUN Σ′′ ,≤2,Σ).

10

D. Mestel, A.W. Roscoe

Step 3: We now ensure that an acceptance set inferred from a trace is a complete

set accepted by the process under examination. This is most straightforwardly done

by employing a regulator process, which can either accept an unprimed event or

accept the alphabetically first refusal or acceptance event, followed by a refusal or

acceptance for each event in turn. In the latter case it then communicates a done

event, and returns to its original state.

The done event is necessary in order to distinguish between a terminal ∅, which

can have a done after the last event, and a terminal •, which cannot (observe that

a ∅ cannot occur other than at the end). Finally, we hide the refusal events.

Let a and z denote the alphabetically first and last events respectively, and let

succ x denote the alphabetical successor of x. Define the processes

UNSTABLE = 2
x∈Σ

x→ UNSTABLE

2 a′ → STABLE (a) 2 a′′ → STABLE (a)

STABLE (x) = x′ → STABLE (succ x) 2 x′′ → STABLE (succ x) (x 6= z)

STABLE (z) = done → UNSTABLE ,

and let

CFL[X] =

(
C2[X] ‖

Σ∪Σ′∪Σ′′
UNSTABLE

)
\ Σ′.

Step 4: We now complete the proof by defining the function π inductively as

follows:

π(ŝ 〈•〉) = π(s)

π(ŝ 〈x〉) = π(s)̂ 〈x〉
π(ŝ 〈A = {x1, . . . , xk}〉) = π(s)̂ 〈x′′1 . . . x′′kdone〉,

where without loss of generality the xi are listed in alphabetical order.

It is clear that this is a partial order embedding, and by the construction above

satisfies T (CFL[P]) = pref(π(FL(P))). 2

This result allows us to translate questions of FL-refinement into questions of

trace refinement under CFL, as follows:

Corollary 5.2 For CFL as in Lemma 5.1, and for any processes P and Q, we have

P vFL Q if and only if CFL[P] vT CFL[Q].

Proof. Certainly if FL(Q) ⊆ FL(P) then T (CFL[Q]) = pref(π(FL(Q))) ⊆
pref(π(FL(P))) = T (CFL[P]) and so CFL[P] vT CFL[Q].

Conversely, suppose there exists x ∈ FL(Q) \ FL(P). Then since FL(P) is

downwards-closed, we have x � y for all y ∈ FL(P). Since π is a partial order

embedding, we have correspondingly π(x) � π(y) for all y ∈ FL(P). Hence π(x) /∈
pref(π(FL(P))), so pref(π(FL(Q))) * pref(π(FL(P))). 2

11

D. Mestel, A.W. Roscoe

5.2 Model shifting for rational observational models

We now have essentially all we need to prove the main theorem. We record a folk

result, that any NFA can be implemented as a CSP process (up to prefix-closure,

since trace-sets are prefix-closed but regular languages are not):

Lemma 5.3 (Implementation for NFA) Let A = (Σ, Q, δ, q0, F) be a (non-

deterministic) finite automaton. Then there exists a CSP process PA such that

pref(L(A)) = pref(T (PA)).

Proof. Trivial construction. See Chapter 7 of [10]. 2

Theorem 5.4 (Model shifting for rational models) For every rational model

M, there exists a context CM such that for any process P we have T (CM[P]) =

pref(ψ(M(P))).

Proof. Let A be the automaton recognising (φ×ψ)(M) (as from Definition 4.14),

and let PA be the corresponding process from Lemma 5.3.

We first apply Lemma 5.1 to produce a process whose traces correspond to the

finite linear observations of the original process, prefixed with left: let CFL be the

context from Lemma 5.1, and let the context C1 be defined by

C1[X] = CFL[X][[left.x/x]].

We now compose in parallel with PA, to produde a process whose traces corre-

spond to the M-observations of the original process. Let C2 be defined by

C2[X] =

((
C1[X] ‖

{|left|}
PA

)
\ {|left|}

)
[[x/right.x]].

Then the traces of C2[X] are precisely the prefixes of the images under ψ of the

observations corresponding to X, as required. 2

By the same argument as for Corollary 5.2, we have

Corollary 5.5 For any rational model M, let CM be as in Theorem 5.4. Then for

any processes P and Q, we have P vM Q if and only if CM[P] vT CM[Q].

6 Implementation

We demonstrate the technique by implementing contexts with the property of Corol-

lary 5.5; source code may be found at [1].

For the sake of efficiency we work directly rather than using the general construc-

tion of Theorem 5.4. The context C1 introduces refusal events and a stab event,

which can occur only when the corresponding normal events can be refused. This

implements the refusal testing model, and the context CF which allows only nor-

mal events optionally followed by some refusals (and stab) implements the failures

model.

This is however suboptimal over large alphabets, in the typical situation where

most events are refused most of the time. FDR3’s inbuilt failures refinement check-

ing is able to compare acceptance sets (checking that the acceptances of the spec-

12

D. Mestel, A.W. Roscoe

ification are a subset of those of the implementation), which are typically smaller

than the refusal sets.

The context C’ introduces acceptance events which can occur only in stable

states where the corresponding refusal cannot, and then blocks all refusals. The

problem then is: how to check that the acceptances of the specification are a subset

of those of the implementation, despite the fact that trace refinement checks for

inclusion the other way?

The answer is to use priority to prevent the stab event from happening while

acceptances are still available, so that CFImpl’ is able to communicate only its

precise acceptance sets. We then form CFSpec’ by parallel composition with RUN

for all the acceptance events, so that CFSpec’ can communicate any supersets of its

acceptance set.

Similar constructions with slightly different restrictions on the permissible se-

quences of events produce efficient processes for the revivals and refusal testing

models. For the acceptances model, we just want to check for inclusion of the im-

plementation’s acceptance sets in those of the specification, so the context CFImpl’

works for both the specification and the implementation; finite linear observations

works similarly with failures replaced by refusal testing.

6.1 Testing

We test this implementation by constructing processes which are first distinguished

by the failures, revivals, refusal testing and acceptance models respectively (the

latter two being also distinguished by the finite linear observations model). The

processes, and the models which do and do not distinguish them, are shown in

Table 1 (recall the precision hierarchy of models: T ≤ F ≤ R ≤ {A,RT } ≤
FL). The correct results are obtained when these checks are run in FDR3 with the

implementation described above.

Specification Implementation Passes Fails

a→ div a→ STOP T F
((a→ div) 2 div) u STOP a→ div F R
(a→ div) u (div4(a→ STOP)) a→ STOP R,A RT ,FL
(a→ STOP) u (b→ STOP) (a→ STOP) 2 (b→ STOP) R,RT A,FL

Table 1
Tests distinguishing levels of the model precision heirachy. 4 is the interrupt operator; see [12] for details.

6.2 Performance

We assess the performance of our simulation by running those examples from Table

1 of [5] which involve refinement checks (as opposed to deadlock- or divergence-

freedom assertions), and comparing the timings for our construction against the

time taken by FDR3’s inbuilt failures refinement check (since F is the only model

for which we have a point of comparison between a direct implementation and

the methods developed in this paper). Results are shown in Table 2, for both the

original and revised contexts described above; the perfomance of the FL check is also

shown. As may be seen, performance is somewhat worse but not catastrophically

13

D. Mestel, A.W. Roscoe

so. Note however that these processes involve rather small alphabets; performance

is expected to be worse for larger alphabets.

Inbuilt F CF CF’ FL

Input File |S| |∆| T (s) |S| |∆| T (s) |S| |∆| T (s) |S| |∆| T (s)

inv 21M 220M 23 21M 220M 78 21M 220M 125 21M 220M 145

nspk 6.9M 121M 22 6.3M 114M 73 4.1M 72M 55 5.4M 97M 92

swp 24M 57M 16 30M 123M 61 43M 76M 107 42M 93M 131

Table 2
Experimental results comparing the performance of our construction with FDR3’s inbuilt failures

refinement check. |S| is the number of states, |∆| is the number of transitions, T is the time (in seconds),
and M indicates millions.

6.3 Example: Conflict detection

We illustrate the usefulness of richer semantic models than just traces and failures

by giving a sample application of the revivals model. Suppose that we have a process

P consisting of the parallel composition of two sub-processes Q and R. The failures

model is able to detect when P can refuse all the events of their shared alphabet, or

deadlock in the case when they are synchronised on the whole alphabet. However,

it is unable to distinguish between the two possible causes of this: it may be that

one of the composands is able to refuse the entire shared alphabet, or it may be

that each accepts some events from the shared alphabet, but the acceptances of Q

and R are disjoint. We refer to the latter situation as a ‘conflict’. The absence of

conflict (and similar situations) is at the core of a number of useful ways of proving

deadlock-freedom for networks of processes running in parallel [14].

The revivals model can be used to detect conflicts. For a process P = Q X‖Y R,

we introduce a fresh event a to represent a generic event from the shared alphabet,

and form the process P ′ = Q′ X′‖Y ′ R′, where Q′ = Q[[{(x, x), (x, a) : x ∈ X}]],
X ′ = X∪{a}, and similarly for R′ and Y ′. Conflicts of P now correspond to revivals

(s,X ∩ Y, a), where s is a trace not containing a.

7 Conclusions

The result of Theorem 5.4 shows that the expressibility of all finite observational

(rational) models can in some sense be simulated by the traces model using the pri-

ority operator. This provides a practical method of testing refinement over models

that FDR does not directly support. While any such model could be implemented

directly in the program itself, we have shown this is not necessary. This also serves

to further demonstrate the power and usefulness of the priority operator (see also

the previous work of the second-named author on the expressiveness of CSP with

priority [13] and on ‘slow abstraction’ [15]).

Note that this type of construction can be used more generally. Firstly, it

seems likely that the construction can be extended to non-finite models; for instance

to reduce failures-divergences tests to traces-divergences, or infinite-traces-failures-

divergences to infinite-traces-divergences.

Secondly, the construction does not use the requirement that a model be com-

positional. This means that it will work for any rational set of observable be-

14

D. Mestel, A.W. Roscoe

haviours, such as the singleton failures semantics presented in [3]. The techniques

described here can also be used to support the Timed Failures model of Timed CSP

in FDR3 [2].

The limitation to rational models is from a theoretical point of view rather

unsatisfactory, although it may be of little practical significance since all known

models (and probably all models one would be likely to come up with) are clearly

rational. However, Conjecture 4.17 remains of interest since a resolution in either

direction would undoubtedly yield insight into the structure of the ‘clouds’ of models

lying above R set out in [11].

Acknowledgements

The authors are grateful to Tom Gibson-Robinson for helpful discussions and prac-

tical assistance with FDR3. This work has been partially sponsored by DARPA

under agreement number FA8750-12-2-0247.

References

[1] www.cs.ox.ac.uk/people/david.mestel/model-shifting.csp.

[2] Philip Armstrong, Gavin Lowe, Joël Ouaknine, and Bill Roscoe. Model checking timed CSP. In Andrei
Voronkov and Margarita Korovina, editors, HOWARD-60. A Festschrift on the Occasion of Howard
Barringer’s 60th Birthday, pages 13–33. EasyChair, 2014.

[3] Christie Bolton and Jim Davies. A singleton failures semantics for communicating sequential processes.
Formal Aspects of Computing, 18(2):181–210, 2006.

[4] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W. Roscoe. FDR3—a
modern refinement checker for CSP. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 187–201. Springer, 2014.

[5] Thomas Gibson-Robinson, Henri Hansen, A.W. Roscoe, and Xu Wang. Practical partial order reduction
for CSP. In NASA Formal Methods, pages 188–203. Springer, 2015.

[6] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1985.

[7] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1982.

[8] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i. Information and
Computation, 100(1):1–40, 1992.

[9] Iain Phillips. Refusal testing. Theoretical Computer Science, 50(3):241–284, 1987.

[10] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1997.

[11] A.W. Roscoe. Revivals, stuckness and the hierarchy of CSP models. The Journal of Logic and Algebraic
Programming, 78(3):163–190, 2009.

[12] A.W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science. Springer, 2010.

[13] A.W. Roscoe. The expressiveness of CSP with priority. In Proceedings of MFPS 2015, 2015.

[14] A.W. Roscoe and Naiem Dathi. The pursuit of deadlock freedom. Information and Computation,
75(3):289 – 327, 1987.

[15] A.W. Roscoe and Philippa J. Hopcroft. Theories of programming and formal methods. chapter Slow
Abstraction via Priority, pages 326–345. Springer-Verlag, Berlin, Heidelberg, 2013.

15

www.cs.ox.ac.uk/people/david.mestel/model-shifting.csp

On the Representation of Semigroups and
Other Congruences in the Lambda Calculus

Rick Statman
Carnegie Mellon University

Department of Mathematical Sciences
Pittsburgh, PA 15213
statman@cs.cmu.edu

May 20, 2016

Abstract

Lambda Calculus is the starting point of all functional program-
ming. Since Church noticed the undecidability of the word problem
for semigroups ([2]), it has been understood that certain algebraic
structures are embedded in lambda calculus. These include the B, I
monoid ([3], [4]), the free Cartesian monoid which includes the posi-
tive part of the Freyd, Heller, Thompson group ([6], [8]), and the near
semi-rings and and b.a.d. algebras of [9].

We show that every semigroup with an RE word problem can
be pointwise represented in the lambda calculus. In addition, we
show that the free monoid generated by an arbitrary RE subset of
combinators can be represented as the monoid of all terms which fix
a finite set of points.

Combinators being both functions and arguments can act on one another
by application and composition. More generally, if $′ and $” are sets of
combinators closed under beta conversion, the A action of $′ on $” is the set
{AMN |M : $′ and N : $”} closed under beta conversion. First we recall the
definitions of some familiar combinators

16

17

B := λabc.a(bc)
B′ := λabc.b(ac)
C∗ := λab.ba
K := λab.a
I := λa.a
S := λabc.ac(bc)
O := (λx.xx)(λx.xx)
0 := λyz.z
s := λxyz.y(xyz)
Y := (λxz.z(xxz))(λxyz.z(xxz))

Examples:

(1) A := K : this is the trivial action.

(2) A := I : this is the applicative action.

(3) A := B : this is the semigroup action.

(4) A := S : the pointwise applicative action.

Of course, this definition extends to multiple arguments by Currying. We
write

M = N mod beta

if M beta converts to N.
It is trivial that general A can be reduced to I, and that multiple argu-

ments can be reduced to a single argument by pairing. In addition, applica-
tive action can be reduced to the semigroup action since K(xy) = Bx(Ky)
mod beta. However, there is another reduction which is lambda I.

Let

D := Y(λ f xyz. f x(zy))

where Y is Turing’s fixed point combinator as above.

Lemma 1. For any U,V if B(C∗U)D = B(C∗V)D mod beta then

U = V mod beta.

Proof. Straight forward. �

18

Now given $′ and $′′, since

C∗(AM) = B(B(C∗M)(C∗A))B mod beta

C∗(AMN) = B(B(B(C∗M)(C∗A))B)(B(C∗N)D) mod beta, and

= B(C∗M)(B(C∗A)(BB(B(C∗N)D))) mod beta

the A action of $′ on $′′ is equivalent to the semigroup action of
{C∗M | M : $′} on {(B(C∗A)(BB(B(C∗N)D))) | N : $′′}. We next consider an
example of the action of I in representing semi-groups.

Definition: Let $′ be an RE set of combinators closed under beta conversion.
An equivalence relation ∼ on $′ is said to be pointwise representable on $′′

if for every M,N : $′ we have

MP : $′′ for all P : $′′

M ∼ N iff for all P : $′′

MP = NP mod beta

Example (Kleene):

$′ = any RE set of definitions of total recursive functions
$′′ = the Church numerals and ∼ = extensional equality

Non-example (Plotkin):

$′ = all combinators
$′′ = all combinators and ∼ = beta conversion.

Let $ be a semigroup on a countable number of generators. We assume
that the generators are denoted by the positive integers. Elements of $ are
then denoted by words

w = w(1) . . .w(l).

of variable length l, on the generators of $. We write u = v mod $ if the
words u and v are equal in $. We represent the word w by the lambda term

‘w′ := B′Ow(1)(B′Ow(2)(. . .B′Ow(n − 1)Ow(n) . . .))

where integers are replaced by their Church numerals.

We define combinators P,Q,R as follows.

19

By Theorem 3 of [7] there exists a closed term P such that PM = PN
mod beta if and only if either M = N mod beta or both M = ‘u′U mod beta,
N = ‘v′V mod beta, and u = v mod $, where either U or V, or both, may not
exist, but each must be of positive order if it exists. Now we set

p := predecessor for Church numerals, and

A := Y(λxy. y0(B(py)1) (An = nth eta expansion of I mod beta)

Q := λxy .Y(Ax(f sx)(Py))

R := Q0.

For each word w we define a second representation by the lambda term

“w′′ := B(C∗ ‘w′)B.

Then “w′′ = λab.a(‘w′b) mod beta and for words, w,u
B“w′′“u′′ = “wu′′ mod beta
and for any words w1, . . . ,wn,u1, . . . ,um
“w′′(R“w′′1 . . . “w′′n)(R′′u′′1 . . . “u′′m) =
Q(n + 1)(P(“w′′1)) . . . (P(“w′′n))(P“w′′((R“u′′1 . . . “u′′m))) =
Q(n + 1)(P(“w′′1)) . . . (P(“w′′n))(P“w′′) mod beta.

Now it is not difficult to prove that if

Q(n + 1)(P(“w′′1)) . . . (P(“w′′n))(P“w′′) =
Q(n + 1)(P(“w′′1)) . . . (P(“w′′n))(P“u′′) mod beta
then w = u mod $.

Now take for $′ the set of all “w′′ and for $′′ the set of all R(“w′′1) . . . (“w′′n).
Thus we have proved the

Proposition 1. Every RE semigroup is pointwise representable.

For a general RE congruence ∼, we illustrate with the case of one binary
function symbol f . We assume that we have Gödel numbering ‘t′, ‘r′ of
terms t, r with a recursive function t, r 7→ f tr represented by a lambda term
F; that is F‘t′‘r′ = ‘ f tr′ mod beta. By Theorem 3 of [7] there exists a closed
term P such that PM = PN mod beta if and only if either M = N mod beta
or both M = ‘u′ mod beta, N = ‘v′ mod beta and u = v mod $. Now define
an app

A := λabcde. < a, e >

20

and define

”t” := 〈A,′ t′,P′t′〉
” f ” := λxy.〈A,F(xK)(yK),P(F(xK)(yK))〉.

The set $′′ can be taken to be the set of all terms < A,P′t′ >. Thus,

Proposition 2. Every RE congruence is pointwise representable.

These representation results implicitly use the “regularity” of the rep-
resentation. If the representing functions are essentially irregular and beta
conversion on that set is decidable, such as the set of Church numerals, then
co-RE congruences can be represented. Using Kleene brackets {e} for the
recursive function with Gödel number e, we have

Lemma 2. Let ∼ be a co-RE equivalence relation on the set of natural numbers.
Then there exists a recursive function f such that for any e, { f (e)} is total recursive
and i ∼ j iff { f (i)} = { f (j)}.

Proof. We proceed recursively assuming that f (i) is defined for i = 0, . . . ,n.
To define f (n + 1) we compute successive values { f (n + 1)}(j) for j = 0, . . . , k.
Assume that these have been computed up to k. To compute the value
for k + 1 let @ be the subset of {0, 1, . . . ,n} such that i : @ iff there is not
j < k + 1 with { f (i)}(j) = / = { f (n + 1)}(j). Now compute { f (i)}(k + 1) for
each i : @. The values partition @; i and j belong to the same block iff
{ f (i)}(k + 1) = { f (j)}(k + 1). Now the set of all i such that i is inequivalent to
n + 1 is uniformly RE in n + 1. For any two distinct blocks in the partition
of @, eventually every member of at least one of the blocks will appear in
the enumeration. When there is only one block left in the partition we can
set { f (n + 1)}(k + 1) = { f (i)}(k + 1) any i in that block provided after k + 1
steps in the enumeration of the inequivalents to n + 1 at least one member
of that block has not been found. Otherwise, we set { f (n + 1)}(k + 1) =
1 + max[{ f (i)}(k + 1)|i : @]. End of proof. �

The construction for Proposition 2 can now be modified to give

Proposition 3. Every co-RE congruence is pointwise representable.

Next we consider the case of a general RE set $ closed under beta con-
version. The members of $ generate a free monoid under the map

M 7→ C∗M.

21

Here we intend to include the Church numeral 1 = I mod eta as well as
I. If $′′ is a set of terms closed under beta conversion we say that $′ is
fixed-pointwise representable on $′′ if the set {L | LX = X mod beta for all
X : $′′} = the free monoid generated by

{L | L = C∗M mod beta for some M : $′}

Note here that we have specifically allowed $′′ to contain open terms. We
recall some of the definitions of [5] with a few small changes. T is the fixed
point combinator of Bohm ([1] 6.5.4) with a free variable b;

E := the enumerator of {C∗N |M : $}

T := (λxyz. z(xxyz))(λxyz. z(xxyz))b

A′ := λ f g. λxyz. f x(a(Ex))(f (Sx)y(g(Sx))z)

A′′ := λ f g. λx. f (Sx)(a(E(Sx))(g(Sx))(gx)

G := T(λu. A′′(T(λv. A′vu))u)

F := T(λu. A′uG)

H := λxa. F0(ax)(G0)

J := Y(λ f . λxy. f (x(Hy)))(Y(λg.g(H(E0))))

L := Y(λ f xy. f (x(Jy))

P := Y(λ f . f J)

Q := LP

L′ := Y(λ f . λxy.〈 f , x〉)

L′′ := Y(λ f . λxyz.〈 f , x, z〉).
as in [3] have

Lemma 3. JM = J mod beta iff there exists an m such that Em = C∗M mod beta.

Now consider the following “points fixed” equations

(1) x〈L′, 0〉 = 〈L′, 0〉

(2) x〈L′′, 0, 1〉 = 〈L′′, 0, 1〉

(3) xQ = Q.

Now if

22

M = λa. a(C∗M1) . . . (C∗Mm) for Mi : $ then

M〈L′, 0〉 = L′M10(C∗M2) . . . (C∗Mm)

= 〈L′, 0〉(C∗M2) . . . (C∗Mm) = . . .

= 〈L′, 0〉mod beta, and similarly

M〈L′′, 0, 1〉 = 〈L′′, 0, 1〉mod beta
In addition,

MQ = LP(C∗M1) . . . (C∗Mm) = L(P(J(C∗M1)))(C∗M2) . . . (C∗Mm)

= L(PJ)(C∗M2) . . . (C∗Mm) = LP(C∗M2) . . . (C∗Mm) = . . .

= Q mod data
Thus all the members of the free monoid generated by the C∗M with M : $
satisfy (1), (2), and (3).

Proposition 4. Suppose that N satisfies the equations (1), (2), and (3) mod beta,
then N lies in the free monoid generated by the C∗M for M in $′.

Proof. Suppose that such an N is given. Since N satisfies (1) mod beta N
has a head normal form. W.l.o.g. we may assume N is in head normal
form. Since N satisfies equation (2) mod beta, and 〈L′, 0〉, 〈L′′, 0, 1〉 have
head variables with a different number of arguments, the head variable of
N is the first one bound in its lambda prefix. Since 〈L′, 0〉 has order 1, the
lambda prefix of N has length 1 or 2. First suppose that N has order 2:
N = λxy. xX1 . . .Xm. Then setting Zi := [Q/x]Xi

NQ = λy. QZ1 . . .Zm = λy. L(P(JZ1)) . . . (JZm)) mod beta.
By an argument similar to the argument of [7] Theorem 3, this can only be
the case if Zm = y mod beta and for i < m we have JZi = J mod beta. Since
Q contains an unprojectible free variable in F and G it must be the case that
each Zi beta converts to a term without x, and for i < m without y. In other
words, x is head original and thus we assume that

N = λxy. xN1 . . .Nm−1y.

Hence, by Lemma 3 there exist M1, . . . ,Mm−1 : $ such that Ni = C∗Mi mod
beta for i = 1, . . . ,m−1, and we have N = B1(B(C∗M1)(. . . (B(C∗Mm−2)C∗Mm−1 :
$)) . . .) mod beta . The case for N of order 1 is similar with I replacing 1.
End of proof. �

Remark: If the members of $′ all have normal forms then the members of
$′′ can be taken to be closed terms.

REFERENCES 23

References

[1] Barendregt, H., The Lambda Calculus, North Holland (1982)

[2] Church, A., A Note on the Entscheidungs Problem, J. of Symbolic Logic,
1 (19360.

[3] Curry, H. B., Feys, R., “Combinatory Logic Vol.I”, North Holland,
(1958).

[4] Statman, R., Combinators and the theory of partitions, CMU Research
Report No. 88-31, (1988).

[5] Statman, R., Some Examples of Non-Existent combinators, Theoretical
Computer Science, 121, (1993).

[6] Statman, R., On Cartesian Monoids, CSL ’97 LNCS 1258.

[7] Statman, R., Morphisms and Partitions of V-sets, CSL, (1998).

[8] Statman, R., Cartesian Monoids, MFPS 2010 ENTCS Vol 65, Sept. 6,
2010.

[9] Statman, R., Near semirings and lambda calculus, TLCA (2014).

MFPS 2016

The algebra of partial equivalence relations

Fabio Zanasi
Radboud University Nijmegen, The Netherlands

Abstract

Recent work by the author with Bonchi and Sobociński shows how PROPs of linear relations (subspaces)
can be presented by generators and equations via a “cube construction”, based on letting very simple
structures interact according to PROP operations of sum, fibered sum and composition via a distributive
law. This paper shows how the same construction can be used in a cartesian setting to obtain presentations
by generators and equations for the PROP of equivalence relations and of partial equivalence relations.

Keywords: PROP, distributive law, string diagram, partial equivalence relation, Frobenius algebra

1 Introduction

PROPs (product and permutation categories [21]) are symmetric monoidal cate-

gories with objects the natural numbers. In the last two decades, they have become

increasingly popular as an environment where to study diverse computational mod-

els in a compositional, resource sensitive fashion. To make a few examples, they

have recently featured in algebraic approaches to Petri nets [7,26], bigraphs [8],

quantum processes [11] and signal flow graphs [2,4,1].

PROPs can be used to specify both the syntax and the semantics of systems.

A “syntactic” PROP T is generated starting from a symmetric monoidal theory

(Σ, E), which intuitively is an algebraic specification for operations with multiple

inputs and outputs; arrows of T are freely constructed by composition of operations

in the signature Σ, and then quotiented by the equations in E. On the other hand,

a “semantic” PROP S is specified with a direct definition of its arrows, typically in

terms of some mathematical object of interest. A full completeness result is a precise

correspondence between these two perspectives, in the form of an isomorphism

T ∼=−→ S. (1)

In this situation, we say that (Σ, E) presents S. Examples of (1) are ubiquitous

and play a foundational role in most of the aforementioned research threads. For

instance, the theory of commutative monoids presents the PROP of functions; the

theory of Hopf algebras presents the PROP of integer matrices; the theory of Frobe-

nius algebras presents the PROP of 2-Dimensional cobordisms.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Zanasi

In recent years, increasingly more elaborated examples have been tackled using

modular reasoning principles. An illustrative case is the theory of interacting Hopf

algebras IH, which characterises the PROP LRelk of k-linear relations [5]. This result

inspired recent investigation in the foundations of the ZX-calculus [3,14] and in

categorical control theory [2,4,1]. What is most interesting for our purposes is that

the isomorphism IH ∼= LRelk can be obtained as a universal arrow through a “cube”

construction, based on seeing the two PROPs as the result of the interaction of

simpler theories by means of operations of sum, fibered sum and composition. This

modular account is a valuable source of information about the structural properties

of the theories of interest: for instance, it shows that LRelk is the result of combining

PROPs of spans and of cospans of linear maps, and the equations of IH essentially

describe this interaction.

The central idea of this work is to show how the same cube construction can

be used to characterise other PROPs of relations: whereas [5] focuses on the linear

case, we shall study the cartesian case, both total and partial. In the total case,

we construct a modular characterisation for the PROP ER of equivalence relations

starting from PROPs of spans and cospans of (injective) functions, see (5) below.

This will show an isomorphism between ER and the PROP IFr freely generated by a

quotient of the theory of special Frobenius algebras [9], which plays a foundational

role in many recent works [23,2,1,11].

IFr
∼=−→ ER (2)

To give an idea of how the isomorphism (2) works, an arrow of IFr, for which we

shall use the 2-dimensional representation as a string diagram, as on the left below,

shall represent an equivalence relation on the sets of variables associated with its left

and right ports, as on the right below. Two variables are in the same equivalence

class if they are linked in the graphical representation.

v1
v2
v3

u1
u2
u3
u4
u5

7→ an equivalence relation with classes

[v2], [v1, v3, u1, u2, u3], [u4, u5].

The dotted lines hint at the fact that, as a result of our modular perspective,

any diagram of IFr will enjoy a factorisation in terms of simpler theories, whose

interaction is what the axioms of IFr describe.

Building on this result, we will shift to the partial case. First, we use PROP

composition to construct a presentation PMn (partial commutative monoids) for

the PROP PF of partial functions. Then, we will show that the PROP PER of partial

equivalence relations (PERs) 1 arises as the result of merging PROPs of cospans of

partial functions and of spans of injective functions, see (10) below. As for the case

of ER, an isomorphism arises from this modular account: it will relate PER and

the syntactic PROP IPFr, yet another variation of the theory of special Frobenius

algebras.

IPFr
∼=−→ PER

1 Recall that a relation on a set X is a PER if it is symmetric and transitive — equivalently, if it is an
equivalence relation on a subset Y ⊆ X.

25

Zanasi

HA + HAop

∼=

��
ptt

// HAop ; HA

vv ∼=
��

HA ; HAop //

∼=
��

IH
∼=

��
Matk + Matopk

tt
//

p
Span(Matk)
ww

Cospan(Matk) // LRelk

Mn + Mnop

∼=

��
ptt

//Mnop ; Mn

vv ∼=
��

Mn ; Mnop //

∼=
��

1
∼=

��
F + Fop

tt
//

p
Span(F)

wwCospan(F) // 1

Un + Unop

∼=

��
ptt

// Unop ; Un

vv ∼=
��

Mn ; Mnop //

∼=
��

IFr
∼=

��
In + Inop

tt
//

p
Span(In)

vv
Cospan(F) // ER

Un + Unop

∼=

��
ptt

// Unop ; Un
vv

∼=
��

PMn ; PMnop //

∼=
��

IPFr
∼=

��
In + Inop

tt
//

p
Span(In)

vv
Cospan(PF) // PER

Figure 1. An overview of the various cube constructions considered in this paper. From the top-left corner:
the linear case, yielding a characterisation for the PROP LRelk of k-linear relations (see [5]); the degenerate
cartesian case, collapsing to the terminal PROP (Remark 4.11); the (non-degenerate) cartesian case, yielding
a characterisation for the PROP ER of equivalence relations (Theorem 4.2); the partial cartesian case,
yielding a characterisation for the PROP PER of partial equivalence relations (Theorem 5.4). In the main
text we shall write PROPs of spans and cospans in factorised form to emphasise their provenance from
distributive laws, e.g. Span(F) as Fop ; F ans Cospan(F) as F ; Fop .

In a nutshell, the diagrammatic rendition of partial equivalence relations given by

IPFr enhances the total case by integrating connectors , for partiality.

Related work. The use of partial equivalence relations in program semantics

dates back to the seminal work of Scott [24]. They have been used extensively in

the semantics of higher order λ-calculi (e.g., [17,28]) and, more recently, of quantum

computations (e.g., [18,15]). Note that in most of these applications PERs are

the objects of the category of interest, whereas in the PROP PER they are the

arrows, with relational composition, and only defined on finite domains. In fact, our

emphasis is on the modular techniques to characterise PER (and their applicability

to similar families of structures) rather than on the use of PERs in semantics.

Algebraic presentations for categories of equivalence relations have been studied

in the last two decades by a few authors. A characterisation for ER in terms of

Frobenius structures is given in [13], with a proof based on finding a normal form

for string diagrams. The same result appears in a recent manuscript [12], which is

based, like our work, on treating equivalence relations as jointly-epi cospans. This

idea, as well as its algebraic implications, is studied in the earlier paper [6] as part

of a taxonomy of span/cospan categories over Set.

The present work is part of the author’s PhD thesis [29], defended in October

2015. Differently from the aforementioned papers, our approach focuses on a modu-

lar reconstruction of ER: its presentation is built from the interaction of very simple

algebraic theories, by the use of PROP operations. In particular, Lack’s technique

for composing PROPs [19] is pivotal. Also, we extend our methodology to the anal-

ysis of partial functions and partial equivalence relations, in a way that to the best

of our knowledge did not appear before in the literature.

It is also worth mentioning that there is a pleasant symmetry between the analy-

sis of equivalence relations and (plain) relations. Whereas the former are jointly-epic

cospans and are modeled by separable Frobenius algebras with an additional axiom

from the theory of bialgebras, the latter are jointly-mono spans and are modeled

by bialgebras with the addition of an axiom from the theory of separable Frobenius

26

Zanasi

algebras [20]. Interestingly, the combination of the two theories in their entirety

collapses to the terminal PROP, see Remark 4.11 below. 2

Synopsis. In §2 we recall the basics of the theory of PROPs. § 3 introduces

the PROP operations of sum, fibered sum and (iterated) composition, with the

example of partial functions (Ex. 3.3). § 4 constructs the cube (5) necessary for the

characterisation of equivalence relations (Th. 4.2). § 5 completes the picture with

the characterisation (10) of partial equivalence relations (Th. 5.4).

Prerequisites and notation. We assume familiarity with basic category the-

ory (see e.g. [22]) and the definition of symmetric strict monoidal category [22,25]

(often abbreviated as SMC). We write f ; g : a → c for composition of f : a → b

and g : b→ c in a category C. It will be sometimes convenient to indicate an arrow

f : a→ b of C as x
f∈C−−→ y or also

∈C−−→, if names are immaterial. For C an SMC, ⊕
is its monoidal product, with unit object I, and σa,b : a⊕ b→ b⊕a is the symmetry

associated with a, b ∈ C. We write 0 for ∅ and n+ 1 for {1, . . . , n, n+ 1}.

2 PROPs

Our exposition is founded on PROPs (product and permutation categories [21]).

Definition 2.1 A PROP is a symmetric strict monoidal category with objects the

natural numbers, where ⊕ on objects is addition. PROPs form a category PROP

with morphisms the identity-on-objects symmetric strict monoidal functors.

A typical way of constructing a PROP is starting from a symmetric monoidal

theory (SMT): it is a pair (Σ, E), where Σ is a signature of generators o : n→ m with

arity n and coarity m. The set of Σ-terms is obtained by composing generators in Σ,

the unit id : 1→ 1 and the symmetry σ1,1 : 2→ 2 with ; and ⊕. That means, given

Σ-terms t : k → l, u : l → m, v : m → n, one constructs new Σ-terms t ; u : k → m

and t ⊕ v : k + n → l + n. The set E of equations contains pairs (t, t′ : n → m) of

Σ-terms with the same arity and coarity.

There is a natural graphical representation for Σ-terms using the formalism

of string diagrams [25]. A Σ-term n → m is pictured as a box with n ports on

the left and m ports on the right. Composition t ; s is rendered graphically as

st and t⊕ s as t
s . The symmetric monoidal structure is generated from

, representing id1 : 1 → 1, , representing id0 : 0 → 0, and , representing

σ1,1 : 2→ 2.

An SMT (Σ, E) freely generates a PROP T by letting arrows n → m in T be

Σ-terms modulo E. We say that (Σ, E) is a presentation of a PROP S when S ∼= T .

When Σ′ ⊆ Σ and E′ ⊆ E, there is an evident inclusion PROP morphism from

the PROP T ′ generated by (Σ′, E′) to the one T generated by (Σ, E), for which

henceforth we reserve notation T ′ � � // T .

2 This observation is also relevant for algebraic approaches to quantum processes, see e.g. [16, Th. 5.6].

27

Zanasi

Example 2.2

(a) In the SMT (ΣM , EM) of commutative monoids, ΣM contains a multiplication

: 2 → 1 and a unit : 0 → 1. Equations EM assert associativity (M1),

commutativity (M2) and unitality (M3).

= (M1) = (M2) = (M3)

(ΣM , EM) presents the PROP F whose arrows n → m are total functions

from n to m, with n = {1, . . . , n}. Writing Mn for the PROP freely generated

by (ΣM , EM), the isomorphism Mn ∼= F is defined by interpreting string
diagrams as graphs of functions. For instance, the diagram on the

right represents the function 3→ 3 mapping 1 on the left to 2 on the

right and 2, 3 on the left to 1 on the right.

(b) The SMT (ΣC , EC) of cocommutative comonoids is based on a comultiplication

: 1→ 2 and a counit : 1→ 0. EC is the following set of equations.

= (C1) = (C2) = (C3)

We write Cm for the PROP freely generated by (ΣC , EC). There is an

evident isomorphim Cm ∼= Mnop given by “vertical rotation” of string diagrams.

Therefore, (ΣC , EC) presents Fop .

(c) The PROP Fr of special Frobenius algebras [9] is generated by the theory (ΣM]
ΣC , EM] EC] F), where F is the following set of equations.

= = (F1) = (F2)

(d) The PROP B of (commutative/cocommutative) bialgebras is generated by the

theory (ΣM] ΣC , EM] EC]B), where B is the following set of equations.

= (B1)

= (B2)

= (B3)

= (B4)

Remark 2.3 The assertion that (ΣM , EM) is the SMT of commutative monoids—

and similarly for other SMTs appearing in our exposition—can be made precise

by establishing a correspondence between commutative monoids in a symmetric

monoidal category C and objects F (1) identified by symmetric monoidal functors

F : Mn → C, often called models or algebras of Mn. As models are not central in

our work, we refer the reader to [19] for more information.

3 PROP operations

The following table summarises three operations on given PROPs T1 and T2. Sup-

posing that they are presented by SMTs (Σ1, E1) and (Σ2, E2) respectively, the

second column describes a presentation for the PROP resulting from the operation.

28

Zanasi

PROPs SMTs Reference

Sum T1 + T2
signature: Σ1] Σ2

equations: E1] E2

see e.g.

[29, §2.3].

Fibered

sum

over T3

T defined by

T3 �
� //

� _

�� p

T1
� _

��
T2 �
� // T

sig.: (Σ1] Σ2)≡Σ3

eq.: (E1] E2)≡E3

see e.g.

[29, §2.5].

Composition

via λ

T1 ; T2

defined by

λ : T2 ; T1 → T1 ; T2.

sig.: Σ1] Σ2

eq.: E1] E2] Eλ
introduced in

[19], see also

[29, §2.4].

We now illustrate the three operations. The simplest, the sum, just combines

the two theories without adding any interaction.

The fibered sum mimics a kind of construction typical in algebra, from geometric

gluing constructions of topological spaces to amalgamated free products of groups.

The idea is to identify some structure T3 that is in common between the two theories.

In all applications, the assumption is that Σ3 ⊆ Σ1 ∩ Σ2 and E3 ⊆ E1 ∩ E2: the

quotient ≡Σ3 identifies o1 ∈ Σ1 and o2 ∈ Σ2 when o1 = o2 is in Σ3, and ≡E3

acts similarly on equations. On PROPs, this operation amounts to pushing out the

inclusion morphisms T1 T3
_?oo � � // T2 from the PROP T3 freely generated by (Σ3, E3).

The composition enhances the sum with compatibility conditions between T1

and T2. Also this operation mimics a standard pattern in algebra: e.g. a ring is

given by a monoid and an abelian group, subject to equations that ensure that the

former distributes over the latter. Formally, the operation T1 ; T2 is defined in [19]

by understanding PROPs T1, T2 as monads in a certain bicategory [27], and then

compose them via a distributive law λ : T2 ; T1 → T1 ; T2. The resulting monad

T1 ; T2 is also a PROP, enjoying a presentation as the quotient of T1 + T2 by the

equations Eλ encoded by the distributive law. The set Eλ is simply the graph of

λ, which can be seen as a set of directed equations (
∈T2−−→ ∈T1−−→) ≈ (

∈T1−−→ ∈T2−−→) telling

how arrows of T2 distribute over arrows of T1. In fortunate cases, like the examples

below, it is possible to present Eλ by a simpler, or even finite, set of equations, thus

giving a sensible axiomatisation of the compatibility conditions expressed by λ.

Example 3.1

(a) The PROP F of functions can be described as the composite Su ; In, where Su
and In are respectively the PROP of surjective and of injective functions [19].

The witnessing distributive law λ : In ; Su → Su ; In maps a function
∈In−−→ ∈Su−−→

to its epi-mono factorisation
∈Su−−→ ∈In−−→.

In more syntactic terms, using the isomorphism F ∼= Mn, this result says

that Mn is the composite Mu ; Un, where Mu ∼= Su is the PROP freely gener-

ated by the SMT ({ }, {(M1), (M2)}) and Un ∼= In by the SMT ({ }, ∅).
The distributive law explains the origin of equation (M3) of Mn, which indeed

describes how to move the generator of Un past the one of Mu.

(b) There is a distributive law λ : Fop ; F → F ; Fop mapping a pair
∈Fop
−−−→ ∈F−−→,

29

Zanasi

i.e. a span
∈F←−− ∈F−−→, to (a choice of) its pushout cospan

∈F−−→ ∈F←−−, i.e. a pair
∈F−−→ ∈Fop
−−−→ [19]. Because Mn ∼= F and Cm ∼= Fop , this yields a composite PROP

Mn ; Cm, presented as Mn + Cm modulo the equations arising from the dis-

tributive law. By definition of λ, such equations can be read from pushout

squares in F. For instance:

2
((vv

2
((1

((
1

vv

�� +3 1

66

((
1

1 1

66 yields ; = ;

where the second diagram is obtained from the pullback by applying the iso-

morphisms F ∼= Mn and Fop ∼= Cm. In fact, Lack [19] shows that in order to

present λ it suffices to check three pushout squares, corresponding to equa-

tions (F1)-(F2). Therefore, Mn ; Cm is isomorphic to Fr (Example 2.2), and

both have a concrete description in terms of cospans, i.e. the arrows of F ; Fop .

(c) Dually, there exists a distributive law λ : F ; Fop → Fop ; F, defined by pullback

in F [19], which yields the PROP Fop ; F of spans. All the equations arising by

this distributive law can be proven from (B1)-(B4), yielding Fop ; F ∼= B.

Composing distributive laws

For our developments it is useful to generalise PROP composition to the case

when there are more than two theories interacting with each other. The following

result, a variation of a theorem by Cheng [10], is proven in [29, §2.4.6].

Proposition 3.2 Let F , H and G be PROPs presented by SMTs (ΣF , EF),

(ΣH, EH) and (ΣG , EG) respectively. Suppose there are distributive laws

λ : H ; F → F ; H χ : H ; G → G ; H ψ : G ; F → F ; G

satisfying the following “Yang-Baxter” equation:

H ; F ; G λG //F ; H ; G Fχ
--H ; G ; F

Hψ 11

χF -- F ; G ; H
G ; H ; F Gλ // G ; F ; H ψH

11 (3)

then the following two are distributive laws:(
H ; F ; G λG−−→ F ; H ; G Fχ−−→ F ; G ; H

) (
G ; H ; F Gλ−−→ G ; F ; H ψH−−→ F ; G ; H

)
yielding the same PROP F ; G ; H. Furthermore, call Eλ, Eχ and Eψ the sets of

equations encoding the three laws. Then F ; G ; H is presented by the signature

ΣF] ΣH] ΣG and equations EF] EH] EG] Eλ] Eχ] Eψ.

Example 3.3 We show how the PROP PF of partial function can be presented

modularly using iterated distributive laws. First, we introduce a new PROP Cu,

generated by the signature { } and no equations: modulo the different colouring,

30

Zanasi

it is just Unop . Following the recipe of Proposition 3.2, we now combine Cu, Un and

Mu via three distributive laws:

λ : Un ; Cu→ Cu ; Un χ : Un ; Mu→ Mu ; Un ψ : Mu ; Cu→ Cu ; Mu

Using the isomorphisms Un ∼= In, Cu ∼= Inop and Mu ∼= Su, we can define χ by epi-

mono factorisation as in Example 3.1(a); therefore, the resulting PROP Mu ; Un is

Mu+Un quotiented by (M3). Because pullbacks in F preserve both monos and epis,

we define λ and ψ by pullback in F. It is readily seen that λ and ψ are presented,

respectively, by the first and the second equation below:

= (P1) = . (P2)

Also, λ, χ and ψ verify the Yang-Baxter equation (3) and thus Proposition 3.2

yields a PROP Cu ; Mu ; Un presented as the quotient of Cu + Mu + Un by (M3),

(P1) and (P2). By analogy with the total case Mn ∼= Mu ; Un, we shall use PMn
(partial commutative monoids) as a shorthand for Cu ; Mu ; Un.

We now claim that PMn ∼= PF. To see this, observe that partial functions

n
f∈PF−−−→ m are in bijective correspondence with spans n

i∈In←−− z f∈F−−→ m: the injection

i tells on which elements z of n the function f is defined. Since Inop ∼= Cu and

F ∼= Mn ∼= Mu ; Un, this correspondence yields the desired isomorphism PF ∼=
Inop ; F ∼= Cu ; Mu ; Un ∼= PMn.

As a last remark, note that the factorisation property of PMn allows to interpret
any arrow of this PROP as the graph of a partial function, where

indicates partiality. For instance, the diagram on the right represents

the function 4→ 3 undefined on 1 and mapping 2, 4 to 2 and 3 to 3.

4 A presentation of equivalence relations

This section builds modularly a presentation for the PROP ER of equivalence rela-

tions, using the operations introduced in § 3. In defining ER, we use the following

notation: bec is the symmetric and transitive closure of a relation e and d�Y is the

restriction of an equivalence relation d on a set X to a subset Y ⊆ X.

Definition 4.1 Let ER be the PROP whose arrows n → m are the equivalence

relations on n]m. Given e1 : n→ z and e2 : z → m, the composite e1 ; e2 : n→ m

is defined in steps as follows.

e1 ∗ e2 := {(v, w) | ∃u. (v, u) ∈ e1 ∧ (u,w) ∈ e2}
e1 � e2 := e1 ∪ e2 ∪ be1 ∗ e2c
e1 ; e2 := e1 � e2�n]m

The monoidal product e1 ⊕ e2 is given by disjoint union of e1 and e2.

In words, for composition one first defines an equivalence relation e1 � e2 on

n]z]m by gluing together equivalence classes of e1 and e2 along common witnesses

31

Zanasi

in z, then obtains e1 ; e2 by restricting to elements of n]m. Here is an example:

4 // 5 ; 5 // 5 = 4 // 5.

Our approach in characterising ER stems from the observation that cospans can be

interpreted as “redundant” equivalence relations. This becomes particularly neat

when representing cospans as string diagrams via the characterisation Fr ∼= F ; Fop

(Example 3.1(b)), as below.

. (4)

The dotted line emphasizes the fact that Fr factorises as Mn ; Cm. Both string di-

agrams in (4) define an equivalence relation e on 5] 7 by letting (v, w) ∈ e if the

port associated with v and the one associated with w are linked in the graphical

representation. For instance, 1, 2 ∈ 5 on the left boundary are in the same equiv-

alence class as 1, 2, 3 ∈ 7 on the right boundary, whereas 5 ∈ 5 and 4 ∈ 7 are the

only members of their equivalence class.

Observe that the two representations of e in (4) only differ for the sub-diagram

, which indeed does not play any role in the interpretation and stands for an

“empty” equivalence class. Equation (B4) will be employed to express the redun-

dancy of . Let us call IFr (irredundant Frobenius algebras) the PROP defined

as the quotient of Fr by (B4). Our discussion leads to the following claim.

Theorem 4.2 IFr ∼= ER.

The isomorphism of Theorem 4.2 shall arise as a universal arrow in the following

“cube” diagram in PROP, provided that the top and bottom square are pushouts.

Un + Cu
∼=

��

eEss
� � // Cu ; UngG

tt ∼=
��

Fr � � //

∼=
��

IFr
∼=

��
In + Inop

[ι1,ι2]
ss

[κ1,κ2] // Inop ; In

Υtt
F ; Fop

Π
// ER

(5)

First we explain the PROP morphisms in (5). Those of the top face are defined by

inclusion of the corresponding SMTs and the rear vertical isomorphisms have been

introduced in Examples 3.1-3.3. Thus we focus on the bottom face.

Definition 4.3

• morphisms κ1 : In → Inop ; In, κ2 : Inop → Inop ; In, ι1 : In → F ; Fop and

ι2 : Inop → F ; Fop are given by

32

Zanasi

κ1(n
f−→ m) = (n

id←− n f−→ m) κ2(n
f−→ m) = (n

f←− m id−→ m)

ι1(n
f−→ m) = (n

f−→ m
id←− m) ι2(n

f−→ m) = (n
id−→ n

f←− m).

• Π: F ; Fop → ER is defined on a cospan n
p−→ z

q←− m by

(v, w) ∈ Π(n
f←− z g−→ m) iff


p(v) = q(w) if v ∈ n,w ∈ m
q(v) = p(w) if v ∈ m,w ∈ n
p(v) = p(w) if v, w ∈ n
q(v) = q(w) if v, w ∈ m.

(6)

• Υ: Inop ; In → ER is defined on a span n
f∈In←−−− z

g∈In−−−→ m as the reflexive and

symmetric closure of {(v, w) | f−1(v) = g−1(w)}.
It is lengthy but conceptually simple to verify that Π and Υ are indeed functorial

assignments — details are reported in [29, Appendix A].

Informally, Π implements the idea of interpreting a cospan as an equivalence

relation. For Υ, the key observation is that spans of injective functions can also be

seen as equivalence relations. Once again, the graphical representation of an arrow

of Inop ; In as a string diagram in Cu ; Un can help visualising this fact. A factorised
arrow of Cu ; Un as on the right can be interpreted as the equivalence

relation associating 1 on the left boundary with 2 on the right boundary,

3 on the left with 1 on the right and letting 2 on the left, 3 on the right

be the only representatives of their equivalence class.
Note that this interpretation would not work the same way for spans of non-injective

functions, as their graphical representation in Fop ; F may involve and —

more on this in Remark 4.11.

As explained above, Theorem 4.2 will follow from the following two lemmas.

Lemma 4.4 The top face of (5) is a pushout.

Proof The PROP Cu ; Un is defined as in Example 3.3, by pullback in In, whence

it is presented as the quotient of Un + Cu by (B4). Therefore, by definition, the

SMT of IFr consists of the SMTs for Fr and Cu ; Un, modulo the identification of

generators and equations of Un+Cu. This is the situation described by the fibered

sum operation of § 3, which implies the statement of the lemma. 2

Lemma 4.5 The bottom face of (5) is a pushout.

We will get to the proof of Lemma 4.5 in steps. First, we need an understanding

of when two cospans are identified by Π. (4) gives us a lead: two cospans represent

the same equivalence relation precisely when they are the same modulo (B4). Now,

since (B4) arises by a distributive law F ; Fop → Fop ; F defined by pullback in F
(Example 3.1(b)), one could be tempted of claiming that Π identifies two cospans

precisely when they have the same pullback. However, this approach identifies too

much. A counterexample is given by cospans represented by and , which

have the same pullback but express different partitions of 2. The correct

33

Zanasi

approach is subtler: since we only need to rewrite as , it suffices to pull

back the region of the cospan where all sub-diagrams of shape lie. Formally, we

decompose a cospan
∈F−−→ ∈F←−− as

∈Su−−→ ∈In−−→ ∈In←−− ∈Su←−− using the factorisation F ∼= Su ; In

(Example 3.1(a)), and then pull back the middle cospan
∈In−−→ ∈In←−−. This removes all

sub-diagrams of shape , as in the following riproposition of (4).

InInSu Su!! !! InInSu Su! ! !!

(7)

We crystallise our approach with the following definition.

Definition 4.6 We say that two cospans n
p1∈F−−−→ z

q1∈F←−−− m and n
p2∈F−−−→

r
q2∈F←−−− m are equal modulo-zeros if there is an epi-mono factorisation

e1p∈Su−−−−→ m1
p∈In−−−−→ m1

q∈In←−−−− e1q∈Su←−−−− of
p1−→ q1←−, and one

e2p∈Su−−−−→ m2
p∈In−−−−→ m2

q∈In←−−−− e2q∈Su←−−−− of
p2−→ q2←−

such that
m1

p−−→ m1
q←−− and

m2
p−−→ m2

q←−− have the same pullback and e1
p = e2

p, e
1
q = e2

q .

Remark 4.7 It may be insightful to remark that two cospans are equal modulo-

zeros precisely when they are in the equivalence relation generated by(
n

p−→ z
q←− m

)
∼
(
n

p−→ z
h−→ z′

h←− z q←− m
)

, where h is an injection.

The idea is that z
h−→ z′

h←− z plays a role akin to a repeated use of equation (B4) in

the diagrammatic language: it deflates the codomain of [p, q] : n + m → z so as to

“make it surjective”.

Our proof of Lemma 4.5 relies on showing that Π equalizes two cospans precisely

when they are equal modulo-zeros. As a preliminary step, we need to establish some

properties holding for any Γ, ∆ and X making the following diagram commute.

In + Inop [κ1, κ2] //
[ι1, ι2]

ss

Inop ; In

Γ
ssF ; Fop

∆
//X

(8)

Lemma 4.8 Given a PROP X and a commutative diagram (8), the following hold.

(i) If
p−→ q←− is a cospan in In with pullback (in In)

f←− g−→, then Γ(
f←− g−→) = ∆(

p−→ q←−).

(ii) If
p1←− q1−→ and

p2←− q2−→ are cospans in In with the same pullback then ∆(
p1−→ q1←−) =

∆(
p2−→ q2←−).

(iii) If
p1−→ q1←− and

p2−→ q2←− are equal modulo-zeros then ∆(
p1−→ q1←−) = ∆(

p2−→ q2←−).

(iv) If
f←− g−→ is a span in In with pushout (in F)

p−→ q←−, then Γ(
f←− g−→) = ∆(

p−→ q←−).

Proof

(i) We have that ∆(
p−→ q←−) = ∆(ι1p ; ι2q) = ∆ι1p ; ∆ι2q = Γκ1p ; Γκ2q =

Γ(κ1p ; κ2q) = Γ(
f←− g−→).

34

Zanasi

(ii) Let
f←− g−→ be the pullback of both

p1−→ q1←− and
p2−→ q2←−. By (i) Γ(

f←− g−→) = ∆(
p1−→ q1←−)

and Γ(
f←− g−→) = ∆(

p2−→ q2←−). The statement follows.

(iii) By assumption n
p1−→ z

q1←− m and n
p2−→ r

q2←− m have epi-mono factorisations

n
ep−→ m1

p−−→ z
m1

q←−− eq←− m and n
ep−→ m2

p−−→ r
m2

q←−− eq←− m respectively, where
m1

p−−→ m1
q←−− and

m2
p−−→ m2

q←−− have the same pullback. Then:

∆(
p1−→ q1←−) = ∆(

ep−→ m1
p−−→ m1

q←−− eq←−) = ∆(
ep−→ id←−) ; ∆(

m1
p−−→ m1

q←−−) ; ∆(
id−→ eq←−)

(ii)
= ∆(

e2p−→ id←−) ; ∆(
m2

p−−→ m2
q←−−) ; ∆(

id−→ eq←−) = ∆(
ep−→ m2

p−−→ m2
q←−− eq←−) = ∆(

p2−→ q2←−).

(iv) Analogous to (i). 2

Lemma 4.8 states that any commutative diagram (8) equalizes all cospans that

are equal modulo-zeros. In our cube (5), also the converse statement holds.

Lemma 4.9 The following are equivalent

(a) n
p1−→ z

q1←− m and n
p2−→ r

q2←− m are equal modulo zeros.

(b) Π(
p1−→ q1←−) = Π(

p2−→ q2←−).

Proof Since bottom face of (5) commutes (see Lemma A.1 in the Appendix),

Lemma 4.8 yield the direction (a) ⇒ (b). For the converse direction, a routine

check shows that the definition of Π enforces the two cospans to have epi-mono

factorisations with the desired properties. For details, see Appendix A. 2

We now have all the ingredients to show that the bottom face of (5) is a pushout.

Proof of Lemma 4.5 Commutativity is given by Lemma A.1, thus it remains

to show the universal property. Suppose that we have a commutative diagram as

in (8). It suffices to show that there exists a PROP morphism Θ: ER → X with

ΘΥ = Γ and ΘΠ = ∆ – uniqueness is automatic by fullness of Π (Lemma A.2).

Given an equivalence relation e : n → m, there exist a cospan
p−→ q←− such that

Π(
p−→ q←−) = e. We let Θ(e) = ∆(

p−→ q←−). This is well-defined: if
p′−→ q′←− is another

cospan such that Π(
p′−→ q′←−) = e then Lemma 4.9 says that

p−→ q←− and
p′−→ q′←− are equal

modulo-zeros and thus, by Lemma 4.8, ∆(
p−→ q←−) = ∆(

p′−→ q′←−). This argument also

shows that, generally, ΘΠ = ∆. Finally, Θ preserves composition:

Θ(e ; e′) = Θ(Π(
p−→ q←−) ; Π(

p′−→ q′←−)) = Θ(Π((
p−→ q←−) ; (

p′−→ q′←−)))

= ∆((
p−→ q←−) ; (

p′−→ q′←−)) = ∆(
p−→ q←−) ; ∆(

p′−→ q′←−) = Θ(e) ; Θ(e′).

We conclude by showing ΘΥ = Γ: given a span
f←− g−→ in In, let

p−→ q←− be its pushout

span in F. By Lemma 4.8.(iv), Γ(
f←− g−→) = ∆(

p−→ q←−) = ΘΠ(
p−→ q←−) = ΘΥ(

f←− g−→). 2

We can now conclude the characterisation of ER.

Proof of Theorem 4.2 The top and the bottom face of (5) are pushouts by

Lemma 4.4 and 4.5. This yields a unique PROP morphism IFr → ER making the

35

Zanasi

diagram commute. Since the other vertical arrows in (5) are isomorphisms, then

IFr→ ER is also an isomorphism. 2

Remark 4.10 As hinted by the rightmost diagram in (7), one can give an alter-

native characterisation of ER as the composite PROP Su ; Inop ; In ; Su. This would

rely on defining the appropriate distributive laws and combine them using Propo-

sition 3.2: the resulting equations are precisely those of IFr. Then, showing that

factorised arrows of Su ; Inop ; In ; Su are in bijective correspondence with equiva-

lence relations in ER completes the proof that IFr ∼= ER. In our exposition we

preferred to use the “cube” construction (5), as it applies also to linear and partial

functions (cf. § 6). Also, it yields the isomorphism IFr ∼= ER as a universal arrow.

Remark 4.11 Our construction merges the theory of cospans of functions and of

spans of injective functions to form the theory of equivalence relations. One may

wonder what happens with a more symmetric approach, namely if we consider

spans of arbitrary functions. Mimicking the cube construction (5) would result in

the following diagram in PROP, where the top and the bottom face are pushouts.

Mn + Cm
∼=
��

lLzz
� � // BiIww ∼=

��
Fr � � //

∼=
��

T

��
F + Fop

uu
// Fop ; F
xxF ; Fop // .

(9)

The SMT for T includes the SMTs for Fr and B, allowing us to prove

(M3),(C3)
=

(F1)
=

(B2)
=

(B1)
=

(B4)
= .

This derivation trivialises the theory, as it implies that any two arrows of the same

type are equal. Thus T , as well as the pushout object of the bottom face in (9), is

the terminal object in PROP: for any PROP S there is a unique morphism that

maps any arrow n
∈S−→ m into the unique arrow with that source and target in T .

5 A presentation of partial equivalence relations

Building on the results of the previous section, we shall now characterise the PROP

PER of partial equivalence relations (PERs) via another cube construction. In defin-

ing PER, we write dom(e) for the set Y ⊆ X of elements on which a partial equiv-

alence relation e on X is defined. Also, we reuse the operation − �− introduced in

defining ER (Definition 4.1).

Definition 5.1 Let PER be the PROP with arrows n → m partial equivalence

relations on n]m. Given e1 : n→ z, e2 : z → m, the composite e1 ; e2 is defined by

Ω(e1,e2) := {u ∈ n]m | ∀w ∈ z. (u,w) ∈ e1 � e2 ⇒ w ∈ dom(e1) ∩ dom(e2)}
e1 ; e2 := e1 � e2�Ω(e1,e2)

.

The monoidal product e1 ⊕ e2 is given by disjoint union.

In words, composition in PER is defined as in ER, but e1 ; e2 is left undefined

on elements that, while gluing e1 and e2 into e1 � e2, fall into the same equivalence

36

Zanasi

class as an element of z on which either e1 or e2 is undefined. Here is an example

in which the composite e1 ; e2 turns out to be everywhere undefined:

3 // 4 ; 4 // 2 = 3 // 2.

We now discuss what SMT will present PER. As we did for equivalence relations,

we first establish some preliminary intuition on the diagrammatic rendition of PERs.

For functions, partiality was captured graphically by incorporating an additional

generator (Example 3.3). The strategy for PERs is analogous: for the elements

on which a PER e is defined, the diagrammatic description is the same given for

equivalence relations in (4); the elements on which e is undefined will correspond

instead to ports where we plug in (if on the left) or (if on the right).

Therefore, the string diagrammatic theory for PERs will involve Fr expanded

with generators , , subject to suitable compatibility conditions. This plan

concretises into the PROP of “partial” special Frobenius algebras, whose definition

relies on the PROP PMn discussed in Example 3.3.

Definition 5.2 The PROP PFr is defined as PMn + PMnop quotiented by equa-

tions (F1), (F2) and the following two.

= = (PFR1) = (PFR2)

Intuitively, (PFR1) (together with (P1) and (P2) from PMn and their counter-

parts in PMnop) is the algebraic rendition of the “cancellation property” that we

observed in the composition of partial equivalence relations.

As a partial version of Fr, we expect PFr to characterise cospans of partial

functions. To phrase this statement, note that PF is equivalently described as

the coslice category 1/F (that is, the skeletal category of pointed finite sets and

functions) and thus has pushouts inherited from F. We can then form the PROP

PF ; PFop of cospans in PF via a distributive law PFop ; PF→ PF ; PFop defined by

pushout, analogously to the case of functions (Example 3.1(b)).

Proposition 5.3 PFr ∼= PF ; PFop.

Proof For soundness of PFr, one simply needs to check that (PFR1) and (PFR2)

can be read off pushout squares in PF, analogously to Example 3.1(c). Conversely,

completeness amounts to show that any equation that can be read off pushout

squares in PF is provable in PFr. The key insight is that any such pushout can

be decomposed into simpler pushout squares only involving the generators of PFr.
Thus it suffices to check that the interaction of generators is covered by the axioms

of PFr. We leave further details for Appendix A. 2

Now that we have an algebraic theory of cospans of partial functions, we can

approach PERs by removing redundancy. Let us call IPFr (irredundant partial

Frobenius algebras) the quotient of PFr by (B4).

37

Zanasi

Theorem 5.4 IPFr ∼= PER.

We proceed analogously to the case of equivalence relations. The isomorphism

of Theorem 5.4 arises as a universal arrow in the following diagram in PROP,

provided that the top and the bottom face are pushouts.

Un + CuiI

vv

� � //

∼=

��

FriI
vv

� � //

∼=

��

PFrhH

uu ∼=
��

Cu ; Un � � //

∼=

��

IFr � � //

∼=

��

IPFr
∼=

��

In + Inop
[κ1,κ2]
uu

[ι1,ι2] // F ; Fop

Π
ww

Λ //PF ; PFop

Π′

uu
Inop ; In

Υ
// ER

Ξ
//PER

(10)

The leftmost cube is just (5). We now specify Λ, Ξ and Π′.

• For Λ, recall that there is a functor R : PF → F which maps n to n+ 1 and

f : n → m to the function n+ 1 → m+ 1 sending to ? ∈ 1 the elements on

which f is undefined. Now, R has a left adjoint L : F → PF: the obvious

embedding of functions into partial functions. We define Λ as the embedding

of F ; Fop into PF ; PFop induced by L. This is a functorial assignment because

left adjoints preserve pushouts.

• Similarly, we let Ξ be the obvious embedding of ER into PER. This assignment

is functorial because composition in PER behaves as composition in ER on

PERs that are totally defined.

• The PROP morphism Π′ : PF ; PFop → PER is the extension of Π: F ; Fop → ER
to partial functions, defined by the same clause (6). Note that the generality

of PER is necessary: the value e of Π′ on a cospan
p−→ q←− in PF is possibly not

a reflexive relation, since p and q may be undefined on some elements of n, m.

Proof of Theorem 5.4 The leftmost top and bottom squares of (10) have been

proven to be pushouts in Lemmas 4.4 and 4.5. The rightmost top square is readily

seen to be a pushout by definition of the SMTs involved, similarly to the proof

of Lemma 4.4. It thus remains to show that the rightmost bottom square is also

a pushout. It clearly commutes by definition of Π, Π′, Ξ and Λ. To complete the

proof, because Λ is an embedding, it suffices to check that Ξ(e) = Π′(
p−→ q←−) precisely

when there exist
p′−→ q′←− in F ; Fop such that e = Π(

p′−→ q′←−) and Λ(
p′−→ q′←−) =

p−→ q←−. We

leave the (simple) details to Appendix A.

Finally, since the top and the bottom face of (10) are pushouts and the vertical

arrows are isomorphisms, the universal arrow IPFr→ PER is also an isomorphism.2

6 Conclusions

Our work combines PROPs of spans and cospans of functions to give an algebraic

characterisation for PROPs of equivalence relations. What we find most striking

is that the same “cube” pattern leads to similar results in the total and partial

cartesian case, explored here, and in the linear case, investigated in [5]. It seems

that we are scratching the surface of a more general construction, which needs some

38

Zanasi

further insights to be better understood — as we saw, it collapses with spans of

non-injective functions (Remark 4.11). We leave this investigation for future work.

Acknowledgements. Thanks to Filippo Bonchi, Pierre-Louis Curien, Peter

Selinger, Pawel Sobociński and the anonymous referees for useful comments and

discussion. The author acknowledges support from the ERC under the European

Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant no 320571.

References

[1] Baez, J. C. and J. Erbele, Categories in control, CoRR abs/1405.6881 (2014).

[2] Bonchi, F., P. Sobociński and F. Zanasi, A categorical semantics of signal flow graphs, in: Concurrency
Theory - 25th International Conference, CONCUR 2014. Proceedings, 2014, pp. 435–450.

[3] Bonchi, F., P. Sobociński and F. Zanasi, Interacting bialgebras are Frobenius, in: Foundations of
Software Science and Computation Structures - 17th International Conference, FOSSACS 2014, 2014,
pp. 351–365.

[4] Bonchi, F., P. Sobociński and F. Zanasi, Full abstraction for signal flow graphs, in: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, 2015, pp. 515–526.

[5] Bonchi, F., P. Sobociński and F. Zanasi, Interacting Hopf algebras, Journal of Pure and Applied Algebra
(2016), to appear.
URL http://arxiv.org/abs/1403.7048

[6] Bruni, R. and F. Gadducci, Some algebraic laws for spans (and their connections with multi-relations),
in: RelMiS 2001 (2001).

[7] Bruni, R., H. C. Melgratti and U. Montanari, A connector algebra for P/T nets interactions, in:
CONCUR ‘11 (2011), pp. 312–326.

[8] Bruni, R., U. Montanari, G. D. Plotkin and D. Terreni, On hierarchical graphs: Reconciling bigraphs,
gs-monoidal theories and gs-graphs, Fundam. Inform. 134 (2014), pp. 287–317.

[9] Carboni, A. and R. F. C. Walters, Cartesian bicategories I, J Pure Appl Algebra 49 (1987), pp. 11–32.

[10] Cheng, E., Iterated distributive laws., Math. Proc. Camb. Philos. Soc. 150 (2011), pp. 459–487.

[11] Coecke, B. and R. Duncan, Interacting quantum observables: categorical algebra and diagrammatics,
New Journal of Physics 13 (2011), p. 043016.

[12] Coya, B. and B. Fong, Corelations are the prop for extraspecial commutative Frobenius monoids, CoRR
abs/1601.02307 (2016).

[13] Došen, K. and Z. Petri, Syntax for split preorders, Annals of Pure and Applied Logic 164 (2013),
pp. 443–481.

[14] Duncan, R. and K. Dunne, Interacting Frobenius algebras are Hopf, CoRR abs/1601.04964 (2016).

[15] Hasuo, I. and N. Hoshino, Semantics of higher-order quantum computation via geometry of interaction,
in: Proceedings of the 26th IEEE Symposium on Logic in Computer Science, LICS, 2011, pp. 237–246.

[16] Heunen, C. and J. Vicary, Lectures on categorical quantum mechanics (2012).
URL www.cs.ox.ac.uk/files/4551/cqm-notes.pdf

[17] Jacobs, B., “Categorical Logic and Type Theory,” Number 141 in Studies in Logic and the Foundations
of Mathematics, North Holland, Amsterdam, 1999.

[18] Jacobs, B. and J. Mandemaker, Coreflections in algebraic quantum logic, Foundations of Physics 42
(2012), pp. 932–958.

[19] Lack, S., Composing PROPs, Theor App Categories 13 (2004), pp. 147–163.

[20] Lafont, Y., Equational reasoning with 2-dimensional diagrams, in: H. Comon and J.-P. Jounnaud,
editors, Term Rewriting, Lecture Notes in Computer Science 909, Springer Berlin Heidelberg, 1995 pp.
170–195.

[21] Mac Lane, S., Categorical algebra, B Am Math Soc 71 (1965), pp. 40–106.

39

http://arxiv.org/abs/1403.7048
www.cs.ox.ac.uk/files/4551/cqm-notes.pdf

Zanasi

[22] Mac Lane, S., “Categories for the Working Mathematician,” Springer, 1998.

[23] Rosebrugh, R., N. Sabadini and R. Walters, Generic commutative separable algebras and cospans of
graphs, Theory and applications of categories 15 (2005), pp. 164–177.

[24] Scott, D., Data types as lattices, in: G. H. Müller, A. Oberschelp and K. Potthoff, editors, Proceedings
of the International Summer Institute and Logic Colloquium, Kiel 1974 (1975), pp. 579–651.

[25] Selinger, P., A survey of graphical languages for monoidal categories, Springer Lecture Notes in Physics
13 (2011), pp. 289–355.

[26] Sobociński, P., Nets, relations and linking diagrams, in: Algebra and Coalgebra in Computer Science -
5th International Conference, CALCO 2013, 2013, pp. 282–298.

[27] Street, R., The formal theory of monads, J Pure Appl Algebra 2 (2002), pp. 243–265.

[28] Streicher, T., “Semantics of type theory : correctness, completeness, and independence results,” Progress
in theoretical computer science, Birkhäuser, Boston, 1991.

[29] Zanasi, F., “Interacting Hopf Algebras: the theory of linear systems,” Ph.D. thesis, Ecole Normale
Supérieure de Lyon (2015).

40

Zanasi

A Omitted Proofs

The following lemma is used in § 4.

Lemma A.1 The bottom face of (5) commutes.

Proof It suffices to show that it commutes on the two injections into In+ Inop , that

means, for any f : n → m in In, Υ(
id←− f−→) = Π(

f−→ id←−) and Υ(
f←− id−→) = Π(

id−→ f←−).

These statements are clearly symmetric, so it is enough to check one:

Υ(
id←− f−→) = {(v, w) | v = f−1(w) ∨ w = f−1(v) ∨ v = w}

= {(v, w) | f(v) = w ∨ f(w) = v ∨ v = w}
f ∈ In

= {(v, w) | f(v) = w ∨ f(w) = v ∨ f(v) = f(w)} = Π(
f−→ id←−).

2

Proof of Lemma 4.9 We complete the proof in the main text by showing that

(b) ⇒ (a). For this purpose, it is useful to first verify the following properties:

(i) for all u, u′ ∈ n, p1(u) = p1(u′) if and only if p2(u) = p2(u′)

(ii) for all v, v′ ∈ m, q1(v) = q1(v′) if and only if q2(v) = q2(v′)

(iii) for all u ∈ n, v ∈ m, p1(u) = q1(v) if and only if p2(u) = q2(v)

(iv) Let p1[n] be the number of elements of n that are in the image of p1, and

similarly for p2[n]. Then p1[n] = p2[n].

(v) q1[n] = q2[n].

For statement (i), observe that, by definition of Π, for any two elements u, u′ ∈ n the

pair (u, u′) is in Π(
p1−→ q1←−) if and only if p1(u) = p1(u′). Similarly, (u, u′) ∈ Π(

p2−→ q2←−)

if and only if p2(u) = p2(u′). Since by assumption Π(
p1−→ q1←−) = Π(

p2−→ q2←−), we obtain

(i). A symmetric reasoning yields (ii). The argument for statement (iii) is analogous:

for i ∈ {1, 2} and u ∈ n, v ∈ m, by definition of Π, (u, v) ∈ Π(
pi−→ qi←−) if and only

if pi(u) = qi(v). Since Π(
p1−→ q1←−) = Π(

p2−→ q2←−), we obtain (iii). Statement (iv) is an

immediate consequence of (i), and (v) of (ii).

Now, by virtue of properties (i)-(v), it should be clear that we can define epi-

mono factorisations n
e1p−→ m1

p−−→ z
m1

q←−− e1q←− m and n
e2p−→ m2

p−−→ r
m2

q←−− e2q←− m of n
p1−→ z

q1←− m
and n

p2−→ r
q2←− m respectively, with the following properties.

(vi) e1
p and e2

p are the same function, with source n and target p1[n] = p2[n]. Also

e1
q and e2

q are the same function, with source m and target q1[m] = q2[m].

(vii) For all u ∈ p1[n] = p2[n] and v ∈ q1[n] = q2[n], m1
p(u) = m1

q(v) iff m2
p(u) =

m2
q(v).

It remains to prove that
m1

p−−→ m1
q←−− and

m2
p−−→ m2

q←−− have the same pullback. For this

purpose, let the following be pullback squares in In:

h1

g1
��

f1 // q1[n]

m1
q
��

p1[n]
m1

p

// z

h2

g2
��

f2 // q1[n]

m2
q
��

p1[n]
m2

p

// r

41

Zanasi

By the way pullbacks are computed in In (i.e., in F), using (vii) we can conclude that

m1
pg2 = m1

qf2 and m2
pg1 = m2

qf1. By universal property of pullbacks, this implies

that the spans
g1←− f1−→ and

g2←− f2−→ are isomorphic. 2

The following observation is used in the proof of Lemma 4.5.

Lemma A.2 Π: F ; Fop → ER is full.

Proof Let c1, . . . , ck be the equivalence classes of an equivalence relation e on n]m.

We define a cospan n
p−→ k

q←− m by letting p map v ∈ n to the equivalence class ci
to which v belongs, and symmetrically for q on values w ∈ m. It is routine to check

that Π(
p−→ q←−) = e. 2

Next, we give more details on the proof of Proposition 5.3. The hard part is to

check that the equation associated with any pushout diagram in PF is provable by

the equations of PFr. The key observation is that we can confine ourselves to just

pushouts involving the generators of PMn.

Before making this formal, we illustrate the idea of the argument with the fol-

lowing example. The leftmost diagram below is a diagram representing a span
f←− g−→ (left), which we transform into a cospan (right) pushing out

f←− g−→, only using

equations of PFr.

!!

⇒
!! !! !

⇒

! !! ! !
⇒

!! !! !

⇒
! !! !!

⇒
! !! !!

The steps are as follows. First, we expand
f←− and

g−→ as
f1←− f2←− and

g1−→ g2−→ g3−→
respectively, in such a way that each fi and gi contains at most one generator of

PF and PFop . In the next steps, we proceed pushing out spans
fi←− gj−→ whenever

possible: graphically, this amounts to apply valid equations of PFr of a very simple

kind, namely those describing the interaction of a single (or no) generator of PFop

with one (or none) of PF. Note that pushing out spans of this form always gives

back a cospan
p−→ q←− with p, q containing at most one generator, meaning that the

procedure can be applied again until no more spans appear. The resulting diagram

(the rightmost above) is the pushout of the leftmost one by pasting properties of

pushouts. Therefore, we just proved that the equation

!!

=

! !! !!

arising by the distributive law PFop ; PF→ PF ; PFop is provable in PFr.

We now formalise the argument sketched above. Let us call atom any diagram of

PMn of shape
f−→ b−→ g−→, where f and g consist of components and composed

together via ⊕ or ; , and b is either or a generator of PMn. The following lemma

establishes that PFr is complete for pushouts involving atoms.

Lemma A.3 Let
f←− g−→ be a span in PF where f and g are in the image (under

the isomorphism PMn ∼= PF) of atoms and suppose that the following is a pushout

42

Zanasi

square.
rf

vv
g
((m

p ((
n

qvvz
(A.1)

Then (i) p and q are also in the image of atoms and (ii) the associated equation is

provable in PFr.

Proof The two points are proved by case analysis on all the possible choices of

generators of PMn and (PMn)op . 2

Proof of Proposition 5.3 Fix any pushout square (A.1) in PF and pick expansions

f = f1 ; . . . ; fk and g = g1 ; . . . ; gj , with each fi and gi in the image of an atom.

We can calculate the pushout above by tiling pushouts of atoms as follows:

zf1
rr

g1
,,f2rr ,, rr

g2 ,,. . .fkrr ,, ,,rr . . .rr
gj
,,

,, . . . rr
,, . . .rr ,, rr. . . ,, . . .rr

(A.2)

Point (i) of Lemma A.3 guarantees that each inner square only involves arrows in

the image of some atom and Point (ii) ensures that all the associated equations

are provable in PFr. It follows that also the equation associated with the outer

pushout (A.2) is provable. 2

We complete the proof sketch of Theorem 5.4 given in the main text. The

following is the key lemma.

Lemma A.4 Let e ∈ ER[n,m] and
p−→ q←−∈ PF ; PFop. The following are equivalent.

(i) Ξ(e) = Π′(
p−→ q←−).

(ii) There are cospans
p1−→ q1←−, . . . ,

pk−→ qk←− in F ; Fop [n,m] such that

e = Π(
p1−→ q1←−)

Λ(
p1−→ q1←−) = Λ(

p2−→ q2←−)

Π(
p2−→ q2←−) = Π(

p3−→ q3←−)

.

Λ(
pk−→ qk←−) =

p−→ q←− .

Proof First we observe that, because Λ is an embedding, Λ(
pi−→ qi←−) = Λ(

pi+1−−−→ qi+1←−−)

implies
pi−→ qi←−=

pi+1−−−→ qi+1←−−. It follows that (ii) is equivalent to the statement that (iii)

there exist
p′−→ q′←−∈ F ; Fop [n,m] such that e = Π(

p′−→ q′←−) and Λ(
p′−→ q′←−) =

p−→ q←−.

It is very easy to show that (iii) implies (i):

Ξ(e)
(iii)
= ΞΠ(

p′−→ q′←−)
comm. of (10)

= Π′Λ(
p′−→ q′←−)

(iii)
= Π′(

p−→ q←−).

For the converse direction, suppose that we can show (*) the existence of
p′−→ q′←−∈ F ; Fop [n,m] such that

p′−→ q′←−= Λ(
p−→ q←−). Then the following derivation gives

43

Zanasi

statement (iii):

Ξ(e)
(i)
= Π′(

p−→ q←−)
(*)
= Π′Λ(

p′−→ q′←−)
comm. of (10)

= ΞΠ(
p′−→ q′←−).

Indeed, because Ξ is an embedding, the derivation above implies that e = Π(
p′−→ q′←−).

Therefore it suffices to show (*). For this purpose, we just need to prove that both

n
p∈PF−−−→ z and m

q∈PF−−−→ z are total functions. Let u be an element of n: since

Π′(
p−→ q←−) = Ξ(e) and Ξ embeds equivalence relations into PERs, then Π′(

p−→ q←−) is

in fact an equivalence relation, meaning that u belongs to some equivalence class of

the partition induced by Π′(
p−→ q←−). It follows by definition of Π′ that p : n → z is

defined on u. With a similar argument, one can show that q : m → z is defined on

all elements of m and thus both p and q are total functions. This implies that
p−→ q←−

is in the image of the embedding Λ. 2

Proof of Theorem 5.4 In order to complete the proof of the main text, it re-

mains to show that the leftmost bottom face of (10) is a pushout. First, recall that

pushouts in PROP can be calculated as in Cat. In particular, (10) involves cate-

gories all with the same objects and identity-on-objects functors. This means that

the pushout object is the quotient of ER and F ; Fop along the equivalence relation

generated by

{(e, p−→ q←−) | there is
p′−→ q′←− such that Π(

p′−→ q′←−) = e and Λ(
p′−→ q′←−) =

p−→ q←−}. (A.3)

Lemma A.4 proves that Π′ and Ξ map n
e∈ER−−−→ m and n

p−→ q←− m to the same arrow

exactly when they are in the equivalence relation described above. This means that

PER indeed quotients by (A.3) and thus is the desired pushout object. 2

44

How to think of intersection types as Cartesian
products:

marginalia to a theorem of Bucciarelli, Piperno,
and Salvo

Rick Statman
Carnegie Mellon University

Department of Mathematical Sciences
Pittsburgh, PA 15213
statman@cs.cmu.edu

May 20, 2016

In their paper “Intersection types and lambda definability” [2] Buc-
ciarelli, Piperno, and Salvo give a mapping of the strongly normalizable
untyped terms into the simply typed terms via the assignment of inter-
section types. Here we shall both generalize their result and provide a
converse. We shall do this by retracting untyped terms with surjective
pairing onto untyped terms without pairing by using a special variant of
Stovring’s notion [7] of a symmetric term. The symmetric ones which have
simple types with Cartesian products are precisely the ones which retract
onto (eta expansions of) strongly normalizable untyped terms. The inter-
section types of the strongly normalizable terms are related to the simple
types with products in that we just replace ∧ by Cartesian product and vice
versa.

Definition of the atoms of the language:
the variables x, y, z, . . . are atoms
the constants P,L,R are atoms

Definition of the terms of the language:
atoms are terms
if X,Y are terms then so are (XY) and λxX

45

46

We shall adopt the customary conventions:

(i) parens are deleted and restored by left association and the use of
Church’s infixed “dot” notation

(ii) parens are added around abstractions, and additional unary opera-
tions, for readability.

The axiom and rules of untyped lambda calculus are the following. The
first 5 axioms correspond to the classical theory of untyped lambda calculus
with surjective pairing SP.

(beta) (λxX)Y = [Y/x]X

(eta) X = λx.Xx x not free in X

(L/Pa) L(PXY) = X

(R/Pa) R(PXY) = Y

(P/Dp) P(LX)(RX) = X

The next 6 axioms correspond to the extended theory of Stovring (FP) and
Statman (PSP [6], in the combinator case), which enjoys the Church-Rosser
property when formulated by reductions.

(P/Ap) PXYZ = P(XZ)(YZ)

(L/Ap) LXY = L(XY)

(R/Ap) RXY = R(XY)

(L/Ab) L(λxX) = λx(LX)

(R/Ab) R(λxX) = λx(RX)

(P/Ab) P(λxX)(λxY) = λx PXY

There are certain useful derived rules.

(1) (P/Dp) and (P/Ap)⇒ (L/Ap) and (R/Ap)

L(XY) = L(P(LX)(RX)Y) = L(P(LXY)(RXY)) = LXY

similarly for R

(2) (L/Ap) and (R/Ap) and (P/Dp)⇒ (P/Ap)

L(PXYZ) = L(PXY)Z = XZ and R(PXYZ) = R(PXY)Z = YZ therefore

PXYZ = P(L(PXYZ))(R(PXYZ))y = P(XZ)(YZ).

47

(3) (eta) and (P/Ap)⇒ (P/Ab)

P(λxX)(λxY) = λy.P(λxX)(λxY)y = λy.P((λxX)y)((λxY)y) = λx PXY

(4) (eta) and (L/Ap)⇒ (L/Ab)

L(λxX) = λy.L(λxX)y = λy.L((λxX)y) = λx(LX)

similarly for R

(5) (eta)⇒ LP = K and RP = K∗

L(PX) = λx.L(PX)x = λx.L(PXx) = λx.X thus

LP = λx.LPx = λx.L(Px) = λxy. x = K

similarly

R(PX) = λx.R(PX)x = λx.R(PXx) = λx. x hence

RP = λyx.x = K∗

The result of Klop is that the Church-Rosser property fails for the fol-
lowing classical reductions for SP:

(beta) (λxX)Y ⇒ [Y/x]X

(eta) λx.Xx ⇒ X x not free in X

(L/Pa) L(PXY) ⇒ X

(R/Pa) R(PXY) ⇒ Y

(P/Dp) P(LX)(RX) ⇒ X

Nevertheless, this theory was proved conservative over beta-eta by de Vrijer
[2]. Stovring and, later, Statman (for the combinator case) introduced new
reductions for the first 5 and an additional one which enjoy Church-Rosser.

48

Stovring Reductions for FP with eta:

(beta) (λxX)Y ⇒ [Y/x]X

(etae) X ⇒ λx.Xx x not free in X

(L/Pa) L(PXY) ⇒ X

(R/Pa) R(PXY) ⇒ Y

(P/De) X ⇒ P(LX)(RX)

(P/Ap) PXYZ ⇒ P(XZ)(YZ)

Now, Church-Rosser is enough to obtain de Vrijer’s theorem and a co-de
Vrijer theorem that beta-eta is conservative over pairing with FP. Stovring’s
argument uses the notion of symmetric term defined below.

Our basic theory of intersection types is Barendregt, Coppo, and Dezani
(BCD, p. 580). There is a simpler theory consisting of → I,→ E,∧I, and
∧E. We shall call the later BPS since it is easy to see that is equivalent to the
theory S of intersection types defined in [2]. Each intersection type A can
be converted into a simple type A′ with products by replacing (B ∧ C) with
(B∗C). The inverse of ‘ is ”.

Definition of simple types with Cartesian products:

Type atoms p, q, r, . . . are types.

If A and B are types then so are (A→ B) and (A∗B)

We shall employ Curry’s substitution prefix both for terms and types.
[B/p]A is the result of substituting B for p in A. We adopt Church typ-
ing for terms as follows, but it is convenient to adopt the Curry notation
S ` X : A, where S (the base) is a set of declarations x : B for the Church
typings . Here S will only contain declarations x : B provided x is indeed a
typed variable of type B.

Definition of typed terms:

xA, yB, zC, . . . are typed variables
` xA : A, ` yB : B, ` zC : C, . . .

We abbreviate by omitting superscripts.

49

` X : A, ` Y : B ⇒ ` PXY : (A∗B)

` X : (A∗B) ⇒ ` LX : A, ` RX : B

` X : B ⇒ ` λxAX : A→ B

` X : A→ B, ` Y : A ⇒ ` (XY) : B

` X : A→ B, ` Y : A ⇒ ` 〈XY〉 : B

` 〈(LX)Y〉 : B, ` 〈(RX)Y〉 : C ⇒ ` 〈XY〉 : B∗C

Here 〈〉 simply represents the pointwise action of a pair on an element
in the common domain of the coordinates. We could define 〈〉 as follows:

` X : A→ B, ` Y : A → 〈XY〉 := (XY)

` 〈(LX)Y〉 : B, ` 〈(RX)Y〉 : C → 〈XY〉 := P〈(LX)Y〉〈(RX)Y〉

but we prefer to introduce 〈〉 as a primitive with reduction rules:

(beta)(λx.XY) ⇒ [Y/x]X

(L/Pa) L(PXY) ⇒ X

(R/Pa) R(PXY) ⇒ Y

(P/Dp) P(LX)(RX) ⇒ X

(P/ <>) 〈(PXY)Z〉 ⇒ P〈XZ〉〈YZ〉

(zeta) 〈XY〉 ⇒ (XY) if ` X : A→ B. ` Y : A

Facts:

(1) subject reduction

(2) weak diamond

(3) strong normalization

(4) Church-Rosser

Definition of the faces f (X) of an untyped term X:

50

f (x) = {x}

f (λx.X) = {λx.Z | Z : f (X)}

f (PXY) = f (X) ∪ f (Y)

f (LX) = f (X)

f (RX) = f (X)

f (XY) = {Z′Z” |Z′ : f (X) and Z” : F(Y)}

Definition of a ∼ regular term for a binary relation ∼:

X is ∼ regular if for any subterm PYZ of X and U : f (Y), V : f (Z) we have
U ∼ V

Examples of ∼

(1) alpha conversion

(2) eta conversion

(3) beta-eta conversion

Stovring’s notion of symmetric is the same as beta-eta regular. Here we
note that the condition U : f (X), V : f (X) ⇒ U ∼ V is not sufficient to
ensure that X is ∼ regular already for ∼= eta. For example,

λy.Px((λz. x)y)

has only one face λz. x, modulo eta, but P x((λz. x)y) has two. The faces
of a term typed with simple types and Cartesian products are obtained by
erasing the typing, changing 〈〉 to () and computing f of the result.

Lemma 1. If, in BCD, A ≤ B then there exist an eta regular x′ such that in simple
types with Cartesian products we have x : A′ ` x′ : B′ and any face of x′ eta
reduces to x.

Proof. By induction on the length of a BCD derivation of A [B.

Basis:

Case 1: (refl.) We set x′ := x

x : A ` x : A

51

Case 2: (incL). We set x′ := Lx

x : A∗B ` x : A∗B
x : A∗B ` Lx : A

Case 3: (incR). We set x′ := Rx

x : A∗B ` x : A∗B
x : A∗B ` Rx : B

Case 4: (→ ∧). We set x′ := λy. 〈xy〉
x : (A→ B)∗(A→ C) ` x : (A→ B)∗(A→ C)

x : (A→ B)∗(A→ C) ` Lx : A→ B

x : (A→ B)∗(A→ C) ` Rx : A→ C

y : A ` y : A

x : (A→ B)∗(A→ C), y : A ` 〈Lxy〉 : B

x : (A→ B)∗(A→ C), y : A ` 〈Rxy〉 : C

x : (A→ B)∗(A→ C), y : A ` 〈xy〉 : B∗C

x : (A→ B)∗(A→ C) ` λy. 〈xy〉 : A→ (B∗C)

Induction step:

Case 1: (glb)
By induction hypothesis we may assume that we have x : C′ ` x′1 : A′ and
x : C′ ` x′2 : B′ in simple types with surjective pairing. Thus, we can set
x′ := P(x′1)(x′2).

Case 2: (trans)
By induction hypothesis we may assume that we have y : B′ ` y′1 : C′

and x : A′ ` x′2 : B′ in simple types with surjective pairing. Thus we can
set [x′2/y](y′1)

Case 3: (→)
By induction hypothesis we may assume that we have y : C′ ` y′1 : A′ and
z : B′ ` z′2 : D in simple types with surjective pairing. Then we can set
x′ := λy. (x(y′1))′2 and we have

52

x : A′ → B′, y : C′ ` x(y′1) : B′

x(y′1) : B′ ` (x(y′1))′2 : D′

x : A′ → B′, y : C′ ` (x(y′1))′2 : D′

x : A′ → B′ ` λy. (x(y′1))′2 : C′ → D′

End of proof. �

Theorem 1. If in BCD we have S ` X : A then there is eta regular X′ such that in
simple types with Cartesian products S′ ` X′ : A′ and for any face U of X′,U eta
reduces to X.

Proof. By induction on the length of a BCD derivation of S ` X : A.

Basis: (Ax) This case is trivial.

Induction step:

Case 1: The derivation ends in the [rule. This is the content of Lemma 1.

Case 2: The derivation ends in ∧E,→ I, or→ E. This case follows directly
the induction hypothesis.

Case 3: The derivation ends in ∧I. So in BCD we have S ` X : A and
S ` X : B. By induction hypothesis we have S′ ` X′1 : A′ and S′ ` X′2 : B′.
Thus S′ ` P(x′1)(x′2) : (A∧B)′ and P(x′1)(x′2) is eta regular. End of proof. �

Theorem 2. If X is eta regular and in simple types with Cartesian products we
have S ` X : A then for any face U of X there exists an eta reduct U” such that we
have in BCD S” ` U” : A”.

Proof. By induction on the length of a typing derivation of X.

Basis: X = x. Obvious.

Case 1: X = PYZ : A∗B. Y and Z are eta regular, and the induction
hypothesis applies to them. Thus, for any U : f (Y) and V : f (Z) there exist
eta reducts U” and V” respectively such that in BCD, S” ` U” : A” and
S” ` V” : B”. Now U” ∼ V” so by subject reduction and Church-Rosser for
eta there exists W” such that U” eta reduces to W” eta expands to V” and
S” `W” : A” ∧ B” in BCD.
Case 2: X = LY or RY. By induction hypothesis and ∧E.
Case 3: X = λy.Y : A → B. Now the induction hypothesis applies to
S ∪ {y : A} ` Y : B so S” ∪ {y : A”} ` Y” : B”. Hence S” ` λy.Y” : (A→ B)”.

53

Case 4: X = (YZ) : B with S ` Y : A→ B. As in Case 1 for any U : f (Y) and
V : f (Z) there exist eta reducts U” and V” respectively such that in BCD,
S” ` U” : A”→ B” and S” ` V” : A”. Thus S” ` U”V” : B”.
Case 5: X = 〈YZ〉. As in Case 1 for any U : f (Y) and V : f (Z) there exist eta
reducts U” and V” respectively such that in BCD, S” ` U”V” : A, and other
eta reducts U” and V” respectively such that in BCD, S” ` U”V” : B”. By
Church-Rosser for eta and subject reductions there exists W such that UV
eta reduces to U”V” eta reduces to W eta expands to U”V” eta expands to
UV and S” `W : A ∧ B. End of proof. �

Now Theorems 1 and 2 combine for a nice characterization of the case
when X is eta normal.

Corollary 1. If X is eta normal, then in BCD we have S ` X : A if and only if
there is an eta regular X′ such that S′ ` X′ : A and X is an eta reduct of any face
of X′.

Remark: The eta reductions in Theorem 1 and 2 could be removed by the
technique of [5]. There we extend the type structure to make→ “almost”
surjective. For each atom p we add new atoms pl, pr and the definitional
equality p := pl → pr. Replacing an atom by its definition is referred to as
“type expansion”. It is obvious that two distinct type expansions of a given
type have a common type expansion. This was our original formulation of
the result. However, here we prefer to state the outcome for the original
BCD. With type expansions BPS becomes useful. We state without proof
the useful lemmas.

Lemma 2. If in BPS, S ` X : A then for any eta expansion X# of X there exists
type expansions S#,A# such that S# ` X# : A#.

Lemma 3. If in BCD, S ` X : A then there is an eta expansion X# of X and a type
expansion S# of S and A# of A such that in BPS,

S# ` X# : A#

REFERENCES 54

References

[1] Barendregt, H., Dekkers, ., Statman, R., Lambda Calculus with Types,
CUP, (2013).

[2] Bucciarelli, ., Piperno, ., Salvo ., Intersection types and lambda defin-
ability, MSCS03, 13 (1), pp. 15-53, (2003).

[3] Coppo, ., Dezani, ., A new type assignment for lambda terms, Archiv
fur math. logik, 19 (l), pp. 139-156, (1978).

[4] de Vrijer, ., Extending the lambda calculus with surjective pairing is
conservative, LICS 4, pp. 204-215, (1989).

[5] Statman, R., A local translation of untyped into simply typed lambda-
calculus, CMU Research Report #91-134, (1991).

[6] Statman, R., Surjective pairing revisited, in Liber Armicorum for Roel
DeVrijer. Klop, van Oostrom, and van Raamsdonk, eds., University of
Amsterdam, (2009).

[7] Stovring, ., Extending the extensional lambda calculus with surjective
pairing is conservative, LMCS 2, pp. 1-14.

MFPS 2016

Approximate Relational Hoare Logic for
Continuous Random Samplings

Tetsuya Sato1

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan

Abstract

Approximate relational Hoare logic (apRHL) is a logic for formal verification of the differential privacy of
databases written in the programming language pWHILE. Strictly speaking, however, this logic deals only
with discrete random samplings. In this paper, we define the graded relational lifting of the subprobabilistic
variant of Giry monad, which described differential privacy. We extend the logic apRHL with this graded
lifting to deal with continuous random samplings. We give a generic method to give proof rules of apRHL
for continuous random samplings.

Keywords: Differential privacy, Giry monad, graded monad, relational lifting, semantics,

1 Introduction

Differential privacy is a definition of privacy of randomized databases proposed

by Dwork, McSherry, Nissim and Smith [7]. A randomized database satisfies ε-

differential privacy (written ε-differentially private) if for any two adjacent data,

the difference of their output probability distributions is bounded by the privacy

strength ε. Differential privacy guarantees high secrecy against database attacks

regardless of the attackers’ background knowledge, and it has the composition laws,

with which we can calculate the privacy strength of a composite database from the

privacy strengths of its components.

Approximate relational Hoare logic (apRHL) [2,16] is a probabilistic variant of

the relational Hoare logic [4] for formal verification of the differential privacy of

databases written in the programming language pWHILE. In the logic apRHL, a

parametric relational lifting, which relate probability distributions, play a central

role to describe differential privacy in the framework of verification. This para-

metric lifting is an extension of the relational lifting [10, Section 3] that captures

probabilistic bisimilarity of Markov chains [13] (see also [6, lemma 4]). The concept

1 Email:satoutet@kurims.kyoto-u.ac.jp

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:satoutet@kurims.kyoto-u.ac.jp

Sato

of differential privacy is described in the category of binary relation and mappings

between them, and verified by the logic apRHL.

Strictly speaking, however, apRHL deals only with random samplings of discrete

distributions, while the algorithms in many actual studies for differential privacy

are modelled with continuous distributions, such as, the Laplacian distributions

over real line. Therefore apRHL is desired to be extended to deal with random

continuous samplings.

1.1 Contributions

Main contributions of this paper are the following two points:

• We define the graded relational lifting of sub-Giry monad describing differential

privacy for continuous random samplings.

• We extend the logic apRHL [2,16] for continuous random samplings (we name

continuous apRHL) .

This graded relational lifting is developed without witness distributions of proba-

bilistic coupling, and hence is constructed in a different way from the coupling-based

parametric lifting of relations given in the studies of apRHL [1,2,16].

In the continuous apRHL, we mainly extend the proof rules for relation com-

positions and the frame rule. We also develop a generic method to construct proof

rules for random samplings. By importing the new rules added to apRHL+ in [1],

we give a formal proof of the differential privacy of the above-threshold algorithm

for real-valued queries [8, Section 3.6].

1.2 Preliminaries

We denote by Meas the category of measurable spaces and measurable functions

between them and denote by Set the category of all sets and functions. The category

Meas is complete and cocomplete, and the forgetful functor U : Meas → Set

preserves products and coproducts. We also denote by ωCPO⊥ of the cateory of

ω-complete partial orders with the least element and continuous functions.

A Category of Relations between Measurable Spaces

We introduce the category BRel(Meas) of binary relations between measurable

spaces as follows:

• An object is a triple (X,Y,Φ) consisting of measurable spaces X and Y and a

relation Φ between X and Y (i.e. Φ ⊆ UX × UY). We remark that Φ does not

need to be a measurable subset of the product space X × Y .

• An arrow (f, g) : (X,Y,Φ)→ (X ′, Y ′,Φ′) is a pair of measurable functions f : X →
X ′ and g : Y → Y ′ such that (Uf × Ug)(Φ) ⊆ Φ′.

When we write an object (X,Y,Φ) in BRel(Meas), we omit writing the underlying

spaces X and Y if they are obvious from the context. We write p for the forgetful

functor p : BRel(Meas) → Meas ×Meas which extracting underlying spaces:

(X,Y,Φ) 7→ (X,Y). We call an endofunctor F on BRel(Meas) a relational lifting

of an endofunctor E on Meas if (E × E)p = pF .

56

Sato

The Sub-Giry Monad

The Giry monad on Meas is introduced in [9] to give a categorical approach to

probability theory; each arrow X → Y in the Kleisli category of the Giry monad

bijectively corresponds to a probabilistic transition from X to Y , and the Chapman-

Kolmogorov equation corresponds to the associativity law of the Giry monad.

We recall the sub-probabilistic variant of the Giry monad, which we call the

sub-Giry monad (see also [17, Section 4]):

• For any measurable space (X,ΣX), the measurable space (GX,ΣGX) is defined

as follows: the underlying set GX is the set of subprobability measures over X,

and the σ-algebra ΣGX is the coarsest one that makes the evaluation function

evA : GX → [0, 1] (mapping ν to ν(A)) measurable for each A ∈ ΣX .

• For each f : X → Y in Meas, Gf : GX → GY is defined by (Gf)(ν) = ν(f−1(−)).

• The unit η is defined by ηX(x) = δx, where δx is the Dirac measure centred on x.

• The multiplication µ is defined by µX(Ξ)(A) =
∫
GX evA d(Ξ). The Kleisli lifting

of f : X → GY is given by f](ν)(A) =
∫
X f(−)(A) dν (ν ∈ GX).

The monad G is commutative strong with respect to the cartesian product in Meas.

The strength st−,= : (−) × G(=) ⇒ G(− × =) is given by the product measure

stX,Y (x, ν) = δx⊗ν. The commutativity of G is given from the Fubini theorem. The

double strength dst−,= : G(−)×G(=)⇒ G(−×=) is given by dstX,Y (ν1, ν2) = ν1⊗ν2.

The Kleisli category MeasG is often called the category SRel of stochastic rela-

tions [17, Section 3]. The category SRel is ωCPO⊥-enriched (with respect to the

cartesian monoidal structure) with the following pointwise order:

f v g ⇐⇒ ∀x ∈ X,B ∈ ΣY .f(x)(B) ≤ g(x)(B) (f, g : X → Y in SRel).

The least upper bound supn∈N fn of any ω-chain f0 v f1 v · · · v fn v · · · is given by

(supn fn)(x)(B) = supn(fn(x)(B)). The least function of each SRel(X,Y) (written

⊥X,Y) is the constant function of the null-measure over Y .

This enrichment is equivalent to the partially additive structure on SRel [17,

Section 5]: For any ω-chain {fn}n∈N of fn : X → Y in SRel, we have the summable

sequence {gn}n where g0 = f0 and gn+1 = fn+1 − fn.Conversely, for any summable

sequence {gn}n∈N, the functions fn =
∑n

k=0 gn form an ω-chain.

Differential privacy

Throughout this paper, we define the approximate differential privacy as follows:

Definition 1.1 [[8, Definition 2.4], Modified] A measurable function c : Rm →
G(Rn) is (ε, δ)-differentially private if c(x)(A) ≤ exp(ε)c(y)(A) + δ holds for any

||x− y||1 ≤ 1 and A ∈ ΣRn , where || · ||1 is 1-norm of the Euclidean space Rm.

What we modify from the original definition [8, Definition 2.4] is the domain and

codomain of c; we replace the domain from N to R, and replace the codomain from

a discrete probability space to G(Rn). We apply this definition to the interpretation

of pWHILE programs. The input and output spaces can be other spaces: in section

4 we consider the above-threshold algorithm Above whose output space is Z. The

57

Sato

above modification is essential in describing and verifying the differential privacy of

this algorithm because it takes a sample from Laplace distribution over real line.

2 A Graded Monad for Differential Privacy

The composition law of differential privacy plays crucial role to in the compositional

verification of the differential privacy of database programs. Barthe, Köpf, Olmedo,

and Zanella-Béguelin constructed a parametric relational lifting describing differen-

tial privacy, and developed a framework for compositional verification of differential

privacy [2].

Following this relational approach, we construct the parametric relational lifting

of Giry monad to describe differential privacy for continuous random samplings.

This lifting forms a graded monad on the category BRel(Meas) in the sense of

[11]. The axioms of graded monad correspond to the (sequential) composition law

of differential privacy.

2.1 Graded Monads

Definition 2.1 [11, Definition 2.2-bis] Let C be a category, and (M, ·, 1,�) be a

preordered monoid. An M -graded (or M -parametric effect) monad on C consists of

• a collection {Te}e∈M of endofunctors on C,

• a natural transformation η : Id⇒ T1,

• a collection {µe1,e2}e1,e2∈M of natural transformations µe1,e2 : Te1Te2 ⇒ Te1e2 ,

• a collection {ve1,e2}e1�e2 of natural transformations ve1,e2 : Te1 ⇒ Te2

satisfying

• µe,1 ◦ Teη = µ1,e ◦ ηTe = IdTe for any e ∈M ,

• µ(e1e2),e3 ◦ µe1,e2Te3 = µe1,(e2,e3) ◦ Te1µe2,e3 for all e1, e2, e3 ∈M ,

• ve,e = IdTe for any e and ve2,e3 ◦ ve1,e2 = ve1,e3 whenever e1 � e2 � e3,

• v(e1e2),(e3e4) ◦µe1,e2 = µe3,e4 ◦ (ve1,e3 ∗ve2,e4) whenever e1 � e3 and e2 � e4.

An M -graded monad ({Te}e∈M , η, µe1,e2 ,ve1,e2) on C is called an M -graded

lifting of monad (T, ηT , µT) on D along U : C → D if UTe = TU , U(η) = ηTU ,

U(µe1,e2) = µTU , and U(ve1,e2) = idT .

2.2 A Graded Relational Lifting of Giry Monad for Differential Privacy

Let M be the cartesian product of the monoids ([1,∞),×, 1) and ([0,∞),+, 0)

equipped with the product order of numerical orders. For each (γ, δ) ∈ M , we

define the following mapping of BRel(Meas)-objects by

G(γ,δ)Φ =

 (ν1, ν2) ∈ GX × GY

∣∣∣∣∣∣ ∀A ∈ ΣX , B ∈ ΣY .

Φ(A) ⊆ B =⇒ ν1(A) ≤ γν2(B) + δ

 .

58

Sato

Proposition 2.2 {G(γ,δ)}(γ,δ)∈M forms an M -graded lifting of the monad (G×G, η×
η, µ× µ) along the forgetful functor p : BRel(Meas)→Meas×Meas.

Proof. Since the functor p is faithful, it suffices to show:

(i) Each G(γ,δ) is an endofunctor on BRel(Meas).

(ii) (idGX , idGY) is an arrow G(γ,δ)Φ → G(γ′,δ′)Φ in BRel(Meas) for all γ, γ′, δ, δ′

such that γ ≤ γ′ and δ ≤ δ′.
(iii) (ηX , ηY) is an arrow Φ→ G(1,0)Φ in BRel(Meas).

(iv) (µX , µY) is an arrow G(γ,δ)G(γ′,δ′)Φ → G(γγ′,δ+δ)Φ in BRel(Meas) for all

γ, γ′, δ, δ′.

(i) Since the mapping (f, g) 7→ (Gf,Gg) is obviously functorial, it suffices to check

that (Gf,Gg) is an arrow G(γ,δ)Ψ→ G(γ,δ)Φ in BRel(Meas) for any arrow (f, g) : Ψ→
Φ in BRel(Meas). This is proved from Φ(A) ⊆ B =⇒ Ψ(f−1(A)) ⊆ g−1(B) for

any A ∈ ΣX and B ∈ ΣY . (ii) Obvious. (iii) Obvious. (iv) It suffices to show

(µX × µY)(G(γ,δ)G(γ′,δ′)Φ) ⊆ G(γγ′,δ+δ)Φ for any Φ ⊆ X × Y .

First, the following equation holds:

G(γ,δ)Φ =

{
(ν1, ν2)

∣∣∣∣ ∀(f, g) : Φ→ ≤ in BRel(Meas).

∫
X
f dν1 ≤ γ

∫
Y
g dν2 + δ

}
,

where ≤ is the numerical order relation on G1 ' [0, 1]. We omit the proof of this

equation. It can be shown in the same way as [12, Theorem 12].

Let (Ξ1,Ξ2) ∈ G(γ,δ)G(γ′,δ′)Φ. Assume Φ(A) ⊆ B. We give (f, g) : G(γ′,δ′)Φ →≤
in BRel(Meas) by f = max(evA − δ′, 0) and g = min(γ′ · evB, 1). They actually

satisfy f(ν1) ≤ g(ν2) for each (ν1, ν2) ∈ G(γ′,δ′)Φ. Hence,

µX(Ξ1)(A)− δ′ ≤
∫
GX

(evA − δ′) dΞ1 ≤
∫
GX

f dΞ1

≤ γ
∫
GX

g dΞ2 + δ ≤ γ
∫
GX

γ′evB dΞ2 + δ = γγ′µY (Ξ2)(B) + δ.

This implies µX(Ξ1)(A) ≤ γγ′µY (Ξ2)(B) + δ + δ′. 2

Proposition 2.3 (Composability laws for differential privacy)

• For any (f1, g1) : Φ1 → G(γ,δ)Ψ1 and (f2, g2) : Φ2 → G(γ′,δ′)Ψ2 in BRel(Meas),

(dst ◦ (f1 × f2), dst ◦ (g1 × g2)) is an arrow Φ1×̇Φ2 → G(γγ′,δ+δ′)(Ψ1×̇Ψ2) in

BRel(Meas).

• For any (f1, g1) : Φ1 → G(γ,δ)Ψ and (f2, g2) : Φ2 → G(γ′,δ′)Ψ in BRel(Meas),

([f1, f2], [g1, g2]) is an arrow Φ1+̇Φ2 → G(max(γ,γ′),max(δ,δ))Ψ in BRel(Meas).

Here, ×̇ and +̇ are product and coproduct in BRel(Meas) respectively.

Theorem 2.4 A measurable function c : Rm → G(Rn) is (ε, δ)-differentially pri-

vate if and only if (c, c) is an arrow { (x, y) | ||x− y||1 ≤ 1 } → G(exp(ε),δ)EqRn in

BRel(Meas).

We remark that the relations { (x, y) | ||x− y||1 ≤ 1 } and EqRn are symmetric.

Thus, the lifting {G(γ,δ)}(γ,δ)∈M describes only one side of inequalities in the defi-

59

Sato

nition of differential privacy. By symmetrising this lifting, We obtain an M -graded

lifting {G(γ,δ)}(γ,δ)∈M exactly describing the differential privacy for continuous prob-

abilities:

G(γ,δ) = G(γ,δ)(−) ∩ (G(γ,δ)(−)op)
op
.

In the original works [2,3] of apRHL, the following relational lifting (−)](γ,δ) is

introduced to describe differential privacy. This lifting relates two distributions if

there are intermediate distributions d1 and dR, called witnesses, whose skew dis-

tance, defined by ∆X
γ (dL, dR) = supC⊆X max(dL(C)− γdR(C), dR(C)− γdL(C), 0),

is less than or equal to δ.

Definition 2.5 ([3, Definition 4], [16, Definition 4.3] and [1, Definition 8]) We

denote by D the subdistribution monad over Set. Let Ψ be a relation between

sets X and Y , and d1 ∈ DX and d2 ∈ DY be two subdistributions. We define the

relation Ψ](γ,δ) ⊆ DX×DY as follows: (d1, d2) ∈ Ψ](γ,δ) if and only if there are two

subdistributions dL, dR ∈ D(X × Y), called witnesses, such that

Dπ1(dL) = d1, Dπ2(dR) = d2, supp(dL) ⊆ Ψ, supp(dR) ⊆ Ψ, ∆X×Y
γ (dL, dR) ≤ δ.

Proposition 2.6 For any countable discrete spaces X and Y , and relation Ψ ⊆
X × Y , we have Ψ](γ,δ) ⊆ G(γ,δ)Ψ.

Proof. Suppose (d1, d2) ∈ Ψ](γ,δ) with witnesses dL and dR. For any A ⊆ X, since

supp(dL) ⊆ Ψ and (A× Y) ∩Ψ ⊆ X ×Ψ(A), we obtain:

d1(A) = Dπ1(dL)(A) = dL(A× Y) = dL((A× Y) ∩Ψ) ≤ dL(X ×Ψ(A))

≤ γdR(X ×Ψ(A)) + δ = γDπ2(dR)(Ψ(A)) + δ = γd2(Ψ(A)) + δ.

This implies (d1, d2) ∈ G(γ,δ)Ψ. Since the construction of (−)](γ,δ) is symmetric, we

conclude (d1, d2) ∈ G(γ,δ)Ψ. 2

We remark GX = DX for countable discrete space X. When X is not count-

able, we have the above results by embedding each d ∈ DX in the set DX ′ of

subprobability distributions over the countable subspace X ′ = X ∩ supp(d).

Corollary 2.7 We have Eq
](γ,δ)
X = G(γ,δ)EqX for each countable discrete space X.

Proof. (⊆) This inclusion is given from Proposition 2.6. (⊇) Suppose (d1, d2) ∈
G(γ,δ)EqX . This is equivalent to ∆X

γ (d1, d2) ≤ δ. Hence (d1, d2) ∈ Eq
](γ,δ)
X is proved

by the witnesses given by dL =
∑

x∈X d1(x) · δ(x,x) and dR =
∑

x∈X d2(x) · δ(x,x). 2

3 The Continuous apRHL

We introduce a variant of the approximate probabilistic relational Hoare logic

(apRHL) to deal with continuous random samplings. We name it the continuous

apRHL.

3.1 The Language pWHILE

We recall and reformulate categorically the language pWHILE [2]. In this paper,

we mainly refer to the categorical semantics of a probabilistic language given in [5,

60

Sato

Section 2]. The language pWHILE is constructed in the standard way, hence we

sometimes omit the details of its construction.

3.1.1 Syntax

We introduce the syntax of pWHILE by the following BNF:

τ ::= bool | int | real | . . .
e ::= x | p(e1, . . . , em)

ν ::= d(e1, . . . , em)

i ::= x← e | x $←− ν | if e then c1 else c2 | while e do c
c ::= skip | null | I; C

Here, τ is a value type; x is a variable; p is an operation; d is a probabilistic operation;

e is an expression; ν is a probabilistic expression; i is an imperative; c is a command

(or program). We remark constants are 0-ary operations.

We introduce the following syntax sugars for simplicity:

if b then c = if b then c else skip

[while b do c]n =

{
if b then null else skip, if n = 0

if b then c; [while b do c]k, if n = k + 1

3.1.2 Typing Rules

We introduce a typing rule on the language pWHILE. A typing context is a finite

set Γ = {x1 : τ1, x2 : τ2, . . . , xn : τn} of pairs of a variable and a value type such that

each variable occurs only once in the context.

We give typing rules of pWHILE as follows:

Γ `t e1 : τ1 . . . Γ `t en : τn p : (τ1, . . . , τn)→ τ

Γ `t p(e1, . . . , en) : τ

Γ, x : τ `t e : τ

Γ, x : τ ` x← e
Γ ` skip

x : τ ∈ Γ Γ `t e1 : τ1 . . . Γ `t en : τn d : (τ1, . . . , τn)→ τ

Γ ` x $←− d(e1, . . . , en) : τ
Γ ` null

Γ ` i Γ ` c
Γ ` i; c

Γ `t b : bool Γ ` c1 Γ ` c2

Γ ` if b then c1 else c2

Γ `t b : bool Γ ` c
Γ ` while b do c

Here, the type (τ1, . . . , τn)→ τ of each operation p and each probabilistic operation

d are assumed to be given in advance.

We easily define inductively the set of free variables of commands, expressions,

and probabilistic expressions (denoted by FV (c), FV (e), and FV (ν)).

3.1.3 Denotational Semantics

We introduce a denotational semantics of pWHILE in Meas. We give the interpre-

tations [[τ]] of the value types τ :

• [[bool]] = B = 1 + 1 = {true, false} (discrete space)

• [[int]] = Z (discrete space)

61

Sato

• [[real]] = R (Lebesgue measurable space)

We interpret a typing context Γ = {x1 : τ1, x2 : τ2, . . . , xn : τn} as the product space

[[τ1]] × [[τ2]] × · · · × [[τn]]. We interpret each operation p : (τ1, . . . τm) → τ as a mea-

surable function [[p]] : [[τ1]] × · · · × [[τm]] → [[τ]], and each probabilistic operation

d : (τ1, . . . τm) → τ as [[d]] : [[τ1]] × · · · × [[τm]] → G[[τ]]. Typed termsΓ `t e : τ and

commands Γ ` c are interpreted to measurable functions of the forms [[Γ]] → [[τ]]

and [[Γ]]→ G[[Γ]] respectively.

The interpretation of expressions are defined inductively by:

[[Γ `t x : τ]] = πx : τ [[Γ `t p(e1, . . . , em)]] = [[p]]([[Γ `t e1]], . . . [[Γ `t em]])

The interpretation of commands are defined inductively by:

[[Γ ` skip]] = η[[Γ]] [[Γ ` null]] = ⊥[[Γ]],[[Γ]] [[Γ ` i; c]] = ([[Γ ` c]])] ◦ [[Γ ` i]]
[[Γ ` x $←− d(e1, . . . , em)]]

= G(ρ(x : τ,Γ)) ◦ st[[τ]],[[Γ]] ◦ 〈[[d]]([[Γ `t e1]], . . . [[Γ `t em]]), id[[Γ]]〉
[[Γ, x : τ ` x← e]] = η[[Γ,x : τ]] ◦ ρ(x : τ,Γ) ◦ 〈[[Γ, x : τ ` e]], id[[Γ,x : τ]]〉

[[Γ ` if b then c1 else c2]] = [[[Γ ` c1]], [[Γ ` c2]]] ◦ ∼=[[Γ]] ◦〈[[Γ ` b]], id[[Γ]]〉
[[Γ ` while b do c]] = sup

n∈N
[[Γ ` [while e do c]n]]

Here,

• ρ(xk : τk,Γ) = 〈fl〉l∈{1,2,...,n} : [[τk]]×[[Γ]]→ [[Γ]], where Γ = {x1 : τ1, x2 : τ2, . . . , xn : τn},
fk = π2, and fl = πl ◦ π2 (l 6= k).

• ∼=X : 2×X → X +X is the inverse of [〈ι1◦!X , id〉, 〈ι2◦!X , id〉] : X +X → 2×X,

which is obtained from the distributivity of the category Meas.

We remark that, from the commutativity of the monad G, if Γ ` x : τ and x /∈ FV (c)

then [[Γ ` c]] ∼= dst[[Γ′]],[[τ]]([[Γ
′ ` c]]× η[[τ]]) where Γ′ = Γ \ {x : τ}.

3.2 Judgements of apRHL

A judgement of apRHL is

c1 ∼γ,δ c2 : Ψ⇒ Φ,

where c1 and c1 are commands, and Ψ and Φ are objects in BRel(Meas). We

call the relations Ψ and Φ the precondition and postcondition of the judgement

respectively. Inspired from the validity of asymmetric apRHL [2], we introduce the

validity of the judgement of apRHL.

Definition 3.1 Let Ψ and Φ be relations over the space [[Γ]]. A judgement c1 ∼γ,δ
c2 : Ψ ⇒ Φ is valid (written |= c1 ∼γ,δ c2 : Ψ ⇒ Φ) when ([[Γ ` c1]], [[Γ ` c2]]) is an

arrow Ψ→ G(γ,δ)Φ in BRel(Meas).

We often write preconditions and postconditions in the following manner: Let

Γ = {x1 : τ1, x2 : τ2, . . . , xn : τn}. Assume Γ ` e1 : τ and Γ ` e2 : τ , and let R be a

relation on [[τ]] (e.g. =, ≤,...). We define the relation e1〈1〉Re2〈2〉 on [[Γ]] by

(e1〈1〉Re2〈2〉) = { (m1,m2) ∈ [[Γ]] | [[Γ ` e1]](m1)R[[Γ ` e2]](m2) } .

62

Sato

3.3 Proof Rules

We mainly refer the proof rules of apRHL from [2,16], but we modify the [comp]

and [frame] rules to verify differential privacy for continuous random samplings.

x1 : τ1, x2 : τ2 ∈ Γ Γ `t e1 : τ1 Γ `t e2 : τ2

(ρ(x1 : τ1,Γ) ◦ 〈[[e1]], id〉, ρ(x2 : τ2,Γ) ◦ 〈[[e2]], id〉) : Ψ→ Φ
[assn]

|= x1 ← e1 ∼(1,0) x2 ← e2 : Ψ⇒ Φ

Γ `t e1
1 : τ1 . . . Γ `t e1

m : τm Γ `t e2
1 : τ1 . . . Γ `t e2

m : τm x1 : τ, x2 : τ ∈ Γ

(〈[[e1
1]], . . . , [[e1

m]]〉, 〈[[e2
1]], . . . , [[e2

m]]〉) : Ψ′ → Ψ in BRel(Meas)

d : (τ1, . . . , τm)→ τ ([[d]], [[d]]) : Ψ→ G(γ,δ)(Eq[[τ]]) in BRel(Meas)
[rand]

|= x1
$←− d(e1

1, . . . , e
1
m) ∼(γ,δ) x2

$←− d(e2
1, . . . , e

2
m) : Ψ′ ⇒ (x1〈1〉 = x2〈1〉)

|= c1 ∼(γ,δ) c2 : Ψ⇒ Φ′

|= c′1 ∼(γ′,δ′) c
′
2 : Φ′ ⇒ Φ

[seq]
|= c1; c′1 ∼(γγ′,δ+δ′) c2; c′2 : Ψ⇒ Φ

[skip]
|= skip ∼(1,0) skip : Φ⇒ Φ

Γ `t b : bool Γ `t b : bool Ψ⇒ b〈1〉 = b′〈2〉

|= c1 ∼(γ,δ) c
′
1 : Ψ ∧ b〈1〉 ⇒ Φ |= c2 ∼(γ,δ) c

′
2 : Ψ ∧ ¬b〈1〉 ⇒ Φ

[cond]
|= if b then c1 else c2 ∼(γ,δ) if b

′ then c′1 else c′2 : Ψ⇒ Φ

Γ `t e : int γ =
∏n−1
k=0 γk δ =

∑n−1
k=0 δk

Θ⇒ b1〈1〉 = b2〈2〉 Θ ∧ e〈1〉 ≥ n⇒ ¬b1〈1〉

∀k : int. |= c1 ∼(γk,δk) c2 : Θ ∧ e〈1〉 = k ∧ e〈1〉 ≤ n =⇒ Θ ∧ e〈1〉 > k
[while]

|= while b do c1 ∼(γ,δ) while b
′ do c2 : Θ ∧ b1〈1〉 ∧ e〈1〉 ≥ 0⇒ Θ ∧ ¬b1〈1〉

|= c1 ∼(γ,δ) c2 : Ψ ∧Θ⇒ Φ |= c1 ∼(γ,δ) c2 : Ψ ∧ ¬Θ⇒ Φ
[case]

|= c1 ∼(γ,δ) c2 : Ψ⇒ Φ

|= c1 ∼(γ,δ) c2 : Ψ⇒ Φ Ψ′ ⇒ Ψ Φ⇒ Φ′
[weak]

|= c1 ∼(γ,δ) c2 : Ψ′ ⇒ Φ′
|= c1 ∼(γ,δ) c2 : Ψ⇒ Φ

[op]
|= c2 ∼(γ,δ) c1 : Ψop ⇒ Φop

The relational lifting G(γ,δ) does not preserve every relation composition. However,

it preserve the composition of relations if the relations are measurable, that is, the

images and inverse images along them of mesurable sets are also measurable (see

also [12, Section 3.3]). Generally speaking, it is difficult to check measurability of re-

latons, hence the continuous apRHL is weak for dealing with relation compositions.

However, we have the following two special cases:

• The equality/diagonal relation on any space is a measurable relation.

• Any relation between discrete spaces is automatically a measurable relation.

63

Sato

Hence, the following [comp] rule is an extension of the original [comp] rule in [2]:

Φ and Φ′are measurable relations

|= c1 ∼(γ,δ) c2 : Ψ⇒ Φ |= c2 ∼(γ′,δ′) c3 : Ψ′ ⇒ Φ′

[comp]
|= c1 ∼(γγ′,min(δ+γδ′,δ′+γ′δ)) c3 : Ψ ◦Ψ′ ⇒ Φ ◦ Φ′

To define the [frame] rule in continuous apRHL, for any relation Θ on [[Γ]], we define

the following relation Range(Θ):

Range(Θ)

=
{

(ν1, ν2)
∣∣ ∃A,B ∈ Σ[[Γ]].(A×B ⊆ Θ ∧ ν1(A) = ν1([[Γ]]) ∧ ν2(B) = ν2([[Γ]]))

}
.

We define the [frame] rule with the construction Range(−):

|= c1 ∼(γ,δ) c2 : Ψ⇒ Φ ([[c1]], [[c2]]) : Θ→ Range(Θ)
[frame]

|= c1 ∼(γ,δ) c2 : Ψ ∧Θ⇒ Φ ∧Θ

If [[Γ]] is countable discrete then the condition (ν1, ν2) ∈ Range(Θ) is equivalent to

supp(ν1) × supp(ν2) ⊆ Θ, and hence the above [frame] rule is an extension of the

original [frame] rule in [2].

Note that if the σ-algebra of the space [[τ]] contains all singleton subsets, and Θ

does not restrict any variables in FV (c1)∪FV (c2) then ([[c1]], [[c2]]) : Θ→ Range(Θ).

3.4 Soundness

The soundness of the [assn] and [case] are obtained from the composition of arrows

in BRel(Meas). The rule [skip] and [seq] are sound because G(γ,δ) is the graded re-

lational lifting of G×G along the forgetful functor U : BRel(Meas)→Meas2. The

rules [weak] and [op] are sound because G(γ,δ) is monotone with respect to the inclu-

sion order of relations, and preserves opposites of relations. The soundness of [rand]

is proved from Fubini theorem. The soundness of [cond] is proved by case analyses.

The soundness of [while] is obtained from ωCPO⊥-enrichment structure of SRel.

The soundness of [comp] is given by using the measurability of the postconditions.

Finally, the [frame] rule is proved from the strucure of Range(Θ).

3.5 Mechanisms

In this part, we give a generic method to construct the rules for random samplings,

and by instantiating the method we show the soundness of the proof rules in prior

researches: [Lap] for Laplacian mechanism [7], [Exp] for Exponential mechanism

[14], [Gauss] for Gaussian mechanism [8, Theorem 3.22, Theorem A.1], and [Cauchy]

for the mechanism by Cauchy distributions [15].

Let f : X × Y → R be a positive measurable function, and ν be a measure over

Y . We define the following function fa : ΣY → [0, 1] by

fa(B) =

∫
B f(a,−) dν∫
Y f(a,−) dν

.

64

Sato

We remark that the function f(a,−) : Y → R is measurable. If the function is not

‘almost everywhere zero’ and Lebesgue integrable, that is, 0 <
∫
Y f(a,−) dν < ∞

then fa(−) is a probability measure.

The following proposition, which is an extension of [2, Lemma 7], plays the

central role in the construction of sound proof rules for random samplings.

Proposition 3.2 Let f : X × Y → R be a positive measurable function, and ν be a

measure over Y . For all a, a′ ∈ X, γ, γ′ ≥ 1, δ ≥ 0, and Z ∈ ΣY (window set), if the

following three conditions hold then for any B ∈ ΣY , we have fa(B) ≤ γγ′fa′(B)+δ.

(i) 0 < 1
γ′

∫
Y f(a′,−) dν ≤

∫
Y f(a,−) dν <∞

(ii) ∀b ∈ Z.f(a, b) ≤ γf(a′, b), (iii) fa(Y \ Z) ≤ δ.

Laplacian mechanism [7].

We give the function f : R × R → R by f(a, b) = 2
σ exp(−|b−a|σ), where σ > 0

is the variance of Laplacian mechanism. We introduce the probabilistic operation

Lapσ : real → real with [[Lapσ]] = f(−), whose measurability is shown from the

continuity of the mapping a 7→
∫ β
α f(a, x)dx (α, β ∈ R).

We show (f(−), f(−)) : { (a, a′) | |a− a′| < r } → G(exp(r
σ

),0)EqR by instantiating

Proposition 3.2 as follows: If |a− a′| < r then the following parameters satisfy the

conditions (i)–(iii): γ = exp(r/σ), γ′ = 1, δ = 0, the function f , the Lebesgue mea-

sure ν over R, and the window Z = R. This implies (f(−), f(−)) : { (a, a′) | |a− a′| < r } →
G(exp(r

σ
),0)EqR since { (a, a′) | |a− a′| < r } and EqR are symmetric.

From the [rand] rule, the following rule is proved:

Γ `t e1 : real Γ `t e2 : real m1Ψm2 ⇒ |[[e1]]m1 − [[e2]]m2| < r
[Lap]

|= x
$←− Lapσ(e1) ∼(exp(r

σ
),0) y

$←− Lapσ(e2) : Ψ⇒ x〈1〉 = y〈2〉

Exponential mechanism [14, Modified].

Let D be the discrete Euclidian space Zn, and (R, ν) be a (positive) measure

space. Let q : D × R → R be a measurable function such that supb∈R |q(a, b) −
q(a′, b)| ≤ c · ||a − a′||1 for some c > 0. Suppose 0 <

∫
R exp(εq(a,−)) dν < ∞

for any a ∈ D. We give the function f : D × R → R by f(a, b) = exp(εq(a, b)),

where ε > 0 is a constant. We add the value types D and R with [[D]]Γ = D and

[[R]]Γ = R to pWHILE, and introduce the probabilistic operation Exp〈q,ν,ε〉 : D → R

with [[Exp〈q,ν,ε〉]] = f(−).

We show (f(−), f(−)) : { (a, a′) | ||a− a′| |1 < r } → G(exp(2εrc),0)EqR by instanti-

ating Proposition 3.2 as follows: Suppose ||a− a′||1 < r. The following parameters

then satisfy the conditions (i)–(iii): γ = γ′ = exp(εrc), δ = 0, the function f , the

given measure ν, and the window Z = R.

From the [rand] rule, the following rule is proved:

Γ `t e1 : D Γ `t e2 : D m1Ψm2 ⇒ ||[[e1]]m1 − [[e2]]m2||1 < r
[Exp]

|= x
$←− Exp〈q,ν,ε〉(e1) ∼(exp(2εrc),0) y

$←− Exp〈q,ν,ε〉(e2) : Ψ⇒ x〈1〉 = y〈2〉

65

Sato

Gaussian mechanism [8, Theorem 3.22, Theorem A.1].

We give the function f : R×R→ R by f(a, b) = 1√
2πσ2

exp(− (b−a)2

2σ2), where σ > 0

is the variance of Gaussian mechanism. We introduce the probabilistic operation

Gaussσ : real→ real with [[Gaussσ]] = f(−), whose continuity is easily proved.

We obtain (f(−), f(−)) : { (a, a′) | |a− a′| < r } → G(γ,δ)EqR by instantiating

Proposition 3.2 as follows: If |a − a′| < r, 1 < γ < exp(1), and γ′ = 1 hold,

and there is (3/2) < c such that 2 log(1.25/δ) ≤ c2 and (cr/log γ) ≤ σ, then the

parameters γ, γ′, and δ, the function f , and the Lebesgue measure ν over R satisfy

the conditions (i)–(iii) for the window Z =
{
b
∣∣ |b− (a+ a′)/2| ≤ (σ2 log γ/r)

}
.

From the [rand] rule, we obtain the following rule:

∃c > 3
2 . (2 log(1.25

δ) < c2 ∧ cr
γ ≤ σ) 1 < γ < exp(1)

Γ `t e1 : real Γ `t e2 : real m1Ψm2 ⇒ |[[e1]]m1 − [[e2]]m2| < r
[Gauss]

|= x
$←− Gaussσ(e1) ∼(γ,δ) y

$←− Gaussσ(e2) : Ψ⇒ x〈1〉 = y〈2〉

We can relax the above conditions for c to ((1 +
√

3)/2) < c and 2 log(0.66/δ) < c2

by changing the window Z to
{
b
∣∣ b ≤ (a+ a′)/2 + (σ2 log γ/r)

}
when a ≤ a′ and{

b
∣∣ b ≥ (a+ a′)/2− (σ2 log γ/r)

}
when a′ ≤ a.

Mechanism of Cauchy distributions [15]

We give the function f : R×R→ R by f(a, b) = ρ
π((a−b)2+ρ2)

. We introduce the

probabilistic operation Cauchyρ : real→ real with [[Cauchyρ(e)]]
Γm = f(−), whose

continuity is easily proved.

Let γ = 1 +
r2+r
√
r2+4ρ2

2ρ2
. We obtain (f(−), f(−)) : { (a, a′) | |a− a′| < r } →

G(γ,0)EqR by instantiating Proposition 3.2 as follows: If |a − a′| < r then the pa-

rameters satisfy the conditions (i)–(iii): γ, γ′ = 1, δ = 0, the Lebesgue measure ν

over R, and the window Z = R.

From the [rand] rule, we obtain the following rule:

Γ `t e : real m1Ψm2 ⇒ |[[e1]]m1 − [[e2]]m2| < r
[Cauchy]

|= x
$←− Cauchyρ(e1) ∼(γ,0) y

$←− Cauchyρ(e1) : Ψ⇒ (πx × πy)−1(EqR)

4 An Example: The Above Threshold Algorithm

Barthe, Gaboardi, Grégoire, Hsu, and Strub extended the logic apRHL to the logic

apRHL+ with new proof rules to describe the sparse vector technique (see also [8,

Section 3.6]). They gave a formal proof of the differential privacy of above threshold

algorithm in [1].

In this section, we demonstrate that the above threshold algorithm with real-

valued queries is proved with almost the same proof as in [1]. The new proof rules

of apRHL+ are still sound in the framework of the continuous apRHL.

We consider the following algorithm AboveT:

66

Sato

Algorithm 1 The Above Threshold Algorithm ([1], Modified)

1: AboveT(T : real, Q : queries, d : data)

2: j ← 1; r ← |Q|+ 1; T
$←− Lapε/2(t);

3: while j < |Q| do
4: S

$←− Lapε/4(eval(Q, i, d));

5: if T ≤ S ∧ r = |Q|+ 1 then

6: r ← j;

7: j ← j + 1

We recall the setting of this algorithm. This algorithm has two fixed parameters:

the threshold t : real and the set Q : queries of queries where |Q| : int is the

number of Q. The input variable is d : int, and the output variable is r : int. We

prepare the new value types queries and data with [[data]] = RN and queries =

int (alias), and the typings j : int, T : real, and S : real. We assume that an

operation eval : (queries, int, data) → real is given for evaluating i-th query in

Q for the input d. We require [[eval]] to be 1-sensitivity for the data d, that is,

||d− d′||1 ≤ 1⇒ |[[eval]](Q, i, d)− [[eval]](Q, i, d′)| ≤ 1.

The differential privacy of Above is characterised as follows:

|= AboveT ∼exp(ε),0 AboveT : ||d〈1〉 − d〈2〉||1 ≤ 1⇒ r〈1〉 = r〈2〉.

The following rules in apRHL+ are sound in the framework of continuous apRHL:

∀i : int. |= c1 ∼(γ,δi) c2 : Ψ⇒ (x〈1〉 = i⇒ x〈2〉 = i)
∑

i : int [[δi]] = δ
[Forall-Eq]

|= c1 ∼(γ,δ) c2 : Ψ⇒ x〈1〉 = x〈2〉

Γ `t e1 : real Γ `t e2 : real m1Ψm2 ⇒ |[[e1]]m1 + r′ − [[e2]]m2| < r
[LapGen]

|= x
$←− Lapσ(e1) ∼(exp(r

σ
),0) y

$←− Lapσ(e2) : Ψ⇒ x〈1〉+ r′ = y〈2〉

Γ `t e1 : real Γ `t e2 : real x /∈ FV (e1) y /∈ FV (e2)
[LapNull]

|= x
$←− Lapσ(e1) ∼(1,0) y

$←− Lapσ(e2) : Ψ⇒ x〈1〉 − y〈2〉 = e1〈1〉 − e2〈2〉
Hence we extend the contiuous apRHL by adding these rules, and therefore we

construct a formal proof almost the same proof as in [1] in the extended continous

apRHL.

The soundness of the rule [Forall-Eq] is proved from the following lemma:

Lemma 4.1 ([1, Proposition 6], Modified) If x : τ and the space [[τ]] is count-

able discrete then⋂
i∈[[τ]]

G(γ,δi)(x〈1〉 = i⇒ x〈2〉 = i) ⊆ G(γ,
∑
i∈[[τ]] δi)(x〈1〉 = x〈2〉).

The soundness of the rule [LapGen] is proved from the rules [Lap] and [assn]

and the semantically equivalence [[x
$←− Lapσ(e+ r′);x← x− r′]] = [[x

$←− Lapσ(e)]].

The soundness of [LapNull] is proved by using the [LapGen] and [Frame] rules.

67

Sato

Formal Proof

We now demonstrate that the (ε, 0)-differential privacy of algorithm AboveT is

proved with almost the same proof as in [1].

From the [Forall-Eq] rule with variable r, it suffices to prove for all integer i,

|= AboveT ∼exp(ε),0 AboveT : ||d〈1〉 − d〈2〉||1 ≤ 1⇒ (r〈1〉 = i⇒ r〈2〉 = i).

We denote by c0 the sub-command consisting of the initialization line 2 of AboveT.

From the rules [assn], [LapGen] rule with r = r′ = 1, and σ = 2/ε, [seq], and [frame]

we obtain

|= c0 ∼exp(ε/2),0 c0 : ||d〈1〉 − d〈2〉||1 ≤ 1⇒ ||d〈1〉 − d〈2〉||1 ≤ 1 ∧Ψ.

where

Ψ = T 〈1〉+ 1 = T 〈2〉 ∧ j〈1〉 = j〈2〉 ∧ j〈1〉 = 1 ∧ r〈1〉 = r〈2〉 ∧ r〈1〉 = |Q|+ 1.

We denote by c1 and c2 the main loop and the body of the main loop respectively

(i.e. c1 = while (j < |Q|) do c2). We aim to prove the following judgement by

using the [while] rule:

|= c1 ∼exp(ε/2),0 c1 : (||d〈1〉 − d〈2〉||1 ≤ 1 ∧Ψ)⇒ (r〈1〉 = i⇒ r〈2〉 = i).

To prove this, it suffices to show the following cases for the loop body c2:

(i) If k < i then |= c2 ∼1,0 c2 : (Θ ∧ j〈1〉 = k)⇒ (Θ ∧ j〈1〉 > k)

(ii) If k = i then |= c2 ∼exp(ε/2),0 c2 : (Θ ∧ j〈1〉 = k)⇒ (Θ ∧ j〈1〉 > k)

(iii) If k > i then |= c2 ∼1,0 c2 : (Θ ∧ j〈1〉 = k)⇒ (Θ ∧ j〈1〉 > k)

Here, we provide the following loop invariant as follows:

Θ =(j〈1〉 < i⇒ ((r〈1〉 = |Q|+ 1⇒ r〈2〉 = |Q|+ 1) ∧ (r〈1〉 = |Q|+ 1 ∨ r〈1〉 < i)))

∧ (j〈1〉 ≥ i⇒ (r〈1〉 = i⇒ r〈2〉 = i))

∧ ||d〈1〉 − d〈2〉||1 ≤ 1 ∧ T 〈1〉+ 1 = T 〈2〉 ∧ j〈1〉 = j〈2〉

The judgement in the case (i) is proved from the rules [seq], [assn], [cond], and

[frame] and the following fact obtained from the [LapNull] rule:

|=S $←− Lapε/4(eval(Q, i, d)) ∼1,0 S
$←− Lapε/4(eval(Q, i, d)) :

(||d〈1〉 − d〈2〉||1 ≤ 1) ∧ (T 〈1〉+ 1 = T 〈2〉)⇒ ((S〈1〉 < T 〈1〉)⇒ (S〈2〉 < T 〈2〉)).

The case (ii) is proved from the rules [seq], [assn], [cond], and [frame] and the

following fact obtained from the [LapGen] rule:

|=S $←− Lapε/4(eval(Q, i, d)) ∼exp(ε/2),0 S
$←− Lapε/4(eval(Q, i, d)) :

(||d〈1〉 − d〈2〉||1 ≤ 1 ∧ T 〈1〉+ 1 = T 〈2〉)⇒ (S〈1〉+ 1 = S〈2〉 ∧ T 〈1〉+ 1 = T 〈2〉).

The case (iii) is proved in the similar way as (i).

68

Sato

Acknowledgement

The author thanks Shin-ya Katsumata for many valuable comments and stimulating

discussions, Marco Gaboardi for helpful suggestions and the introduction of his

preprint of [1] in arXiv, Masahito Hasegawa, Naohiko Hoshino, and Takeo Uramoto

for advices that contributed to improve the writing of this paper.

References

[1] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Jastin Hsu, and Pierre-Yves Strub. Proving
Differential Privacy via Probabilistic Couplings. In Proceedings of Thirty-First Annual ACM/IEEE
Symposium on LOGIC IN COMPUTER SCIENCE (LICS), to appear.

[2] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella-Béguelin. Probabilistic relational
reasoning for differential privacy. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’12, pages 97–110, New York, NY, USA,
2012. ACM.

[3] Gilles Barthe and Federico Olmedo. Beyond differential privacy: Composition theorems and relational
logic for f-divergences between probabilistic programs. In FedorV. Fomin, R?si?? Freivalds, Marta
Kwiatkowska, and David Peleg, editors, Automata, Languages, and Programming, volume 7966 of
Lecture Notes in Computer Science, pages 49–60. Springer Berlin Heidelberg, 2013.

[4] Nick Benton. Simple relational correctness proofs for static analyses and program transformations. In
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’04), number MSR-TR-2005-26, page 43. ACM, January 2004.

[5] Daniel Brown and Riccardo Pucella. Categories of timed stochastic relations. Electronic Notes
in Theoretical Computer Science, 249:193 – 217, 2009. Proceedings of the 25th Conference on
Mathematical Foundations of Programming Semantics (MFPS 2009).

[6] E.P de Vink and J.J.M.M Rutten. Bisimulation for probabilistic transition systems: a coalgebraic
approach. Theoretical Computer Science, 221(1 - 2):271 – 293, 1999.

[7] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography, volume 3876 of
Lecture Notes in Computer Science, pages 265–284. Springer Berlin Heidelberg, 2006.

[8] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and
Trends R© in Theoretical Computer Science, 9(3-4):211–407, 2013.

[9] Michèle Giry. A categorical approach to probability theory. In B. Banaschewski, editor, Categorical
Aspects of Topology and Analysis, volume 915 of Lecture Notes in Mathematics, pages 68–85. Springer
Berlin Heidelberg, 1982.

[10] Bart Jacobs and Jesse Hughes. Simulations in coalgebra. Electronic Notes in Theoretical Computer
Science, 82(1):128–149, 2003. CMCS’03, Coalgebraic Methods in Computer Science (Satellite Event
for ETAPS 2003).

[11] Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, pages
633–645, New York, NY, USA, 2014. ACM.

[12] Shin-ya Katsumata and Tetsuya Sato. Codensity Liftings of Monads. In Lawrence S. Moss and Pawel
Sobocinski, editors, 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015),
volume 35 of Leibniz International Proceedings in Informatics (LIPIcs), pages 156–170, Dagstuhl,
Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[13] Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1–28, 1991.

[14] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In Proceedings of
the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’07, pages 94–103,
Washington, DC, USA, 2007. IEEE Computer Society.

[15] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private
data analysis. In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’07, pages 75–84, New York, NY, USA, 2007. ACM.

[16] Federico Olmedo. Approximate Relational Reasoning for Probabilistic Programs. PhD thesis, Technical
University of Madrid, 2014.

[17] Prakash Panangaden. The category of markov kernels. Electronic Notes in Theoretical Computer
Science, 22:171 – 187, 1999. PROBMIV’98, First International Workshop on Probabilistic Methods in
Verification.

69

MFPS 2016

Coalgebraic minimization of automata
by initiality and finality

Jurriaan Rot

Université de Lyon, ENS de Lyon, CNRS, UCB Lyon 1, LIP

Abstract

Deterministic automata can be minimized by partition refinement (Moore’s algorithm, Hopcroft’s algo-
rithm) or by reversal and determinization (Brzozowski’s algorithm). In the coalgebraic perspective, the
first approach can be phrased in terms of a minimization construction along the final sequence of a func-
tor, whereas a crucial part of the second approach is based on a reachability construction along the initial
sequence of another functor. We employ this coalgebraic perspective to establish a precise relationship
between the two approaches to minimization, and show how they can be combined. Part of these results
are extended to an approach for language equivalence of a general class of systems with branching, such as
non-deterministic automata.

Keywords: minimization, automata, coalgebra

1 Introduction

The problem of minimizing deterministic automata has been studied since the early

days of automata theory, and a number of different approaches have been proposed.

Probably the most well-known family of algorithms, which includes Hopcroft’s [11]

and Moore’s algorithm [19] as well as typical textbook constructions [12], is based

on a stepwise refinement of a partition of states. Another approach, due to Brzo-

zowski [7], is based on determinization and reversal. That approach appears (and is

usually considered) to be fundamentally different than partition refinement [3,24].

To the best of our knowledge, a connection was only established in the work of

Champarnaud et al [8] (and further extended in [9]), who explicitly showed how

the partition of states that are language equivalent is obtained from the reversed

determinized automaton that appears in Brzozowski’s algorithm.

Partition refinement can be phrased abstractly as an inductive computation

along the final sequence of a functor, generalizing from automata to coalgebras [1].

1 This work was performed within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Uni-
versité de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the
French National Research Agency (ANR), and was supported by project ANR 12IS02001 PACE.
2 Email: jurriaan.rot@ens-lyon.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:jurriaan.rot@ens-lyon.fr

Rot

Starting with [6], Brzozowski’s algorithm has also received significant attention

from a coalgebraic perspective, as an elegant instance of duality between algebra

and coalgebra [5], in several different formulations [5,4,15].

In this paper we employ the coalgebraic perspective on partition refinement and

Brzozowski’s algorithm to understand and establish their relationship. First, we

dualize the construction of [1] and combine it with a variant of the Brzozowski

construction from [15], to obtain a minimization construction based on a stepwise

computation of reachability along an initial sequence. We then show how the i-th

step of this reachability construction yields the i-th partition of states in partition

refinement by a simple factorization, thus establishing a fundamental connection

between the two minimization constructions. Based on this result, we define a

minimization construction that combines partition refinement with the computation

of reachability. In our motivating example of deterministic automata, we retrieve

the combined minimization construction due to Champarnaud et al [8].

Our Brzozowski construction is based on [15], where it is formulated for systems

with branching, such as non-deterministic, alternating and tree automata. In the

last part of the paper, we consider such branching systems, and show how the

reachability computation yields an abstract procedure for language equivalence.

Outline. In Section 2 we describe the ideas of partition refinement and Brzozowski’s

algorithm and their connection, for deterministic automata. Section 3 contains pre-

liminaries, Section 4 recalls coalgebraic partition refinement, and Section 5 intro-

duces the dual reachability construction. Section 6 introduces the abstract Brzo-

zowski construction, and Section 7 establishes the connection with partition refine-

ment. Section 8 concerns branching systems. Proofs can be found in the appendix.

Acknowledgments. The author is grateful to Filippo Bonchi, Matias Lee, Damien

Pous and Alexandra Silva for comments, suggestions and discussions.

2 Minimization of deterministic automata

We fix an alphabet A, denote the set of words over A by A∗ and the empty word by

ε. A deterministic automaton is a triple (X, o, f) consisting of a set of states X, a

transition function f : X → XA and an output function o : X → 2, where 2 = {0, 1}
is a two-element set. Note that the state space X is not required to be finite, and

there is no initial state. The semantics of an automaton is a function l : X → 2A
∗

mapping each state to the language it accepts, inductively defined by ε ∈ l(x) iff

o(x) = 1 and aw ∈ l(x) iff w ∈ l(f(x)(a)), for any letter a ∈ A and word w ∈ A∗.
Our aim is to minimize deterministic automata: given an automaton (X, o, f)

we search the automaton with the least number of states that accepts the same lan-

guages as those accepted by the states in X. Formulated slightly more abstractly,

the aim is to find a factorization of the semantics l : X → 2A
∗

as a surjective func-

tion e : X → E followed by an injective function m : E → 2A
∗
. Such a factorization

uniquely turns the set E into a (minimal) automaton accepting all languages of

states in X. We describe the ideas underlying two standard approaches to min-

imization, based respectively on representing E as a quotient of states, and on

representing the image of X along l by taking a quotient of words.

71

Rot

2.1 Minimization by equivalence of states

Let (X, o, f) be a deterministic automaton, with language semantics l : X → 2A
∗
.

Consider the equivalence relation ≡ ⊆ X ×X defined as the kernel of l, i.e., x ≡ y

iff l(x) = l(y). Two states are related by ≡ precisely if they are language equiva-

lent. Once we computed the relation ≡, the minimization of our automaton can be

obtained as the quotient of states w.r.t. ≡.

The relation ≡ can be approximated by defining a family of equivalence relations

≡n ⊆ X×X indexed by natural numbers, called Moore equivalences [3], as follows:

x ≡n y iff ∀w ∈ A∗ with |w| < n: (w ∈ l(x) iff w ∈ l(y)), where |w| is the length

of a word w. In words, ≡n is language equivalence for words with length below n.

The point is that we can characterize ≡n by induction, setting ≡0 = X ×X and

x ≡n+1 y iff o(x) = o(y) and ∀a ∈ A : f(x)(a) ≡n f(y)(a) .

If X is finite, then this inductive computation will eventually stabilize, at which

point we have computed the relation ≡ and, hence, a minimal automaton (e.g., [12]).

(The usual presentation is slightly different, starting from the relation that dis-

tinguishes between accepting and non-accepting states, and leaving the condition

o(x) = o(y) out. We prefer the above variation to match the theory in Section 4.)

Phrasing the above inductive characterization in terms of partitions of X yields

a construction based on stepwise refinement of partitions. Moore’s minimization

algorithm [19], for instance, is an implementation of this construction, whereas

Hopcroft’s minimization algorithm [11] is a more advanced (and efficient) version

of partition refinement. We refer to [3] for a detailed analysis of these algorithms.

2.2 Minimization by equivalence of words

We define an equivalence relation ≈ ⊆ A∗ × A∗ by w ≈ v iff ∀x ∈ X : (w ∈ l(x)

iff v ∈ l(x)). This relation is dual to ≡, in the sense that it is the kernel of the

transpose l[: A∗ → 2X of the language semantics l. Two words are related by ≈ if

there is no state in the automaton that accepts one but not the other.

Given an equivalence class [w] in the quotient A∗/≈, a state x ∈ X either accepts

all words in [w], or none. Hence, the language of every x ∈ X arises as a union⋃
{[w] | w ∈ l(x)} of equivalence classes in A∗/≈. The set {{[w] | w ∈ l(x)} | x ∈ X}

is isomorphic to the set of languages accepted by the automaton (the image of X

along l), which is (the state space of) a minimal automaton.

But how are these equivalence classes of words computed and represented? The

crux is that there is an isomorphism between the quotient A∗/≈ and the set R =

{{x ∈ X | w ∈ l(x)} | w ∈ A∗}, that is, every equivalence class of words is

represented as the set of states accepting these words. The set R has an inductive

characterization, as the limit of:

R0 = ∅ Ri+1 = {{x ∈ X | f(x)(a) ∈ S} | a ∈ A,S ∈ Ri} ∪ {{x ∈ X | o(x) = 1}}

If the state space X is finite, then this sequence stabilizes after a finite number of

steps, at which point we computed R and, hence, the partition of A∗. The language

of a state x ∈ X is then represented by the set {S ∈ R | x ∈ S}, and (the state

72

Rot

space of) our minimal automaton is obtained by taking {{S ∈ R | x ∈ S} | x ∈ X}.
Similar to the case of ≡i, the above presentation of the sets Ri is chosen to match

the abstract theory of Section 6.

The inductive computation of Ri’s corresponds to the reachable (sets of) states

in the automaton with state space 2X obtained from (X, o, f) by reversing transi-

tions, turning the set of final states into the initial state and determinizing. This

computation is at the heart of Brzozowski’s minimization algorithm [7]. That algo-

rithm minimizes a deterministic automaton (with initial and final states) by doing

the following twice: reverse and determinize the automaton, and take the part that

is reachable from the new initial state.

Brzozowski’s algorithm is usually explained differently, based on the fact that

the reverse of an automaton recognizes the reverse language (e.g., [22,3,5]). We

prefer the above explanation in terms of equivalence classes, because it explains

the construction directly in terms of the original automaton, and highlights a tight

correspondence between Brzozowski’s construction and partition refinement.

Indeed, for each i we have:

x ≡i y iff (∀S ∈ Ri : x ∈ S iff y ∈ S) (1)

which means that ≡i can be obtained directly from Ri and, as shown in [8], that ≡
can be obtained from R. In terms of partitions, writing Ei for the quotient of X by

≡i, the above equation (1) shows how to compute Ei from Ri by splitting the set X

according to the sets in Ri: informally, Ei is obtained by starting with the trivial

partition Ei = {X} and then, for each S ∈ Ri, replacing each Q ∈ Ei by Q\S and

Q ∩ S if both are nonempty. It is not difficult to see that to compute Ei+1 from

Ei, one only needs to compute Ri+1 from Ri and split all the equivalence classes in

Ei according to the new sets (splitters) in Ri+1. This is the basis of an algorithm,

proposed in [8], that combines partition refinement with Brzozowski’s algorithm.

Example 2.1 Consider the following deterministic automaton over the alphabet

{a, b, c}, where the only accepting state is x.

x
a,b,c // z a,b,ccc

u

a

;;

b,c :: va,c
oo

b

OO

w
a,b

oo

c

dd

We compute the quotients Ei of X by ≡i, and the sets Ri’s as explained above:

E0 = {{x, u, v, w, z}} R0 = ∅

E1 = {{x}, {u, v, w, z}} R1 = {{x}}

E2 = {{x}, {u}, {v}, {w}, {z}} R2 = {{x}, {u}, {v}, {w}}

R3 = {{x}, {u}, {v}, {w}, {u, v}, ∅}

R4 = {{x}, {u}, {v}, {w}, {u, v}, ∅, {u,w}, {v, w}}

73

Rot

Each Ei is computed from Ri by only identifying those states that appear in the

same sets in Ri, or, more efficiently, by splitting the partitions in Ei−1 according to

the newly added sets in Ri. For instance, we obtain E2 from E1 and R2 by splitting

{x} and {u, v, w, z} by {u}, {v}, {w}, in particular by splitting {u, v, w, z} by {u},
yielding {u}, {v, w, z}; then {v, w, z} by {v} yielding {v}, {w, z}; and finally {w, z}
by {w} (notice that the order of splitting does not matter). Observe that we can

compute Ei from Ri, but not vice versa. And the sequence of Ei’s may stabilize

earlier than the sequence of Ri’s.

3 Preliminaries

For the remainder of this paper, we assume familiarity with basic notions of category

theory. Given a category C, a coalgebra for a functor B : C→ C is a pair (X, c) where

X is an object in C and c is a morphism c : X → BX. A coalgebra homomorphism

from (X, c) to (Y, d) is a C-morphism h : X → Y such that Fh ◦ c = d ◦ h. The

category of coalgebras for a functor B is denoted by coalg(B). A coalgebra (Z, ζ)

is called final if it is a final object in coalg(B), i.e., for every coalgebra (X, c) there

exists a unique coalgebra morphism from (X, c) to (Z, ζ).

For our running example, consider the functor B : Set → Set defined by BX =

2×XA, where A is a fixed set. A B-coalgebra 〈o, f〉 : X → 2×XA is a determin-

istic automaton (with no initial state), as in Section 2. The functor B has a final

coalgebra, given by the set of languages over A. The unique morphism from any

automaton to this final coalgebra maps each state to the language it accepts [21].

An algebra for a functor L : D → D is defined dually to a coalgebra, i.e., it is

a pair (X, a) where a : LX → X, and an algebra morphism from (X, a) to (Y, b)

is a morphism h : X → Y such that h ◦ a = b ◦ Lh. The category of L-algebras is

denoted by alg(L). An algebra is called initial if it is an initial object in alg(L).

As an example, consider the functor L : Set→ Set defined by LX = A×X + 1,

where A is a fixed set and 1 = {∗} a singleton. An L-algebra consists of a set X and

a map [g, ι] : A ×X + 1 → X. We interpret L-algebras as deterministic automata

with initial state ι(∗) and transition function g (but no final states). This functor L

has an initial algebra, given by the set of words A∗ with the empty word ε as initial

state and (a,w) ∈ A × A∗ mapped to the concatenation aw. Given an L-algebra

(deterministic automaton), the unique morphism from A∗ maps a word w to the

state that is reached after processing w from the initial state, reading the letters

from right to left.

Contravariant adjunctions. We will consider functors F : Cop → D, G : Dop → C that

form an adjunction F op a G, i.e., such that there is a natural bijection C(X,GY) ∼=
D(Y, FX). We denote both sides of this bijection by (−)[, and for a morphism f in

either of the two homsets we call f [the transpose of f . An adjunction as above has

two units η : Id⇒ GF and ι : Id⇒ FG. For a morphism f : X → GY the transpose

is given by f [= Ff ◦ ιY and, for g : Y → FX, by g[= Gg ◦ ηX . The standard

example is C = D = Set with F = G = 2− the contravariant powerset functor.

To avoid too much of the (−)op notation, we treat F and G as contravariant

functors between C and D, meaning that they reverse the direction of arrows, and

refer to an adjunction as above as a contravariant adjunction. This should not lead

74

Rot

to confusion, as all the adjunctions considered in this paper are contravariant.

Factorization systems. Let C be a category, and E ,M classes of morphisms in C.

The pair (E ,M) is called a factorization system if (a) both E andM are closed under

A e // //

g

��

B

f
��

C // m //D

A e // //

g

��

B

f
��

d

~~
C // m //D

(2)

isomorphisms, (b) for every morphism f in

C there is an (E ,M)-factorization: a pair

of morphisms e ∈ E , m ∈M s.t. m ◦ e = f ,

and (c) for every commutative square as on

the left-hand side of (2), with e ∈ E and

m ∈M, there is a unique diagonal d making the right-hand side commute [2].

Both E and M are closed under composition of morphisms. Further, (E ,M)-

factorizations are unique up to isomorphism [2]. We denote morphisms in E by

arrows of the form A // //B and morphisms inM by arrows of the form C // //D .

If E is the class of epimorphisms and M the class of monomorphisms then we

speak of an (epi,mono)-factorization system. A standard example is the (epi,mono)-

factorization system of the category Set of sets and functions.

Given a functor F : C→ C on a category C with a factorization system (E ,M), if

F preserves morphisms in M then the factorization system lifts to coalg(F) [18,1].

If F preserves morphisms in E then the factorization system lifts to alg(F). A

category C is called wellpowered if, for every object X, there is (up to isomorphism)

only a set of monomorphisms with codomain X. It is called cowellpowered if every

object X has (up to isomorphism) only a set of epimorphisms with domain X.

4 Minimization

In this section we recall from [1] the notion of minimization, and an associated ab-

stract partition refinement procedure. Throughout this section, let C be a complete

category with an (E ,M)-factorization system, and B : C→ C a functor.

Definition 4.1 A minimization of a B-coalgebra (X, c) is a B-coalgebra (E, ε) with

a coalgebra morphism e : (X, c) → (E, ε) with e ∈ E such that for every coalgebra

morphism e′ : (X, c) → (Y, d) with e′ ∈ E there is a unique coalgebra morphism

h : (Y, d)→ (E, ε) with h ◦ e′ = e.

A minimization of a B-coalgebra (X, c) is a B-coalgebra (E, ε) with a coalgebra

morphism e : (X, c) → (E, ε) with e ∈ E such that for every coalgebra morphism

e′ : (X, c) → (Y, d) with e′ ∈ E there is a unique coalgebra morphism h : (Y, d) →
(E, ε) with h ◦ e′ = e. If a minimization exists then it is unique up to isomorphism,

therefore we often speak about the minimization. If B has a final coalgebra (Z, ζ)

and B preservesM-morphisms, then the minimization of (X, c) is equivalently given

by (E ,M)-factorization (in coalg(B)) of the unique coalgebra morphism to (Z, ζ):

X e // //

c
��

E // m //

ε
��

Z

ζ
��

BX
Be

//BE //
Bm

//BZ

The procedure from [1] for computing a minimization is based on the final sequence.

We denote the poset category of ordinal numbers by Ord.

75

Rot

Definition 4.2 The final sequence W : Ordop → C of B is the unique sequence

defined by W0 = 1 (the final object of C), Wi+1 = BWi and Wj = limi<jWi for

a limit ordinal j, whose connecting morphisms wj,i : Wj → Wi (with i ≤ j) satisfy

wi,i = id, wj+1,i+1 = Bwj,i and if j is a limit ordinal then (wj,i)i<j is a limit cone.

Any coalgebra c : X → BX defines a unique cone (ci : X → Wi)i∈Ord satisfying

ci+1 = Bci ◦ c. We use the notation ci throughout this paper to refer to elements of

the above cone, for a coalgebra (X, c).

Definition 4.3 For any coalgebra c : X → BX and ordinal i, we define the i-

minimization to be the E-morphism ei : X → Ei of an (E ,M)-factorization of ci.

The Ei’s form an ordinal indexed chain, with connecting morphisms ej,i : Ej →
Ei (for i ≤ j) arising by diagonalization (so that ei = ei+1,i ◦ ei+1 for all i).

The following theorem collects what we need to know about (i-)minimizations.

The first two items concern the existence of minimizations, and the third is a tech-

nique for computing i-minimizations.

Theorem 4.4 [1] Let c : X → BX be a coalgebra.

(i) Suppose that E consists of epimorphisms, and suppose that the i-minimization

ei : X → Ei of (X, c) is a coalgebra morphism from (X, c) to a B-coalgebra

(Ei, ε). Then (Ei, ε) is the minimization of (X, c).

(ii) In addition to the above assumptions, suppose C is cowellpowered, and B pre-

serves morphisms in M. Then the minimization of any B-coalgebra exists,

with carrier Ei for some ordinal number i.

(iii) Suppose B preserves morphisms inM, and ei : X → Ei is the i-minimization of

(X, c). Then the E-morphism of an (E ,M)-factorization of Bei ◦ c : X → BEi
is the (i+ 1)-minimization of (X, c).

Example 4.5 Consider the Set functor BX = 2 × XA, whose coalgebras are de-

terministic automata, with the factorization system given by epis and monos. For

an ordinal i, the set Wi in the final sequence of B consists of all languages over

A where all words have length below i. Given a B-coalgebra (X, c), the function

ci : X →Wi maps a state x to the set of words of length below i accepted by x. Its

kernel is the relation ≡i given in Section 2.1. Thus Ei is the quotient of states by ≡i.
The inductive computation of ei in Theorem 4.4(iii) underlies partition refinement

algorithms for deterministic automata. For details and more examples, see [1].

5 Reachability

We define the notion of reachable part of an algebra, and a procedure to compute

it. The definitions and results are dual to those of the previous section, but since

they play an important role in the remainder of this paper we spell out some of

the details, and state the dual of Theorem 4.4. Throughout this section, let D be a

cocomplete category with an (E ,M)-factorization system and L : D→ D a functor.

The reachable part of an L-algebra (X, a) is an L-algebra (R, %) with a morphism

m : (R, %)→ (X, a) with m ∈M, satisfying the expected property dual to that of a

minimization. If L has an initial algebra (A,α) and L preserves E-morphisms, then

76

Rot

the reachable part of (X, a) is equivalently given by (E ,M)-factorization (in alg(L))

of the unique algebra morphism from (A,α) to (X, a).

The initial sequence V : Ord→ D of L is the unique sequence defined by V0 = 0
(the initial object of D), Vi+1 = LVi and Vj = colimi<jVi for a limit ordinal j, whose

connecting morphisms vi,j : Vi → Vj (with i ≤ j) satisfy vi,i = id, vi+1,j+1 = Lvi,j
and if j is a limit ordinal then (vi,j)i<j is a colimit cocone.

Any algebra a : LX → X defines a unique cocone (ai : Vi → X)i∈Ord satisying

ai+1 = a ◦Lai. We define the i-reachable part to be the M-morphism mi : Ri → X

of an (E ,M)-factorization of ai. The Ri’s form an ordinal indexed chain, with

connecting morphisms ri,j : Ri → Rj (for i ≤ j) arising by diagonalization (so that

mi = mi+1 ◦ ri,i+1 for all i).

Theorem 5.1 Let a : LX → X be an algebra.

(i) Suppose that M consists of monomorphisms, and suppose that the i-reachable

part mi : Ri → X of (X, a) is an algebra morphism from an L-algebra (Ri, %)

to (X, a). Then (Ri, %) is the reachable part of (X, a).

(ii) In addition to the above assumptions, suppose D is wellpowered, and L pre-

serves morphisms in E. Then the reachable part of any L-algebra exists, with

carrier Ri for some ordinal number i.

(iii) Suppose L preserves morphisms in E, and mi : Ri → X is the i-reachable part of

(X, a). Then theM-morphism of an (E ,M)-factorization of a◦Lmi : LRi → X

is the (i+ 1)-reachable part of (X, a).

Example 5.2 Let L be the Set endofunctor defined by LX = A × X + 1. As

explained in Section 3, an algebra [g, ι] : A×X+1→ X is a deterministic automaton

with initial state ι(∗), transition function g and no final states. A set Vi in the initial

sequence of L is the set of words of length below i, and the function [g, ι]i : Vi → X

maps w ∈ Vi to the state that is reached after processing w from right to left:

[g, ι]i(ε) = ι(∗) and, for a ∈ A and w ∈ Vi−1, [g, ι]i(aw) = g(a, [g, ι]i(w)).

The i-reachable part mi : Ri → X is concretely presented by letting Ri be the

set of states reachable from words of length below i, and mi the inclusion map.

For i = 0 we have V0 = ∅, hence R0 = ∅. The computation of mi+1 : Ri+1 → X

from mi in Theorem 5.1 amounts to taking the image of LRi along [g, ι] ◦Lmi, i.e.,

Ri+1 = {g(a,mi(x)) | a ∈ A, x ∈ Ri} ∪ {ι(∗)}. The reachable part of (X, [g, ι])

consists of all states that are reachable from some word in A∗, starting from the

initial state.

6 Minimization via reachability

We formulate the minimization construction sketched in Section 2.2 in terms of

(co)algebras. The instantiation to deterministic automata is presented in Exam-

ple 6.2, which can be read without necessarily understanding the abstract construc-

tion. For the abstract construction, we assume:

(A1) categories C and D, both with (epi,mono)-factorization systems;

(A2) a functor B : C→ C that preserves epis;

77

Rot

(A3) a functor L : D→ D that preserves monos;

(A4) a (contravariant) adjunction between functors F : Cop → D and G : Dop → C;

(A5) a natural isomorphism ρ : BG⇒ GL;

(A6) the existence of an initial L-algebra.

By (A1) . . . (A3), both C and D have (epi,mono)-factorization systems that extend

to coalg(B) and alg(L) respectively. The contravariant adjunction of (A4) lifts, using

the isomorphism in (A5), to a (contravariant) adjunction between F : coalg(B)op →
alg(L) and G : alg(L)op → coalg(B) (see [10], and also [13,15]).

Theorem 6.1 Assume (A1) . . . (A6) from the beginning of this section, and let

(X, c) be a B-coalgebra. Let m : (R, %) → F (X, c) be the reachable part of F (X, c).

Take an (epi,mono)-factorization (in coalg(B)) of the adjoint transpose m[of m:

(X, c) // //
m[

,,
(E, ε) // // G(R, %) (3)

Then (E, ε) is the minimization of (X, c).

The functor F is defined on objects by F (X, c) = (FX,Fc◦ρ[X), where ρ[: LF ⇒
FB is the mate of ρ, and G by G(X, a) = (GX, ρ−1

X ◦Ga). See [14,15] for details. We

often abbreviate Fc ◦ ρ[X by Fc, and in particular we write ((Fc)i : Vi → FX)i∈Ord

for the cocone over the initial sequence of L induced by F (X, c).

The construction in Theorem 6.1 is based on [15], which in turn is based on

techniques from coalgebraic modal logic. Indeed, a natural transformation ρ of the

above form (without the assumption that it is an iso) is by now a standard way of

defining the semantics of coalgebraic modal logic, see, e.g., [14,17].

The minimization construction of [15] concerns a more general class of coalge-

bras, that may involve branching. As explained in Section 8, the factorization of

m[yielding a minimal automaton can not be formulated in that setting. The con-

struction is also connected to the one in [4], which however assumes a duality rather

than a contravariant adjunction (making the factorization of m[unneccesary, since

it is automatically an epi because of the duality). That construction rules out our

example of deterministic automata below.

Example 6.2 We apply the construction of Theorem 6.1 to deterministic automata

over an alphabet A. The ingredients (A1) . . . (A6) of the beginning of this section

are as follows: C = D = Set, F = G = 2− (the contravariant powerset functor),

B : Set→ Set is given by BX = 2×XA, L : Set→ Set is given by LX = A×X+ 1.

The required isomorphism ρ : BG⇒ GL is 2× (2−)A ∼= 2A×−+1. Recall that L has

an initial algebra, given by the set of words A∗.

Let 〈o, f〉 : X → 2×XA be a B-coalgebra. The first step of the construction is to

compute F (X, 〈o, f〉) = (2X , 2〈o,f〉◦ρ[X), which we denote by [g, ι] : A×2X+1→ 2X .

Intuitively, (2X , [g, ι]) is obtained by reversing and determinizing the automaton

(X, 〈o, f〉), where reversal comes from the application 2〈o,f〉 of the contravariant

powerset functor. By computing the mate ρ[of ρ, we obtain (see [15,23] for details):

g(a, S) = {x ∈ X | f(x)(a) ∈ S} and ι(∗) = {x ∈ X | o(x) = 1} .

78

Rot

The reachable part R ⊆ 2X (technically, an inclusion map m : R→ 2X) consists of

all reachable (sets of) states in (2X , [g, ι]). By Theorem 5.1, R can be obtained by

computing i-reachable parts by induction on i, according to (see Example 5.2):

Ri+1 = {{x ∈ X | f(x)(a) ∈ S} | a ∈ A,S ∈ Ri} ∪ {{x ∈ X | o(x) = 1}}

and R0 = ∅. We thus retrieve the reachable sets as constructed in Section 2.2.

Following Theorem 6.1, we compute an (epi,mono)-factorization of the transpose

m[of m, and obtain a coalgebra (E, ε) which is the minimization of (X, 〈o, f〉). The

transpose m[: X → 2R is given by m[(x) = {S ∈ R | x ∈ S}. Concretely, the

factorization E can be defined as the image of X along m[. But observe that we can

also define e : X → E (and, implicitly, E) by e(x) = {y | ∀S ∈ R : x ∈ S iff y ∈ S}.
Then E is the quotient of X by language equivalence, see Section 2.2.

7 Relating minimization and reachability

We have seen how minimization can be computed either by a stepwise computation

along the final sequence, or by a stepwise computation along an initial sequence

followed by a factorization. Next we show that, when both approaches apply, there

is a strong correspondence: the arrows from the initial sequence and those into

the final sequences are each others adjoint transpose, up to isomorphism (Theo-

rem 7.2). Based on this correspondence, we derive an abstract method to compute

the i-th partition from the i-th reachability step (Corollary 7.3), generalizing the

computation of ≡i (or Ei) from Ri in Section 2.2.

Throughout this section we assume (A1) . . . (A5) from the beginning of Section 6,

i.e., categories C and D with (epi,mono)-factorization systems, functors B : C →
C preserving monos and L : D → D preserving epis, a contravariant adjunction

between F and G and finally a natural iso ρ : BG ⇒ GL. We further assume that

C is complete and D is cocomplete.

Lemma 7.1 Let W : Ordop → C be the final sequence of B, and V : Ord → D the

initial sequence of L. There is a natural isomorphism κ : W ⇒ GV op : Ordop → C
satisfying κi+1 = ρVi ◦Bκi for all ordinals i.

The following is the heart of the matter, relating the cone (ci : X → Wi)i∈Ord

over the final sequence of B induced by (X, c) to the cocone ((Fc)i : Vi → FX)i∈Ord

over the initial sequence of L induced by F (X, c).

Theorem 7.2 Let (X, c) be a B-coalgebra. For any ordinal i, the following diagram

commutes:

X
ci //

(Fc)[i $$

Wi

κi
��

GVi

Corollary 7.3 Let (X, c) be a B-coalgebra. Let m[
i : X → GRi be the transpose

of the i-reachable part of F (X, c). Then the epic morphism ei : X → Ei of an

(epi,mono)-factorization of m[
i is the i-minimization of (X, c). Further, if mi : Ri →

FX is the reachable part of F (X, c), then ei is the minimization of (X, c).

79

Rot

Example 7.4 In Section 2.2 we have seen how the i-th partition of the states

of a deterministic automaton can be obtained from the sets of states reachable

in the reversed determinized automaton in less than i steps, by interpreting the

reachable sets as splitters. This result is a special case (and, indeed, we derived

it from) Corollary 7.3. To see this, let (X, c) be a deterministic automaton, recall

from Example 4.5 that the i-th partition is the i-minimization of (X, c), and recall

from Example 6.2 that the sets of states reachable in the reversed determinized au-

tomaton are given by the i-reachable part mi of F (X, c). The “splitting” operation

corresponds to a specific factorization of m[
i, similar to the last part of Example 6.2.

One may wonder whether there is a converse, i.e., if we can obtain the i-reachable

part of F (X, c) from the i-minimization of (X, c). Example 2.1 shows that this is

not the case: partition refinement for deterministic automata may stop earlier than

the computation of reachable sets in the reversed determinized automaton.

Under the assumptions of Theorem 5.1, the reachable part of any L-algebra

arises as one of the i-reachable parts, hence Corollary 7.3 shows that, in that case,

Theorem 6.1 holds even if L does not have an initial algebra.

We can also use Corollary 7.3 to combine the minimization procedure based on

i-minimizations and the one based on i-reachable parts. The possibility of com-

puting the i-minimization from the i-reachable part suggests a procedure where we

inductively compute i-reachable parts as in Theorem 5.1, compute i-minimizations

along the way and terminate when the i-minimization is a minimization.

In this procedure, when computing the (i + 1)-minimization from the (i + 1)-

reachable part, one would like to use the i-minimization as well. Concretely, for

deterministic automata, given the partition Ei computed from the splitters Ri (Sec-

tion 2.2), and the new set of splitters Ri+1, we want to compute Ei+1 by splitting

the partition in Ei according to the new splitters, i.e., those appearing in Ri+1 but

not in Ri. Abstractly, one can compute Ei+1 from Ei, Ri and Ri+1 as follows.

Lemma 7.5 Suppose C has pullbacks. Let ei : X → Ei be the i-minimization of a

coalgebra c : X → BX, and let ri,i+1 : Ri → Ri+1 be the arrow (see Section 5) from

the i-reachable part mi : Ri → FX to the (i+ 1)-reachable part mi+1 : Ri+1 → FX

of F (X, c). By Corollary 7.3, m[
i = m′ ◦ei for some mono m′. Let P be the pullback

of m′ and Gri,i+1:

X
h

!!

m[i+1

""

ei

!! !!

P //

��

GRi+1

Gri,i+1

��
Ei // m′

//GRi

There is a unique mediating morphism h as above. The epic part of an (epi,mono)-

factorization of h is the (i+ 1)-minimization of (X, c).

To understand the above construction, consider the case of deterministic au-

tomata, with Ei presented as a partition and Ri as a set of splitters, as above. The

pullback P can be presented by P = {(Q,C) ∈ Ei × 2Ri+1 | C ⊆ Ri+1\Ri} (see the

appendix). The function h : X → P maps x to the pair (ei(x), {S ∈ Ri+1\Ri | x ∈

80

Rot

X}), i.e., the pair consisting of the equivalence class of x in Ei and the set of all

“new” splitters, appearing inRi+1 but not inRi, containing x. The factorization of h

can be presented by mapping each x to {y ∈ ei(x) | ∀S ∈ Ri+1\Ri : x ∈ S iff y ∈ S},
yielding the partition obtained by splitting Ei according to all the new splitters.

For deterministic automata, the inductive computation of i-reachable parts, and

i-minimizations from them using Corollary 7.3 and Lemma 7.5 closely resembles the

construction presented in [8, Algorithm 1] and the end of Section 2.2. However, the

algorithm in [8] terminates only when the reachable part R has been found, whereas

using Corollary 7.3 we can terminate once the i-minimization is a minimization.

This may occur before the i-reachable part is the reachable part (Example 2.1).

8 Branching systems

In the previous sections, we studied minimization of B-coalgebras, with determin-

istic automata as the main example. Next, we investigate the case of systems

involving branching, such as non-deterministic or alternating automata. Here, we

do not focus on finding minimal non-deterministic automata: it is well-known that

they are not unique, and it is in fact much less obvious how to even define the

notion of minimization. Instead, we show how to compute language equivalence

inductively based on reachability.

Language semantics. We are interested in coalgebras for a composite functor of

the form BT or TB, where B models the observations that are to be recorded in

traces, and T is the type of branching. For instance, taking BX = 2×XA as before

and T = P the (covariant) powerset functor, BT -coalgebras are non-deterministic

automata; and with T = PP, BT -coalgebras are a form of alternating automata.

Taking B to be a polynomial functor and T = P one obtains tree automata as TB-

coalgebras, and for a certain choice of T one obtains weighted tree automata [15].

Because of space limitations, we focus on BT -coalgebras in this section, and only

treat the example of non-deterministic automata.

The final semantics of BT -coalgebras such as those in the above examples (which

exists, for instance, when we restrict T to the finite powerset functor) does, in

general, not coincide with the expected language semantics. We recall the ap-

proach of [15] to define language semantics based on initial algebras rather than

final coalgebras. To this end, assume functors B, T : C → C, a functor L : D → D
with an initial algebra and, as before (Section 6), a contravariant adjunction be-

tween F and G. To define language semantics, we assume a natural transforma-

tion ρ : BG ⇒ GL (not necessarily an isomorphism) and a natural transforma-

tion α : TG ⇒ G. This induces a functor Fα : coalg(BT) → alg(L) defined by

Fα(X, c) = (FX,Fc ◦ ρ[TX ◦ Lα[), see [15] for details and explanation. Given a

coalgebra c : X → BTX, one then computes the unique map s : (A,α)→ Fα(X, c)

from the initial L-algebra, and defines the (language) semantics of (X, c) to be the

transpose s[: X → GA of s. We define the language quotient of (X, c) as the epic

part of an (epi,mono)-factorization of the language semantics s[.

Theorem 8.1 Suppose that C and D have (epi,mono)-factorization systems. Let

c : X → BTX be a coalgebra, and let m : (R, %)→ Fα(X, c) be the reachable part of

81

Rot

Fα(X, c). Then the epic part of an (epi,mono)-factorization (in C) of the transpose

m[: X → GR is the language quotient of (X, c).

Example 8.2 Let F = G = 2− be the contravariant powerset adjunction, let

BX = 2×XA and LX = A×X+ 1. A non-deterministic automaton is a coalgebra

〈o, f〉 : X → 2 × (PX)A for the composite functor BP. Define the components of

α : P2− ⇒ 2− by union, and let ρ be the isomorphism from Example 6.2.

We denote the algebra Fα(X, 〈o, f〉) by [g, ι] : A× 2X + 1→ 2X . It is given by

g(a, S) = {x | ∃y ∈ f(x)(a) s.t. y ∈ S} ι(∗) = {x | o(x) = 1}

(cf. Example 6.2). Hence, the unique algebra morphism s : A∗ → 2X satisfies s(ε) =

{x | o(x) = 1} and s(aw) = {x | ∃y ∈ f(x)(a) s.t. y ∈ s(w)}. The transpose s[is

thus the usual semantics of non-deterministic automata [15].

The reachable part R ⊆ 2X consists of all reachable (sets of) states in (2X , [g, ι]).

By Theorem 5.1, R can be obtained by computing i-reachable parts by induction

on i, according to (see Example 5.2) R0 = ∅ and:

Ri+1 = {{x | ∃y ∈ f(x)(a) s.t. y ∈ S} | a ∈ A,S ∈ Ri} ∪ {{x ∈ X | o(x) = 1}} .

The function m[: X → 2R maps every state x to those sets in R that contain it,

and, like in Example 6.2, we may define the epic part of a factorization of m[by

e(x) = {y ∈ X | ∀S ∈ R : x ∈ S iff y ∈ S}. Then e maps every state x to the

equivalence class of states that accept the same language.

It was shown in [15] that, in the context of Theorem 8.1, if the natural trans-

formation ρ is an isomorphism, then GR is a B-coalgebra, whose unique morphism

h to the final coalgebra is mono, and such that s[= h ◦m[. This means that the

construction yields a B-coalgebra whose states are behaviourally equivalent if and

only if they are equal, and whose final semantics represents the language semantics

of the original automaton. Instances where the conditions of the construction are

met include non-deterministic, alternating and weighted automata, see [15]. Here,

our characterization of reachable sets shows how to compute the factorization of

the morphism from the initial algebra.

The construction from [15] mentioned above is reminiscent of Brzozowski’s min-

imization algorithm, but it does not generalize the construction for B-coalgebras in

Theorem 6.1. The latter is based on another (epi,mono)-factorization in coalg(B).

In the example of non-deterministic automata, the construction from [15] yields

a deterministic automaton, which is not minimal in any reasonable sense: it may

contain states that are not reachable from any state in the image of X along m[.

Note that the reachable states can not be obtained in general by taking the image

of the state space X along m[, since the minimal deterministic automaton may have

more states than the non-deterministic one that we start with. Instead, one should

construct the least subautomaton containing this image. In Set, this is easy to define

(e.g., [21]), but at the abstract level it seems less clear.

Language equivalence: a dual view. We briefly consider a construction for branching

systems that is not unlike the minimization construction of Section 4. To this end,

suppose C is complete and D is cocomplete, and let V be the initial sequence of

82

Rot

L : D → D. Given c : X → BTX, there is a unique cone (c̄i : X → GVi)i∈Ord over

GV op satisfying the following:

c̄i+1 = (X c //BTX
BT c̄i //BTGVi

BαVi //BGVi
ρVi //GLVi) .

Call the epic morphism of an (epi,mono)-factorization of c̄i the i-language quotient

of (X, c). (If ρ : BG⇒ GL is an isomorphism, then the above cone can equivalently

be defined over the final sequence.)

Theorem 8.3 Let c : X → BTX be a coalgebra, and ((Fαc)i : Vi → FX)i∈Ord the

cocone over the initial sequence of L induced by Fα(X, c). For any i, we have

c̄i = (Fαc)
[
i. Further, let mi : Ri → FX be the i-reachable part of Fα(X, c). Then

the epic morphism of an (epi,mono)-factorization of the transpose m[
i : X → GRi

is the i-language quotient of (X, c).

The crucial property for the minimization construction in Theorem 4.4 is that the

(i+1)-minimization can be computed from the i-minimization. This approach does

not seem to work for i-language quotients, since α and ρ are not (componentwise)

mono in general. Indeed, for non-deterministic automata, Ei is the quotient of

states by language equivalence of words with length below i, and it is unclear how

one could obtain Ei+1 only from Ei and the automaton under consideration.

In the previous section (Lemma 7.5), we have seen how the (i+ 1)-minimization

can be obtained given the (i + 1)-reachable part and the i-minimization. A sim-

ilar approach could be taken here, generating a sequence of i-language quotients.

However, it is not clear whether this is of much use. The problem is that, in the

current context, it may be the case that the i-language quotient is isomorphic to

the (i+ 1)-language quotient, but not to the j-language quotient for some j > i+ 1.

Hence, we can not use such an isomorphism as a termination condition.

Example 8.4 Consider the following non-deterministic automaton, where the only

accepting state is u.

u

x

a

;;

y

b

OO

zcoo

a,b

cc

w

a

OO

a

::

c

..

v

a

OO

c

pp

The i-reachable sets Ri, as computed in Example 8.2, and the i-language quotients

Ei, which we compute from the Ri’s (Theorem 8.3), are:

E0 = {{u, x, y, z, w, v}} R0 = ∅

E1 = {{u}, {x, y, z, w, v}} R1 = {{u}}

E2 = {{u}, {w, v}, {z}, {x}, {y}} R2 = {{u}, {w, v}, {x, z}, {y, z}}

E3 = {{u}, {w, v}, {z}, {x}, {y}} R3 = {{u}, {w, v}, {x, z}, {y, z}, ∅, {z}}

E4 = {{u}, {w}, {v}, {z}, {x}, {y}} R4 = {{u}, {w, v}, {x, z}, {y, z}, ∅, {z}, {v}}

83

Rot

Notice that E3 = E2, but E4 6= E3. Indeed, all states except w and v are distin-

guished by the empty word or a word of length 1, whereas it requires a word of

length 3 to distinguish w and v.

9 Future work

We established a connection between partition refinement and Brzozowski’s min-

imization construction, based on an abstract coalgebraic perspective. Our inter-

est was to understand deterministic automata, which is hence the one example

we cover in detail. The necessary assumptions of our results are also satisfied by

Moore automata (and stream systems), and potentially other examples (e.g., [23]).

In particular, it would be interesting to use the dualities of [20] and our results on

branching systems to develop generic constructions for canonical branching systems.

In this context, the connection to weak factorization systems as used in [1] and the

approach of [16] also remain to be understood. Further, the interaction between

minimization and coalgebraic determinization constructions is left open.

References

[1] Adámek, J., F. Bonchi, M. Hülsbusch, B. König, S. Milius and A. Silva, A coalgebraic perspective on
minimization and determinization, in: Procs. FOSSACS 2012, LNCS 7213, 2012, pp. 58–73.

[2] Adámek, J., H. Herrlich and G. E. Strecker, “Abstract and Concrete Categories - The Joy of Cats,”
Dover Publications, 2009.

[3] Berstel, J., L. Boasson, O. Carton and I. Fagnot, Minimization of automata, CoRR abs/1010.5318
(2010), to appear in the Handbook of Automata.

[4] Bezhanishvili, N., C. Kupke and P. Panangaden, Minimization via duality, in: Procs. WoLLIC 2012,
LNCS 7456, 2012, pp. 191–205.

[5] Bonchi, F., M. M. Bonsangue, H. H. Hansen, P. Panangaden, J. J. M. M. Rutten and A. Silva, Algebra-
coalgebra duality in Brzozowski’s minimization algorithm, ACM Trans. Comput. Log. 15 (2014), p. 3.

[6] Bonchi, F., M. M. Bonsangue, J. J. M. M. Rutten and A. Silva, Brzozowski’s algorithm (co)algebraically,
in: Logic and Program Semantics - Essays Dedicated to Dexter Kozen on the Occasion of His 60th
Birthday, 2012, pp. 12–23.

[7] Brzozowski, J., Canonical regular expressions and minimal state graphs for definite events.,
Mathematical Theory of Automata 12 (1962), pp. 529–561.

[8] Champarnaud, J., A. Khorsi and T. Paranthoën, Split and join for minimizing: Brzozowski’s algorithm,
in: M. Baĺık and M. Simánek, editors, Proceedings of the Prague Stringology Conference 2002, Prague,
Czech Republic, September 23-24, 2002 (2002), pp. 96–104.

[9] Garćıa, P., D. López and M. Vázquez de Parga, DFA minimization: Double reversal versus split
minimization algorithms, Theor. Comput. Sci. 583 (2015), pp. 78–85.

[10] Hermida, C. and B. Jacobs, Structural induction and coinduction in a fibrational setting, Inf. and
Comp. 145 (1997), pp. 107–152.

[11] Hopcroft, J. E., An n log n algorithm for minimizing states in a finite automaton, in: Theory of
Machines and Computations, 1971, pp. 189–196.

[12] Hopcroft, J. E. and J. D. Ullman, “Introduction to Automata Theory, Languages and Computation,”
Addison-Wesley, 1979.

[13] Jacobs, B., A. Silva and A. Sokolova, Trace semantics via determinization, J. Comput. Syst. Sci. 81
(2015), pp. 859–879.

[14] Klin, B., Coalgebraic modal logic beyond sets, ENTCS 173 (2007), pp. 177–201.

[15] Klin, B. and J. Rot, Coalgebraic trace semantics via forgetful logics, in: FoSSaCS 2015. Proceedings,
2015, pp. 151–166.

84

Rot

[16] König, B. and S. Küpper, Generic partition refinement algorithms for coalgebras and an instantiation
to weighted automata, in: Theoretical Computer Science - 8th IFIP TC 1/WG 2.2 International
Conference, TCS 2014, Rome, Italy, September 1-3, 2014. Proceedings, 2014, pp. 311–325.

[17] Kupke, C. and D. Pattinson, Coalgebraic semantics of modal logics: An overview, Theor. Comput. Sci.
412 (2011), pp. 5070–5094.

[18] Kurz, A., “Logics for coalgebras and applications to computer science,” Ph.D. thesis, Ludwigs-
Maximilians-Universität München (2000).

[19] Moore, E. F., Gedanken-experiments on sequential machines, Automata studies 34 (1956), pp. 129–153.

[20] Myers, R. S. R., J. Adámek, S. Milius and H. Urbat, Coalgebraic constructions of canonical
nondeterministic automata, Theor. Comput. Sci. 604 (2015), pp. 81–101.

[21] Rutten, J. J. M. M., Universal coalgebra: a theory of systems, Theor. Comput. Sci. 249 (2000), pp. 3–80.

[22] Sakarovitch, J., “Elements of Automata Theory,” Cambridge University Press, 2009.

[23] Salamanca, J., M. Bonsangue and J. Rot, Duality of equations and coequations via contravariant
adjunctions, in: CMCS, 2016, to appear.

[24] Watson, B. W., “Taxonomies and Toolkits of Regular Language Algorithms,” Ph.D. thesis, Eindhoven
University of Technology (1995).

85

Rot

A Proofs of Section 4

Theorem 4.4 is proved in [1] (with item (i) inlined in the proof of item (ii)). Because

of this presentation difference, and for convenience, we recall the proof here. First,

we need the following technicality, see [1].

Lemma A.1 Let h : (X, c)→ (Y, d) be a coalgebra homomorphism. Then ci = di◦h
for all ordinals i.

Theorem 4.4 [1] Let c : X → BX be a coalgebra.

(i) Suppose that E consists of epimorphisms, and suppose that the i-minimization

ei : X → Ei of (X, c) is a coalgebra morphism from (X, c) to a B-coalgebra

(Ei, ε). Then (Ei, ε) is the minimization of (X, c).

(ii) In addition to the above assumptions, suppose C is cowellpowered, and B pre-

serves morphisms in M. Then the minimization of any B-coalgebra exists,

with carrier Ei for some ordinal number i.

(iii) Suppose B preserves morphisms inM, and ei : X → Ei is the i-minimization of

(X, c). Then the E-morphism of an (E ,M)-factorization of Bei ◦ c : X → BEi
is the (i+ 1)-minimization of (X, c).

Proof.

(i) By assumption, ei is a coalgebra homomorphism from (X, c) to (Ei, ε). Let

h : (X, c) → (Y, d) be a coalgebra morphism with h ∈ E . By Lemma A.1, the

upper right triangle in the diagram on the left-hand side commutes:

X h // //

ei
��

ci

%%

Y

di
��

Ei // mi
//Wi

X h // //

ei
��

Y

di
��

e′

yy
Ei // mi

//Wi

By Definition 4.3, the i-minimization of (X, c) is an (E ,M)-factorization of ci
with E-morphism ei; we denote the M-morphism by mi, hence the lower left

triangle commutes by definition. As a consequence of commutativity of the

square, we obtain a unique diagonal e′ making the diagram on the right-hand

side commute. It only remains to be shown that e′ is a coalgebra morphism.

This follows since h is epic and both e′ ◦ h = ei and h are coalgebra mor-

phisms [21, Lemma 2.4].

(ii) First, for any given i, let ei : X → Ei be the i-minimization of (X, c), with

corresponding M-morphism mi (i.e., such that ci = mi ◦ ei). The outside of

the following diagram commutes:

X
ei+1 // //

c
��

Ei+1

mi+1

��

εi

��

BX

Bei
��

BEi // Bmi
//BWi

86

Rot

where Bmi is in M by assumption. Thus, we obtain a diagonal ε.

As explained in [1], since C is cowellpowered and the ei’s form a chain of

epimorphisms with domain X, there is an i such that the arrow ei+1,i : Ei+1 →
Ei is an isomorphism. We denote its inverse by ι : Ei → Ei+1, then ι◦ei = ei+1

(since ei = ei+1,i ◦ ei+1, see Section 4). We obtain a coalgebra on Ei turning ei
into a coalgebra morphism:

X

c

��

ei //

ei+1 ##

Ei

ι

��
Ei+1

εi
��

BX
Bei
//BEi

By (i), the coalgebra on Ei is the minimization of (X, c).

(iii) Let mi be the M-morphism such that ci = mi ◦ ei. Then ci+1 is the upper

path in the diagram below.

X c //

ei+1 ** **
BX

Bei //BEi //
Bmi //BWi = Wi+1

Ei+1
33

33 (A.1)

Notice that Bmi is inM, since B preservesM-morphisms by assumption. Let

ei+1 : X → Ei+1 be the E-morphism of an (E ,M)-factorization of Bei ◦ c. We

obtain an (E ,M)-factorization of ci+1, since M-morphisms are closed under

composition. Thus ei+1 is the (i+ 1)-minimization of (X, c).

2

B Proofs of Section 5

Theorem 5.1 Let a : LX → X be an algebra.

(i) Suppose that M consists of monomorphisms, and suppose that the i-reachable

part mi : Ri → X of (X, a) is an algebra morphism from an L-algebra (Ri, %)

to (X, a). Then (Ri, %) is the reachable part of (X, a).

(ii) In addition to the above assumptions, suppose D is wellpowered, and L pre-

serves morphisms in E. Then the reachable part of any L-algebra exists, with

carrier Ri for some ordinal number i.

(iii) Suppose L preserves morphisms in E, and mi : Ri → X is the i-reachable part of

(X, a). Then theM-morphism of an (E ,M)-factorization of a◦Lmi : LRi → X

is the (i+ 1)-reachable part of (X, a).

Proof. This follows directly by duality and Theorem 4.4: the factorization system

(E ,M) on D yields the factorization system (M, E) on Dop, L-algebras in D are

Lop-algebras in Dop and (i-)reachable parts in D are (i-)minimizations in Dop.

For item (iii), it may be helpful to see a direct proof. Let ei be the E-morphism

such that mi ◦ ei = ai. Consider the following diagram, where the horizontal

87

Rot

path is ai+1 : Vi+1 → X, and mi+1 : Ri+1 → X is the M-morphism of an (E ,M)-

factorization of a ◦ Lmi:

Vi+1 = LVi
Lei // //LRi

Lmi //

++ ++
LX a //X

Ri+1
44 mi+1

44 (B.1)

The morphism Lei is in E , since L preserves E-morphisms by assumption. Since

E-morphisms compose, this yields a factorization of ai+1, so that mi+1 is the (i+1)-

reachable part of (X, a). 2

C Proofs of Section 6

Theorem 6.1 Assume (A1) . . . (A6) from the beginning of this section, and let

(X, c) be a B-coalgebra. Let m : (R, %) → F (X, c) be the reachable part of F (X, c).

Take an (epi,mono)-factorization (in coalg(B)) of the adjoint transpose m[of m:

(X, c) // //
m[

,,
(E, ε) // // G(R, %) (3)

Then (E, ε) is the minimization of (X, c).

Proof. Since L has an initial algebra (A,α), m is the monic part of an (epi,mono)-

factorization m◦e : (A,α)→ F (X, c). Because G is a right adjoint, it maps colimits

to limits, henceG(A,α) is a final coalgebra. Further, becauseG is a right adjoint and

e is an epi, Ge is a mono (into the final coalgebra). Take an (epi,mono)-factorization

of m[, and compose with Ge:

(X, c) // //
m[

,,
(E, ε) // // G(R, %) // Ge //G(A,α)

Since monos are closed under composition, we have an (epi,mono)-factorization of

the (unique) coalgebra morphism from (X, c) to the final B-coalgebra, i.e., (E, ε) is

the minimization of (X, c). 2

D Proofs of Section 7

Lemma 7.1 Let W : Ordop → C be the final sequence of B, and V : Ord → D the

initial sequence of L. There is a natural isomorphism κ : W ⇒ GV op : Ordop → C
satisfying κi+1 = ρVi ◦Bκi for all ordinals i.

Proof. We define κi by transfinite induction. The successor step is given by the

statement of the lemma. For a limit ordinal j, suppose we have an isomorphism

κi : Wi ⇒ GVi for all i < j. Since G is a right (contravariant) adjoint it maps

colimits to limits, hence GVj = G(colimi<jVi) = limi<j GVi. The aim is thus to

find an isomorphism κj : limi<jWi → limi<j GVi. By the inductive hypothesis we

obtain cones

(κi ◦ wj,i : lim
i<j

Wi → GVi)i<j and (κ−1
i ◦Gvi,j : lim

i<j
GVi →Wi)i<j .

88

Rot

By the universal property of limi<j GVi and limi<jWi, we then obtain morphisms

κj : limi<jWi → limi<j GVi and κ−1
j : limi<j GVi → limi<jWi.

limi<jWi

wj,i

��

κj --
limi<j GVi

Gvi,j
��

κ−1
j

mm

Wi

κi
,,GVi

κ−1
i

ll

The naturality squares as above are satisfied for each ordinal i with i ≤ j, and it is

not difficult to prove that κj and κ−1
j are indeed each others inverse. 2

For the proof of Theorem 7.2 (and Theorem 8.3), we will use the following

result, which assumes functors B,L, a contravariant adjunction between F an G

(as in Section 6) and a natural transformation ρ : BG⇒ GL. Here ρ is not assumed

to be an isomorphism; in this setting, the lifting F : coalg(B)op → alg(L) of F is

defined (as in Section 6), but, in general it does not have a right adjoint. As before,

we denote the mate of ρ by ρ[: LF ⇒ FB.

Lemma D.1 Let c : X → BX be a coalgebra, and ((Fc)i : Vi → FX)i∈Ord the

cocone over the initial sequence of L induced by F (X, c). There is a unique cone

(cρi : X → GVi)i∈Ord over GV op such that

cρi+1 = (X c //BX
Bcρi //BGVi

ρVi //GLVi) .

For every i ∈ Ord, we have cρi = (Fc)[i.

Proof. Let (X, c) be a coalgebra. Uniqueness of the cone follows from the fact that

when j is a limit ordinal, then GVj = Gcolimi<jVi = limi<j GVi, where the latter

equality holds since G is a right adjoint.

We show that

(i) ((Fc)[i : X → GVi)i∈Ord is a cone over GV op;

(ii) for all i, we have (Fc)[i+1 = ρVi ◦B(Fc)[i ◦ c.

Since (cρi : X →Wi)i∈Ord is the unique cone with the property cρi+1 = ρVi ◦Bc
ρ
i ◦ c,

it then follows that cρi = (Fc)[i for all i.

(i) Let i, j be ordinals with i ≤ j. Since ((Fc)i : Vi → FX)i∈Ord is a cone over the

initial sequence V , the triangle on the left-hand side commutes:

Vj
(Fc)j

%%
Vi

(Fc)i

//

vi,j

OO

FX

X
(Fc)[i //

(Fc)[j %%

GVi

GVj

Gvi,j

OO

As a consequence, the triangle on the right-hand side commutes.

(ii) By definition of F we have F (X, c) = Fc ◦ ρ[X , and by definition of the cone

((Fc)i : Vi → FX)i∈Ord induced by F (X, c), the following commutes for any i:

89

Rot

LVi

(Fc)i+1

((

L(Fc)i

//LFX
ρ[X

//FBX
Fc

//FX (D.1)

Consider the following diagram.

X
ηX //

c
++

(Fc)[i+1

!!
GFX GFc //GFBX

Gρ[X //GLFX
GL(Fc)i //GLVi

BX
BηX //

B(Fc)[i

FF

ηBX

OO

BGFX
BG(Fc)i //

ρFX

OO

BGVi

ρVi

OO

(D.2)

The upper crescent commutes by (D.1) and the definition of the adjoint trans-

pose, and the lower crescent commutes as well by definition of the transpose.

The left triangle and right square commute by naturality. The middle square is

a standard property relating ρ and its mate, see, e.g., (the full version of) [15].

Commutativity of the outside of the diagram is the desired property.

2

Theorem 7.2 Let (X, c) be a B-coalgebra. For any ordinal i, the following diagram

commutes:

X
ci //

(Fc)[i $$

Wi

κi
��

GVi

Proof. Let κ : W ⇒ GV op be the isomorphism from Lemma 7.1. Consider the

cone (ci : X → Wi)i∈Ord induced by (X, c). By naturality of κ, this yields a cone

(κi ◦ ci : X → GVi)i∈Ord over GV op. Given an ordinal i, consider the following

diagram:

X
ci+1 //

c

��

BWi
κi+1 //GLVi

BX
Bci

//BWi Bκi
//BGVi

ρVi

OO

The left square commutes by definition of (ci)i∈Ord and the right square commutes

by Lemma 7.1. We have shown that (κi ◦ ci : X → GVi)i∈Ord is a cone over GV op,

satisfying κi+1 ◦ ci+1 = ρVi ◦B(κi ◦ ci) ◦ c. By Lemma D.1, we obtain κi ◦ ci = (Fc)i
for all i. 2

Corollary 7.3 Let (X, c) be a B-coalgebra. Let m[
i : X → GRi be the transpose

of the i-reachable part of F (X, c). Then the epic morphism ei : X → Ei of an

(epi,mono)-factorization of m[
i is the i-minimization of (X, c). Further, if mi : Ri →

FX is the reachable part of F (X, c), then ei is the minimization of (X, c).

90

Rot

Proof. The arrow mi : Ri → FX is the i-reachable part of F (X, c), thus it is part

of a factorization mi ◦ e′ = (Fc)i for some epi e′ : Vi → Ri. Consider the diagram:

X
ci //

����

(Fc)[i

**
m[i $$

Wi

Ei // //GRi // Ge′
//GVi

κ−1
i

OO

where the lower left triangle is an (epi,mono)-factorization of m[
i. The middle

triangle commutes by construction of mi, and the upper right by Theorem 7.2.

The arrow Ge′ is mono, since e′ is epi and G is a right adjoint. Hence we obtained

an (epi,mono)-factorization of ci, so the epic part is the i-minimization of (X, c).

For the second part of the statement, suppose mi is the reachable part of F (X, c),

meaning in particular that there is an algebra (Ri, %) on Ri turning mi : (Ri, %) →
F (X, c) into an algebra morphism. Then the adjoint transpose m[

i (in the lifted

adjunction between F and G) is a coalgebra morphism m[
i : (X, c) → G(Ri, %).

Consider the epic part of a factorization ei : (X, c)→ (Ei, ε) of this coalgebra mor-

phism m[
i. The underlying map ei : X → Ei is the epic part of the factorization of

m[
i (in C), hence, by the first part of the corollary, it is the i-minimization. Since

ei is a coalgebra morphism, by Theorem 4.4 it is the minimization of (X, c). 2

Lemma 7.5 Suppose C has pullbacks. Let ei : X → Ei be the i-minimization of a

coalgebra c : X → BX, and let ri,i+1 : Ri → Ri+1 be the arrow (see Section 5) from

the i-reachable part mi : Ri → FX to the (i+ 1)-reachable part mi+1 : Ri+1 → FX

of F (X, c). By Corollary 7.3, m[
i = m′ ◦ei for some mono m′. Let P be the pullback

of m′ and Gri,i+1:

X
h

!!

m[i+1

""

ei

!! !!

P //

��

GRi+1

Gri,i+1

��
Ei // m′

//GRi

There is a unique mediating morphism h as above. The epic part of an (epi,mono)-

factorization of h is the (i+ 1)-minimization of (X, c).

Proof. The arrow ri,i+1 satisfies mi+1 ◦ ri,i+1 = mi, so Gri,i+1 ◦m[
i+1 = m[

i, and

since m[
i = m′ ◦ ei, we get m′ ◦ ei = Gri,i+1 ◦m[

i+1. Hence, the unique morphism

h : X → P arises by the universal property of the pullback.

Pullbacks are stable under monomorphisms: since m′ is a mono, the arrow

P → GRi+1 is a mono as well. Hence, an (epi,mono)-factorization of h yields, by

composition, an (epi,mono)-factorization of m[
i+1. The epic part of such a factor-

ization is the (i+ 1)-minimization of (X, c), by Corollary 7.3. 2

Below Lemma 7.5, we gave a concrete presentation of the pullback, for the case of

deterministic automata. Here we fill in missing details. By assumption, Ri, Ri+1 are

presented as subsets of 2X , i.e., mi : Ri → 2X and mi+1 : Ri+1 → 2X are inclusion

91

Rot

maps. Since mi+1 ◦ ri,i+1 = mi, we have Ri ⊆ Ri+1, witnessed by the inclusion map

ri,i+1 : Ri → Ri+1. Hence Gri,i+1 = 2ri,i+1 : 2Ri+1 → 2Ri is given by 2ri,i+1(C) =

{S ∈ Ri | ri,i+1(S) ∈ C} = C ∩ Ri. Further, we have m[
i(x) = {S ∈ Ri | x ∈ S},

and m′ : Ei → 2Ri is given by m′(Q) = {S ∈ Ri | Q ⊆ S}.
We start from a standard description of the pullback of m′ and 2ri,i+1 in Set in

the derivation below, as the set of pairs that are equated by m′ and 2ri,i+1 (together

with the projection maps to Ei and 2Ri+1).

{(Q,C) ∈ Ei × 2Ri+1 | m′(Q) = 2ri,i+1(C)}
= {(Q,C) ∈ Ei × 2Ri+1 | {S ∈ Ri | Q ⊆ S} = C ∩Ri}
= {(Q,C) ∈ Ei × 2Ri+1 | ∀S ∈ Ri : S ∈ C iff Q ⊆ S}
∼= {(Q,C) ∈ Ei × 2Ri+1 | C ⊆ Ri+1\Ri} .

The latter set is the characterization of the pullback P given in Section 7. The

isomorphism, up-down is given by (Q,C) 7→ (Q, {S ∈ C | S ∈ Ri+1\Ri}), and

down-up by (Q,C) 7→ (Q, {S ∈ Ri | Q ⊆ S} ∪ C) = (Q,m′(Q) ∪ C). It is easy to

check that these maps indeed form each others inverse. By the isomorphism, the

maps p1 : P → Ei and p2 : P → 2Ri+1 of the pullback are given by p1(Q,C) = Q

and p2(Q,C) = m′(Q)∪C. The map h : X → P given in Section 7 trivially satisfies

p1 ◦ h = ei. Further,

p2 ◦ h(x) = p2(ei(x), {S ∈ Ri+1\Ri | x ∈ X})
= m′(ei(x)) ∪ {S ∈ Ri+1\Ri | x ∈ X}
= m[

i(x) ∪ {S ∈ Ri+1\Ri | x ∈ X}
= {S ∈ Ri | x ∈ X} ∪ {S ∈ Ri+1\Ri | x ∈ X}
= m[

i+1(x)

which means that h is indeed the mediating map.

E Proofs of Section 8

Theorem 8.1 Suppose that C and D have (epi,mono)-factorization systems. Let

c : X → BTX be a coalgebra, and let m : (R, %)→ Fα(X, c) be the reachable part of

Fα(X, c). Then the epic part of an (epi,mono)-factorization (in C) of the transpose

m[: X → GR is the language quotient of (X, c).

Proof. Let (A,α) be the initial algebra (which exists by assumption) and let

s : (A,α) → Fα(X, c) be the unique algebra homomorphism. The reachable part

m : (R, %)→ Fα(X, c) is the monic morphism of an (epi,mono) factorization m◦e =

s (in alg(L)). We get s[= Ge◦m[, and since e is epi and G is a right (contravariant)

adjoint, Ge is mono. Thus, an (epi,mono)-factorization of m[yields an (epi,mono)-

factorization of Ge ◦ m[= s[, by composition. Its epic part is, by definition, the

language quotient of (X, c). 2

Theorem 8.3 Let c : X → BTX be a coalgebra, and ((Fαc)i : Vi → FX)i∈Ord the

cocone over the initial sequence of L induced by Fα(X, c). For any i, we have

92

Rot

c̄i = (Fαc)
[
i. Further, let mi : Ri → FX be the i-reachable part of Fα(X, c). Then

the epic morphism of an (epi,mono)-factorization of the transpose m[
i : X → GRi

is the i-language quotient of (X, c).

Proof. The natural transformations ρ : BG ⇒ GL and α : TG ⇒ G compose to

a natural transformation ρ ◦ Bα : BTG ⇒ GL. Now, the cone (c̄i)i∈Ord is the

same as the cone (cρ◦Bαi)i∈Ord of Lemma D.1 (instantiating B and ρ in the lemma

respectively to BT and ρ ◦Bα; then the functor F in the lemma coincides with Fα
from Section 8). By the lemma, we obtain c̄i = (Fαc)

[
i for all i.

For the second part of the statement, let mi : Ri → FX be the i-reachable part

of F (X, c), and let ei be the epi such that mi ◦ ei = (Fαc)i. Then c̄i = (Fαc)
[
i =

Gei ◦m[
i, and since ei is epi and G is a right (contravariant) adjoint, Gei is mono.

Thus, an (epi,mono)-factorization of m[
i yields an (epi,mono)-factorization of c̄i, by

composition. Its epic part is, by definition, the i-language quotient of (X, c). 2

93

MFPS 2016

A predicate/state transformer
semantics for Bayesian learning

Bart Jacobs and Fabio Zanasi

Radboud University Nijmegen, The Netherlands

Abstract

This paper establishes a link between Bayesian inference (learning) and predicate and state transformer
operations from programming semantics and logic. Specifically, a very general definition of backward
inference is given via first applying a predicate transformer and then conditioning. Analogously, forward
inference involves first conditioning and then applying a state transformer. These definitions are illustrated
in many examples in discrete and continuous probability theory and also in quantum theory.

Keywords: Inference, learning, Bayes, Kleisli category, effectus, predicate transformer, state transformer

1 Introduction

Increasingly probabilistic programs are used to describe problems in Bayesian infer-

ence ([2]), see e.g. [10,19,4,1,21]. The term ‘inference’ is used for what is informally

best called: learning 1 . Learning involves updating one’s knowledge, in the light of

certain evidence, typically given via the validity of a certain predicate (which may

be a fuzzy one). In this situation one represents knowledge in terms of likelihoods,

via a probability distribution (in the discrete case) or a probability measure (in the

continuous case). Updating one’s knowledge then involves computing a conditional

distribution/measure.

Now that the overlap between the (probabilistic) programming community and

the Bayesian community is growing, a merging of concepts and techniques can be

expected. This paper is an example. It shows how the notions of predicate and state

transformer from programming languages semantics ([7]) can be used in precisely

defining two fundamental notions of learning: backward and forward inference. A

conditioning operation, which makes a certain distribution/measure depend on a

predicate, also plays a role. In a nutshell, the correspondence can be summarised

1 The Bayesian community associates learning to various tasks. A prominent learning task is finding out
what the topology of a network is, based on (in)dependence relations, starting from a big joint distribution.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Jacobs and Zanasi

as follows.�

�

�

�

Predicate

Transformer

and then

Conditioning

∼

�
�

�

Backward

Inference

�

�

�

�
Conditioning

and then

State

Transformer

∼

�
�

�

Forward

Inference

This connection hopefully works as an Aha Erlebnis, giving a sudden insight. In-

deed, predicate transformers work backwards, from predicates on post-states to

predicates on pre-states. This is precisely what is at stake in backward inference —

as we will demonstrate. Similarly, state transformers work in a forward direction,

which is what happens in forward learning.

Strictly speaking, the main contribution of this paper is only one definition,

namely of (backward and forward) inference, see Definition 2.1. Contrarily to tra-

ditional approaches, our formulation is not tied to the probabilistic setting, but

works in the context of any effectus, that is a categorical notion embracing a wide

spectrum of computational models, both classical, probabilistic and also quantum,

see [11,5]. Within the theory of effectuses, predicate and state transformers are

well-defined, and predicates (or effects) and states can be nicely organised in state-

and-effect triangles, which connect predicates and states via a (dual) adjunction (1),

see also [12]. Intriguingly, these triangles correspond to what physicists call the du-

ality between states and effects, referring to the opposite directions in the work of

Schrödinger and Heisenberg on quantum foundations. Within this effectus context

one can also describe normalisation and conditioning of states in an abstract manner

(see [13,5]). Therefore, we believe effectuses form the right setting for developing a

general approach to inference.

Still, precisely recognising what is what in this setting is a subtle matter. For

instance, what is a predicate, at the abstract level? Traditionally in probability

theory ‘events’ are used as predicates. Formally they are subsets of the sample

space, corresponding to ‘sharp’ predicates on this space. More generally, ‘fuzzy’

predicates are considered; they are functions taking values in the unit interval [0, 1].

The sharp predicates can then be characterised as the ones taking values in the

Boolean subset {0, 1} ⊆ [0, 1]. In discrete probability every distribution is at the

same time a fuzzy predicate. This blurs the picture — the confusion between

states and predicates is particularly evident in Bayesian network representations,

where nodes may play both roles. In continuous probability there is, in principle, a

clear distinction between states (probability measures) and predicates (measurable

functions to [0, 1]). But again, things easily get mixed up, when a state/measure

is given by a probability distribution function (pdf), which looks very much like

a predicate. The framework of effectus theory helps in this respect, since it gives

a clear distinction between states, as maps of the form 1 → X, and predicates, as

maps X → 1+1. Only when this perspective is recognised, the role of predicate and

state transformers becomes clear. It is for this reason that we think it is justified

to dedicate an entire paper to elaborating and explaining a single definition.

The paper is organised as follows. We first introduce the notions of backward

and forward inference in terms of predicate and state transformers and show some

95

Jacobs and Zanasi

basic properties. Then, we concentrate on illustrating the impact and power of our

definition in many situations. We show what our abstract setting translates to in

discrete and continuous probability theory and also (briefly) in quantum theory.

We elaborate many examples of computations of how inference works, and what

it produces. Of special interest is the application of our definition of inference in

Bayesian networks. It is shown that the forward/backward distinction can be used

flexibly, and can describe what inference means at different points in the network.

2 Backward and forward inference, abstractly

In this section we describe our abstract set up for inference, both in a backward and

forward manner. This works in the setting of an effectus: briefly, this is a category

with finite coproducts (+, 0) and a final object 1, such that certain diagrams are

pullbacks and certain maps are jointly monic. By virtue of these basic requirements,

an effectus is able to capture some basic aspects of quantum computation, with

probabilistic computation as special case, see [11,5].

States in an effectus C are maps of the form 1 → X and predicates are maps

X → 2 = 1 + 1. The set of states Stat(X) of an object X form a convex set, and

the set of predicates Pred(X) on X form an effect module. States and predicates

give rise to a ‘state-and-effect triangle’ of the form:

EModop ++
> Convkk

C
Pred=Hom(−,2)

dd

Stat=Hom(1,−)

;;

(1)

We refer to [11] for details about effect modules and convex sets. In the current

setting we need the predicate transformer f∗ = Pred(f) and state transformer

f∗ = Stat(f) operations associated with a map f : X → Y in the base category C.

They are given by pre- and post-composition:

Pred(X) Pred(Y)
f∗=(−)◦foo Stat(X)

f∗=f◦(−) // Stat(Y)

In concrete examples of effectuses states are distributions — in the Kleisli category

of the distribution monad — or probability measures — in the Kleisli category of

the Giry monad — or just states — in C∗- or W ∗-algebras. We will understand

states as descriptions of our state of knowledge. Given a predicate p and a state ω

on the same object X two definitions are of interest:

ω |= p := p ◦ ω and ω|p, the conditional state on X. (2)

The expression ω |= p describes the validity, or expected value, of the predicate in

the state ω. Typically its value is in the unit interval [0, 1]. If this validity ω |= p is

non-zero, then the conditional state ω|p exists. It is the updated state of knowledge

after observing ‘evidence’ p. In each of the above concrete examples of states we

can define such conditional states (see below). In fact, conditioning can be defined

abstractly in the theory of effectuses, using ‘assert’ maps, see [5, Example 58], but

we don’t need such a level of abstraction here.

96

Jacobs and Zanasi

We now distinguish two forms of inference (learning).

Definition 2.1 Backward inference ω|f∗(p) involves first applying a predicate trans-

former and then computing a conditional. This applies in situations of the form:

1 ω //X
f // Y

q // 1 + 1 (3)

More explicitly, one first applies the predicate transformer f∗ to the predicate q on

Y , and then computes the backwardly inferred conditional state ω|f∗(q) on X.

Forward inference f∗(ω|p) is first computing a conditional and then applying a

state transformer. This works in a situation:

1 ω //X
f //

p
��

Y

1 + 1

(4)

In this case the conditional state on X is ω|p, and applying the state transformer

f∗ gives the forwardly inferred state f∗(ω|p) on Y .

In the trivial case where the map f is the identity there is no difference between

backward and forward inference. Inference then just involves updating a state (of

knowledge). Notice that in backward inference we use a predicate on the codomain

of the map f , namely q, and update our knowledge about the state on f ’s domain

X. In forward inference we use a predicate on the domain of f , namely p, and use it

to infer more about the state on f ’s codomain Y . This may also be called ‘evidence

propagation’.

In the situation (4) we have the following Galois style equalities for validity:

(
ω |= f∗(q)

)
= q ◦ f ◦ ω =

(
f∗(ω) |= q

)
.

In general, there are very few ‘nice’ algebraic properties for conditional states. For

instance, we do have f∗
(
ω|f∗(q)

)
=
(
f ◦ ω

)
|q, but only for the special case where

the map f is ‘pure’. The latter means for instance in a Kleisli category that the

map comes from the underlying category.

In the remainder of this paper we shall illustrate these forms of inference via

several examples, involving various kinds of computation, and including Bayesian

networks where the above map f in (3) and (4) arises from a graph (network of

conditional probability tables). The composition notation ‘◦’ used above looks de-

ceptively simple, but will each time be interpreted differently in different categories.

This leads to various concrete forms of inference which are all instances of the same

pattern.

3 Inference with discrete probability

We shall write D for the discrete probability monad on the category Set of sets

and functions. The set D(X) contains the finite discrete probability distributions

97

Jacobs and Zanasi

ω over X which we write as formal convex combinations:

ω = r1 |x1〉+ · · ·+ rn |xn〉 where

{
x1, . . . , xn ∈ X
r1, . . . , rn ∈ [0, 1] with

∑
i ri = 1.

The ‘ket’ notation |x〉 is meaningless syntactic sugar, used to distinguish elements

x ∈ X from their occurrence in such formal convex sums. Notice that such ω ∈
D(X) can be identified with functions ω : X → [0, 1] with finite support supp(ω) =

{x ∈ X | ω(x) 6= 0} and with
∑

x∈X ω(x) = 1. This function-description is often

more convenient.

We shall write K̀ (D) for the Kleisli category of the distribution monad D. Its

objects are sets X, and its morphisms X → Y are stochastic matrices, in the form

of functions X → D(Y).

We will see later (Section 3.1) how Bayesian networks can be seen as certain

arrows of K̀ (D). For this interpretation, it is of importance that K̀ (D) forms a

symmetric monoidal category, with the following ingredients. The monoidal product

⊗ is defined on objects as the cartesian product × in Set, with unit 1. On arrows

f : A→ X and g : B → Y , it is defined as

f ⊗ g :=

(
A×B f×g //D(X)×D(Y)

dst //D(X × Y)

)
where the map dst sends a pair (ρ, σ) ∈ D(X)×D(Y) to the distribution in D(X×Y)

given by (x, y) 7→ ρ(x) ·σ(y). The symmetry twX,Y on X×Y is the lifting to K̀ (D)

of the isomorphism X×Y
∼=−→Y ×X in Set; we will omit the subscript when X and

Y are clear from the context.

We now turn to the description of states and predicates in K̀ (D). Notice that

states ω : 1 → X in K̀ (D) can be identified with distributions ω ∈ D(X). Since

D(2) ∼= [0, 1] we can identify predicates X → 2 = 1 + 1 in K̀ (D) with functions

X → [0, 1], that is, with fuzzy predicates. We will often make both identifications

when emphasising the role of states and predicates in a computation.

Given a Kleisli map f : X → D(Y), a state ω ∈ D(X) and a predicate q ∈ [0, 1]Y

we have the following descriptions for state and predicate transformation. They

arise from unravelling (Kleisli) composition in K̀ (D).

f∗(ω) :=
∑
y∈Y

(∑
x∈X f(x)(y) · ω(x)

)∣∣y〉
f∗(q)(x) :=

∑
y∈Y

f(x)(y) · q(y).
(5)

For a distribution ω ∈ D(X) and a predicate p ∈ [0, 1]X on the same set X we

define the validity ω |= p in [0, 1] as:

ω |= p :=
∑

x∈X ω(x) · p(x). (6)

If this validity ω |= p is non-zero, then the conditional state ω|p ∈ D(X) is given as

98

Jacobs and Zanasi

formal convex sum:

ω|p :=
∑
x∈X

ω(x) · p(x)

ω |= p

∣∣x〉. (7)

We shall describe a familiar medical test example in the current setting. We use

the following notational convention. We write a letter D for a certain disease, which

is represented as a two-element set 2D = {d, d⊥}, where the element d represents

occurrence of the disease, and d⊥ represents non-occurrence. A distribution over

2D is, e.g., of the form 1
4 |d〉+ 3

4 |d
⊥〉, when describing that the disease occurs with

probability 1
4 . Similar we write 2T for a (positive) test, where 2T = {t, t⊥}. For

each such set 2A = {a, a⊥} we write A?: 2A → [0, 1] for the sharp predicate given

by A?(a) = 1 and A?(a⊥) = 0.

Consider the following situation in the Kleisli category K̀ (D).

1 ω // 2D
s // 2T with


ω = 1

100 |d〉+ 99
100 |d

⊥〉
s(d) = 9

10 |t〉+ 1
10 |t

⊥〉
s(d⊥) = 1

20 |t〉+ 19
20 |t

⊥〉 .

The state ω describes the a priori probability of 1% that someone has the disease.

The map s describes the sensitivity of the test: when someone has the disease,

the test will be positive in 90% of the cases, and when someone does not have the

disease there is still a 5% chance that the test is positive.

A basic question is: what is the chance that I have the disease if I test positive?

We formalise this by adding the predicate T?: 2T → [0, 1], which expresses that

there is a positive test. We then compute consecutively the predicate s∗(T?) : 2D →
[0, 1], the validity ω |= s∗(T?) and the inferred conditional state ω|s∗(T?). We use

formulas (5), (6), and (7) for backward inference from Definition 2.1:

s∗(T?)(d) = 9
10 · 1 + 1

10 · 0
= 9

10

s∗(T?)(d⊥) = 1
20 · 1 + 19

20 · 0
= 1

20

ω |= s∗(T?) = 1
100 ·

9
10 + 99

100 ·
1
20

= 9
1000 + 99

2000

= 117
2000

ω|s∗(T?) = 2000
117 ·

(
1

100 ·
9
10 |d〉+ 99

100 ·
1
20 |d

⊥〉
)

= 18
117 |d〉+ 99

117 |d
⊥〉 .

(8)

Hence after a positive test the chance that I have the disease is 18
117 ∼ 15%. This is

an instance of backward inference, where an observation on the codomain (the test

outcome) changes the state of knowledge about the domain (the disease occurrence).

Of course, standard Bayesian methods will arrive at the same outcome. The point

is that we can describe these methods here in a uniform, abstract manner via

calculations in (Kleisli) categories.

99

Jacobs and Zanasi

We briefly describe a forward example. Suppose that I know that the chance

of having this disease is half as likely for me, for instance because I belong to a

particular age group. We model this via the predicate p : 2D → [0, 1] given by

p(d) = 1
2 and p(d⊥) = 1. We would like to learn what the probability is of getting

a positive test under these circumstances.

We take a step back, and ask ourselves: what is the probability of getting

a positive test in general — without the adapted likelihood. This probability is

computed via the state transformer s∗ from (5) — that is, via Kleisli composition

in K̀ (D) as:

s∗(ω) = (1
100 ·

9
10 + 99

100 ·
1
20) |t〉+ (1

100 ·
1
10 + 99

100 ·
19
20) |t⊥〉

= 117
2000 |t〉+ 1883

2000 |t
⊥〉 .

For forward inference we first compute the conditional state ω|p and then push it

forward to a state s∗(ω|p) on 2T .

ω |= p = 1
100 ·

1
2 + 99

100 · 1
= 199

200

ω|p = 200
199 ·

(
1

100 ·
1
2 |d〉+ 99

100 · 1 |d
⊥〉
)

= 1
199 |d〉+ 198

199 |d
⊥〉

s∗(ω|p) = (1
199 ·

9
10 + 198

199 ·
1
20) |t〉+ (1

199 ·
1
10 + 198

199 ·
19
20) |t⊥〉

= 216
3980 |t〉+ 3764

3980 |t
⊥〉 .

Hence, upon knowing that I have a reduced (halved) risk, my chance of getting a

positive test goes down from 117
2000 ∼ 5.8% to 216

3980 ∼ 5.4%. The impact is limited,

because I only have a very small chance of having the disease in the first place —

and the false positive probability of the test is 5%.

By imposing the predicate p on the disease state ω we adapt the influence of the

state ω on the outcome. This may be useful for counterfactual reasoning, see [17].

In this way one can test to what extend a conclusion depends on certain initial

states. For instance, if a particular conclusion is reached starting in a state where

70% of the participants is female, then by imposing an additional predicate on this

state that changes the gender percentage, one can check if the same conclusion is

reached.

3.1 Inference in a Bayesian network

Bayesian networks are graph-like structures, widely-adopted for the representation

of probabilistic relationships between random events. They are usually depicted as

directed acyclic graphs with nodes standing for random variables and edges indicat-

ing causal dependencies between them. Inference tasks are one of the fundamental

uses of these networks. They are typically performed by updating a single node-

event and then propagating the information to the rest of the network. Computing

the inference typically goes through a repeated use of the Bayes’ rule for conditional

probability, see e.g. [16,18,17,2].

100

Jacobs and Zanasi

In this subsection we show how our abstract account of inference instantiates

to the case of Bayesian networks. Our approach predicts the same outcomes as

traditional Bayesian inference, but also improves it in two ways. First, it is more

flexible and compositional, as it allows to focus on single nodes in the same way as

on bigger portions of the network, with the same methodology. Second, it is more

structured, in the sense that the computations that would require the use of Bayes’

rule are carried out by the categorical machinery — essentially, by composition of

arrows in a category.

In order to illustrate this picture, we will use as a running example the situation

of a scientist that wants to publish a paper at a conference. The specification for

the corresponding Bayesian network consists of a graph together with conditional

probability tables.

�
�

�
�Time

��

//
�

�
	Well Written

##

//
�
�

�
�Positive Reviews

))�

�
	Acceptance�

�
	Skill
00
�

�
	Strong Results

66

..
�
�

�

PC Member

Championing

33 (9)

Pr (T)

4
10

Pr (S)

7
10

T Pr (W)

t 8
10

f 3
10

T S Pr (R)

t t 9
10

t f 6
10

f t 4
10

f f 1
10

W R Pr (P)

t t 8
10

t f 5
10

f t 6
10

f f 1
10

W R Pr (M)

t t 4
10

t f 1
10

f t 3
10

f f 0

P M Pr (A)

t t 1

t f 7
10

f t 8
10

f f 1
10

The initial conditions of the example estimate whether there is enough time available

to prepare the paper (the variable T) and whether the scientist is sufficiently skilled

to do the necessary research (S). The results that the scientist is able to obtain (R)

depend both on the time and the skill, while how well the paper reads only depends

on the time. Both results and readability have an influence on whether the reviews

will be positive (P), but results will be more relevant. Similarly, these two factors

may lead a PC member to enthusiastically endorse the paper (M), independently of

what the reviewers say, although this possibility is quite rare. Finally, acceptance

(A) is influenced by the reviews and by the possible endorsement of a PC member.

In order to study inference in this example, we first need to formulate it in more

categorical terms. We shall express our Bayesian network (9) as an arrow in the

Kleisli category K̀ (D) of the distribution monad D. First, each node N of the

graph, say with k incoming edges from nodes N1, N2, . . . , Nk, is associated with an

arrow N : 2k → k in K̀ (D), which we conveniently write using the same labeling

convention for the elements of 2 as in the disease example:

2N1
⊗ 2N2

⊗ . . .⊗ 2Nk

N // 2N .

101

Jacobs and Zanasi

The probability distributions defining N are given according to the probability table

of the node. For instance, the Kleisli map A : 2P⊗2M → 2A for acceptance is defined

by:

(p,m) 7→ 1 |a〉 (p,m⊥) 7→ 7
10 |a〉+ 3

10 |a
⊥〉

(p⊥,m) 7→ 8
10 |a〉+ 2

10 |a
⊥〉 (p⊥,m⊥) 7→ 1

10 |a〉+ 9
10 |a

⊥〉 .

Another example is the initial map T : 1 → 2T for the time node, which amounts

to the distribution 4
10 |t〉 + 6

10 |t
⊥〉 in D(2T) ∼= [0, 1]. In order to recover the whole

network (9), one pastes node-arrows together using the symmetric monoidal struc-

ture of K̀ (D), which we recalled in the beginning of this section. Nodes in (9) that

have multiple outgoing edges are modeled by composing the corresponding arrow

2k → 2 with the pairing map δ : 2 → 22 defined by x 7→ 1 |(x, x)〉. The Bayesian

network (9) in its entirety is then expressed as the following arrow in K̀ (D), where

for simplicity we omit the subscripts naming the elements of each copy of 2.

(2⊗ 2)⊗ (2⊗ 2)
P⊗M // 2⊗ 2 A // 2

1
T⊗S // 2⊗ 2

δ⊗id
��

(2⊗ 2)⊗ (2⊗ 2)

id⊗tw⊗id

OO

2⊗ 2⊗ 2
W⊗R // 2⊗ 2

δ⊗δ
OO

We have written the “structural” arrows vertically. A more insightful representation

of the same arrow can be given using the graphical language of string diagrams [20],

with 2k depicted as a bundle of k wires and δ as . The result almost resembles

the original network.

A

M
R

W P
T

S

(10)

It may be calculated 2 that the entire arrow 1 → 2 in (10) amounts to the distri-

bution 0.48 |a〉 + 0.52 |a⊥〉 in D(2) ∼= [0, 1]. In words: given 40% of chances that

the scientist has enough time at disposal and 70% of chances of being adequately

skilled, the odds of having a paper accepted at the conference is ∼48%.

We now have everything in place to instantiate our framework for inference. As

this example is more elaborated than the previous ones, it gives us the possibility

to explore the situation in which knowledge update only involves a segment of the

computation, namely f or g in the following partitioned version of (10).

1
ω =

T

S // 2⊗ 2
f =

R

W

// 2⊗ 2
g = A

M

P

// 2

2 For simplicity, here and in the next calculations we approximate distribution values to two decimal digits.

102

Jacobs and Zanasi

In order to formulate a backward inference question, we follow the recipe (3)

and introduce a predicate A?: 2A → [0, 1] that tests for acceptance of the paper. It

is a sharp predicate, defined by A?(a) = 1 and A?(a⊥) = 0.

First we compute ω|(g◦f)∗(A?), that is, the odds that the accepted paper actually

was submitted by a scientist with an adequate amount of time and skill to concoct

it.

ω = 0.28 |t, s〉+ 0.12 |t, s⊥〉+ 0.42 |t⊥, s〉+ 0.18 |t⊥, s⊥〉

(g ◦ f)∗(A?) =

{
(t, s) 7→ 0.67 (t, s⊥) 7→ 0.58

(t⊥, s) 7→ 0.40 (t⊥, s⊥) 7→ 0.29

ω |= (g ◦ f)∗(A?) = 0.48

ω|(g◦f)∗(A?) =
∑

x∈2T⊗2S

ω(x) · (g ◦ f)∗(A?)(x)

0.48

∣∣x〉
= 0.39 |t, s〉+ 0.15 |t, s⊥〉+ 0.35 |t⊥, s〉+ 0.11 |t⊥, s⊥〉

We observe that, after finding out that the paper has been accepted, the chances

that the scientist had both sufficient time and skill rise from 28% to 39%.

As a second example, we shift the attention from the author to the paper itself.

The following state on 2W ⊗ 2R expresses the chances that an accepted paper was

actually well written and contained strong scientific results. Note that it mixes state

and predicate transformers to bind different segments of the network.

f∗(ω)|g∗(A?) = 0.48 |w, r〉+ 0.18 |w, r⊥〉+ 0.24 |w⊥, r〉+ 0.10 |w⊥, r⊥〉

We see that, in our model, roughly one half of the accepted papers had both quali-

ties, but only 10% of them had none.

Lastly, we consider an example of forward inference. Following the recipe (4), we

introduce a predicate E?: 2T ⊗ 2S → [0, 1] on the state ω : 1→ 2T ⊗ 2S: it expresses

the event that, while writing the paper, the scientist finds out that the main result

contains a minor mistake and thus needs some revision.

(t, s) 7→ 2
10 (t, s⊥) 7→ 4

10 (t⊥, s) 7→ 3
10 (t⊥, s⊥) 7→ 6

10 .

Differently from A?, this E? is a fuzzy predicate: a mistake gets more likely the less

time and skill are available to the scientist. If this situation occurs, the scientist

may still be able to produce on time a paper that gets accepted, but chances are

lower: they decrease from 48% to 43%. This is expressed by the following inference.

(g ◦ f)∗(ω|E?) = 0.43 |a〉+ 0.57 |a⊥〉

Remark 3.1 We have modeled a Bayesian network as a graph in the Kleisli cate-

gory K̀ (D). This is inspired by the approach of Fong [8], except that he uses the

Kleisli category K̀ (G) of the Giry monad (even though all his examples are discrete).

Such graphs in K̀ (D) or K̀ (G) can be seen as symmetric monoidal functors from a

PROP P, generated by a signature with the nodes and edges of the network, to the

Kleisli category. We recall that a PROP (product and permutation category [15]) is

103

Jacobs and Zanasi

a symmetric strict monoidal category with the natural numbers as objects and with

monoidal product ⊕ given by addition of numbers. Intuitively, PROPs generalise

Lawvere theories from the cartesian to the linear setting; functors from P as above

are called the models of P.

In our case, the model P → K̀ (D) sends ⊕ to the monoidal product ⊗ of K̀ (D),

and sends the number 1 to the object 2 = 1 + 1 in K̀ (D). P has pairing (copying)

, but a crucial point is that these copiers are not natural — as can be checked

easily in K̀ (D). This implies that P is not a Lawvere theory (cf. [3]), and there is

no associated monad on Set.

This monad perspective comes up in the following way. A Bayesian network

with set of nodes X can be seen as a coalgebra of the form:

X c //B(X) where B(X) =
∐

U⊆finX

[0, 1]2
#U

This coalgebra c sends a node N ∈ X to a pair c(N) = 〈c1(N), c2(N)〉 where

c1(N) ⊆fin X is a finite set of predecessor nodes of N , and c2(N) : 2n → [0, 1] is the

associated conditional probability table — where n = #c1(N) ∈ N is the number

predecessors. Since [0, 1] ∼= D(2), this map c2(N) is a Kleisli map 2n → 2 in K̀ (D),

as used in the above description of the paper-acceptance example.

It is not hard to see that the mapping X 7→ B(X) is a functor on Set, and comes

with a unit map X → B(X). But B is not a monad, at least not in the expected

obvious sense, precisely because the copiers are not natural.

4 Inference with continuous probability

Our abstract description of inference allows us to transfer the definitions from the

discrete to the continuous approach simply by switching from the Kleisli category

K̀ (D) of the distribution monad to the Kleisli category K̀ (G) of the Giry monad [9]

on measurable spaces. We shall sketch an example where the function f in the

inference situation (3) is the identity, but where we have multiple predicates pi for

successive learning. Hence there is no predicate/state transformation involved. We

describe the essentials and refer to [5] for more information.

A state ω : 1 → X in the Kleisli category K̀ (G) is a probability measure

ω ∈ G(X), given by a function ω : ΣX → [0, 1] that maps measurable subsets to

probabilities. A predicate p : X → 2 in K̀ (G) is a measurable function p : X → [0, 1]

since G(2) ∼= [0, 1]. The validity ω |= p in [0, 1] and conditional state ω|p in G(X)

are given by the following integration formulas.

ω |= p :=
∫
p dω and ω|p(M) :=

∫
M p dω

ω |= p
. (11)

Often the state/probability measure ω that we start from is given by a probability

density function. This means that ω is of the form φ |= q, for some predicate q.

In that case the conditional state ω|p = (φ|q)|p is the same as the condition of the

product predicate: φ|q·p with pdf q · p. This greatly simplifies the picture below.

The inference example that we use is a continuous version of the archeological

example described in [13]. The aim is to infer the date of a tomb at an archeological

104

Jacobs and Zanasi

site of which we already know that it is from the interval 0 − 100 AD. We are

specifically looking to find three kinds of objects, labelled 0, 1, 2 of which we know

the time of use more precisely. They are used to infer the age of the tomb. This

knowledge is represented by three predicates p0, p1, p2 : [0, 100]→ [0, 1] given by the

formulas:

p0(x) = 0.6 · e−(x−20)2/2000

p1(x) = 0.9 · e−(x−50)2/1500

p2(x) = 0.8 · e−(x−90)2/1000

Our inference works as follows. We start from the uniform measure ω = φ|q with

pdf q(x) = 1
100 on [0, 100], for the Lebesgue measure φ. Its probability on the

sub-interval [a, b] ⊆ [0, 100] is given by the integral:

ω([a, b]) = φ|q([a, b]) =
∫ b
a q dφ =

∫ b
a

1
100 dφ = b−a

100 .

We now successively observe objects i1, . . . , in, for ik = 0, 1, 2, and compute the

conditional probability measure (· · · (ω|pi1) · · ·)|pin . We can describe this measure

via the product pdf q · pi1 · · · pin , after normalisation. Below we sketch the shape

of some of the resulting pdf’s (ignoring normalisation), after finding certain objects

successively.

after finding 2 after finding 2,1 after finding 2,1,0 after finding 2,1,0,0

These curves describe the inferred probability for the age of the tomb in the interval

0 – 100 AD.

5 Quantum inference

Our inference situations (3) and (4) can also be interpreted in the effectus of von

Neumann algebras for quantum computation. Actually, one uses the opposite

vNAop of the category vNA of von Neumann algebras, with normal completely

positive unital maps between them (see [5] for details). We have to take the oppo-

site category because maps between von Neumann algebras should be understood

as predicate transformers. Typical examples are the von Neumann algebras B(H)

of bounded operators on a Hilbert space H . Below we use the matrix algebra

M2 = B(C2) as special case.

For instance, the situation (3) translates into a diagram of maps in the category

105

Jacobs and Zanasi

vNA pointing in the other direction:

C Bωoo A
foo C2qoo

The conditional state ω|f∗(q) : B → C in backward inference is given by the general

formula:

b 7−→
ω
(√

f(q) · b ·
√
f(q)

)
ω
(
f(q)

) . (12)

In this situation predicate transformation f∗(q) = f ◦ q works in the opposite

direction. The square-roots arise from the particular form of ‘assert’ map that is

used for von Neumann algebras, see [5] for details. The predicate q : C2 → A is a

positive unital map, and can thus be identified with an effect in A , that is, with an

element q ∈ A satisfying 0 ≤ q ≤ 1.

Bayesian inference in a quantum setting is a relatively new topic, see e.g. [14,6].

At this stage we only apply our general pattern from Definition 2.1 in a quantum

setting. The illustration below repeats the disease-test example from Section 3 for

the von Neumann algebra M2 of 2 × 2 complex matrices. Our only ambition at

this stage is to show how the quantum description extends the probabilistic one.

Consider therefore the diagram:

C M2
ωoo M2 3 T? = (1 0

0 0)soo

These test (sensitivity) and state maps are given by:

s
(
a b
c d

)
=

(
9
10
a+ 1

10
d 0

0 1
20
a+ 19

20
d

)
and ω

(
a b
c d

)
= 1

100a+ 99
100d.

Predicate transformation yields:

s(T?) = s(1 0
0 0) =

(
9
10

0

0 1
20

)
and ω

(
s(T?)

)
= 117

2000 .

The backward inferred state ω|s∗(T?) is according to (12):

(
a b
c d

)
7−→ 2000

117 · ω

((√
9/10 0

0
√

1/20

)(
a b

c d

)(√
9/10 0

0
√

1/20

))

= 2000
117 · ω

(
9/10 a

√
9/200 b√

9/200 c 1/20 d

)
= 18

117a+ 99
117d.

We see that the outcome is the same, up to some re-shuffling, as in the discrete

probabilistic presentation in (8). But this situation allows much richer structure,

for instance using as state ρ : M2 → C the map ρ
(
a b
c d

)
= 1

2(a− b− c+ d).

Conclusions

This paper has clarified the role of states and predicates, and of state transformers

and predicate transformers, in Bayesian inference. An abstract definition of for-

106

Jacobs and Zanasi

ward and backward inference has been given in the context of effectus theory, and

interpreted and elaborated in several contexts and examples.

The generality of our approach allows for applications outside of the traditional

probabilistic setting; the case of Von Neumann algebras is one such example which

has been described here only in limited, probabilistic form. The power of the prop-

erly quantum approach (see also [14,6]) will be elaborated elsewhere.

The application to Bayesian networks also leaves room for interesting develop-

ments. As sketched in Remark 3.1, the interpretation of networks as arrows of K̀ (D)

can be seen as part of a broader picture, that can be formulated in the language

of PROPs and their models. We find particularly worthwhile trying to understand

Bayesian inference, as introduced in the present paper, as a categorical transforma-

tion on models of a PROP: it should map one network into another one with the

same topology, but different probability distributions.

Acknowledgements

The authors acknowledge support from the European Research Council under the

European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant

agreement no 320571.

References

[1] Adams, R. and B. Jacobs, A type theory for probabilistic and Bayesian reasoning (2015), see arxiv.
org/abs/1511.09230.

[2] Barber, D., “Bayesian Reasoning and Machine Learning,” Cambridge Univ. Press, 2012.

[3] Bonchi, F., P. Sobocinski and F. Zanasi, Lawvere categories as composed PROPs, in: Coalgebraic
Methods in Computer Science (CMCS 2016), colocated with ETAPS 2016, 2016, to appear.

[4] Borgström, J., A. Gordon, M. Greenberg, J. Margetson and J. V. Gael, Measure transformer semantics
for Bayesian machine learning, Logical Methods in Comp. Sci. 9(3) (2013), pp. 1–39.

[5] Cho, K., B. Jacobs, A. Westerbaan and B. Westerbaan, An introduction to effectus theory (2015), see
arxiv.org/abs/1512.05813.

[6] Coecke, B. and R. Spekkens, Picturing classical and quantum Bayesian inference., Synthese 186 (2012),
pp. 651–696.

[7] Dijkstra, E. W., “A Discipline of Programming,” Prentice Hall PTR, Upper Saddle River, NJ, USA,
1997, 1st edition.

[8] Fong, B., “Causal Theories: A Categorical Perspective on Bayesian Networks,” Master’s thesis, Univ.
of Oxford (2012), see arxiv.org/abs/1301.6201.

[9] Giry, M., A categorical approach to probability theory, in: B. Banaschewski, editor, Categorical Aspects
of Topology and Analysis, number 915 in Lect. Notes Math. (1982), pp. 68–85.

[10] Goodman, N. D., The principles and practice of probabilistic programming, in: Proceedings of the 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13
(2013), pp. 399–402.

[11] Jacobs, B., New directions in categorical logic, for classical, probabilistic and quantum logic, Logical
Methods in Comp. Sci. 11(3) (2015), pp. 1–76.

[12] Jacobs, B., A recipe for state and effect triangles, in: L. Moss and P. Sobocinski, editors, Conference
on Algebra and Coalgebra in Computer Science (CALCO 2015), LIPIcs 35 (2015), pp. 116–129.

[13] Jacobs, B., B. Westerbaan and A. Westerbaan, States of convex sets, in: A. Pitts, editor, Foundations
of Software Science and Computation Structures, number 9034 in Lect. Notes Comp. Sci. (2015), pp.
87–101.

107

arxiv.org/abs/1511.09230
arxiv.org/abs/1511.09230
arxiv.org/abs/1512.05813
arxiv.org/abs/1301.6201

Jacobs and Zanasi

[14] Leifer, M. and R. Spekkens, Towards a formulation of quantum theory as a causally neutral theory of
Bayesian inference, Phys. Rev. A 88(5) (2013), p. 052130.

[15] Mac Lane, S., Categorical algebra, B Am Math Soc 71 (1965), pp. 40–106.

[16] Pearl, J., “Probabilistic Reasoning in Intelligent Systems,” Graduate Texts in Mathematics 118, Morgan
Kaufmann, 1988.

[17] Pearl, J., “Causality. Models, Reasoning, and Inference,” Cambridge Univ. Press, 2009, 2nd ed. edition.

[18] Russell, S. and P. Norvig, “Artificial Intelligence. A Modern Approach,” Prentice Hall, 2003.

[19] Ścibior, A., Z. Ghahramani and A. Gordon, Practical probabilistic programming with monads, in: Proc.
2015 ACM SIGPLAN Symp. on Haskell (2015), pp. 165–176.

[20] Selinger, P., A survey of graphical languages for monoidal categories, Springer Lecture Notes in Physics
13 (2011), pp. 289–355, available at http://arxiv.org/abs/0908.3347.

[21] Staton, S., H. Yang, C. Heunen, O. Kammar and F. Wood, Semantics for probabilistic programming:
higher-order functions, continuous distributions, and soft constraints, in: Logic in Computer Science
(LICS 2016), 2016, to appear, available at http://arxiv.org/abs/1601.04943.

108

http://arxiv.org/abs/0908.3347
http://arxiv.org/abs/1601.04943

MFPS 2016

Bitopology and four-valued logic

Tomáš Jakl1,2

Department of Applied Mathematics
MFF, Charles University
Prague, Czech Republic

and

School of Computer Science
University of Birmingham

Birmingham, UK

Achim Jung3

School of Computer Science
University of Birmingham

Birmingham, UK

Aleš Pultr1,4

Department of Applied Mathematics
MFF, Charles University
Prague, Czech Republic

Abstract

Bilattices and d-frames are two different kinds of structures with a four-valued interpretation. Whereas
d-frames were introduced with their topological semantics in mind, the theory of bilattices has a closer
connection with logic. We consider a common generalisation of both structures and show that this not
only still has a clear bitopological semantics, but that it also preserves most of the original bilattice logic.
Moreover, we also obtain a new bitopological interpretation for the connectives of four-valued logic.

Keywords: Bilattices, d-frames, nd-frames, bitopological spaces, four-valued logic.

1 Introduction

In 1977, Nuel D. Belnap [5] gave a philosophical justification for distinguishing

between two orders when studying information systems: the information order and

the logical order. He also suggested that in addition to the classical logical values

1 The work was supported by the grant SVV–2016–260332 and by the CE-ITI grant, GAČR P202/12/G061.
2 Email: jaklt@kam.mff.cuni.cz
3 Email: A.Jung@cs.bham.ac.uk
4 Email: pultr@kam.mff.cuni.cz

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:jaklt@kam.mff.cuni.cz
mailto:A.Jung@cs.bham.ac.uk
mailto:pultr@kam.mff.cuni.cz

Jakl, Jung, Pultr

true and false (denoted tt and ff) it would also be useful to have the values > and ⊥
for information-wise maximum and minimum, corresponding to the situation when

there is contradicting information and no information, respectively.

Belnap’s insights and then Ginsberg’s application of those ideas to inference

systems [9] motivated Arieli and Avron to develop a formal logical system and to

analyse its algebraic models – bilattices [3]. Bilattices proved to be also useful in

other areas such as in logic programming [7], algebra [11], and abstract algebraic

logic [14].

Later on Jung and Moshier studied bitopological spaces (or bispaces for short) to

clarify the interplay of various topologies arising in domain theory. They discovered

that bispaces actually also give a very natural semantics to a four-valued logic. The

fact that the first topology can represent the observably true predicates and the

second the observably false ones gives a good four-valued interpretation/reading

and this is even more transparent in the algebraic duals of bitopological spaces,

dubbed d-frames in [10].

Whereas d-frames were introduced with their topological semantics in mind, the

theory of bilattices has a closer connection with logic. Because of this, one might

not expect many similarities between both theories but the discovery of the so-called

twist-representation of bilattices [6] shows that quite the opposite is the case.

In this paper, we are trying to tackle the obvious question of whether there is

a reasonable generalisation of both theories that would give us some better insight

into the similarities and differences between bilattices and d-frames. We claim that

the answer to this question is yes. As a starting point we take d-frames and we

will show that they can be very naturally extended into a new structure which we

call nd-frames. It seems that this way we get the best from both worlds: We have

a clear bitopological semantics while still preserving most of the original logic of

bilattices. Moreover, in the nd-frame context the negation of four-valued logic has

a new and clear bitopological realisation via interior operators.

This paper contributes to both the study of bilattices and the study of d-frames.

For the former, it shows how to generalise bilattices to get four-valued structures

where the components are not isomorphic. Contributions to d-frame theory are

by giving an explanation of proof-theoretic negation and, moreover, extending this

negation to the whole d-frame. By this we also show another connection between

geometry (interior operators) and proof theory (cut rules). Moreover, nd-frames

allow a finer distinction of bispaces as the class of their spectra is broader than the

class of spectra of d-frames. Having a generalisation of both structures allows us

to compare partial implication in d-frames with the implication of bilattices and to

show that the former is much stronger than latter.

2 Preliminaries

Below we give very brief presentations of the two types of structures that this paper

aims to combine, bilattices and d-frames. As will soon become clear, much of the

underlying structure is symmetric with respect to a positive and a negative part;

we will respect this when stating a definition or a proposition but will generally

restrict proofs to one variant without further comment.

110

Jakl, Jung, Pultr

2.1 Bilattices

Bilattices are the algebraic manifestation of Belnap’s “useful four-valued logic”, [5].

One key feature of this logic is paraconsistency, [13], which means that it is not

possible to derive an arbitrary proposition from a contradiction. Secondly, the logic

is truth-functional in that every connective is characterised by its behaviour on the

set of (four) truth values.

Traditionally, bilattices are presented as structures of the type

(A;∧,∨,u,t,ff , tt ,⊥,>,¬,⊃) satisfying a list of axioms. However, a decomposition

theorem can be shown for them (see [4,14,6]) and it is more straightforward to

approach the subject from the characterisation that results from it. 5

Let H = (H;∧,∨, 1, 0,→) be a Heyting algebra. On H×H one defines the

bilattice operations by setting, for α = (α+, α−), β = (β+, β−) ∈ H×H: 6

α ∨ β def≡ (α+ ∨ β+, α− ∧ β−), α ∧ β def≡ (α+ ∧ β+, α− ∨ β−),

α t β def≡ (α+ ∨ β+, α− ∨ β−), α u β def≡ (α+ ∧ β+, α− ∧ β−),

ff
def≡ (0, 1), tt

def≡ (1, 0), ⊥ def≡ (0, 0), > def≡ (1, 1).

The two final operations deserve to be highlighted: Negation ¬ is defined purely by

the exchange of components:

¬α def≡ (α−, α+)

and without reference to the internal logical structure of the component Heyting

algebra. Weak implication ⊃ is the only non-symmetric operation in the signature

and it is in fact a remarkable feature of bilattice logic that it can be given in the

following way at all:

α ⊃ β def≡ (α+ → β+, α+ ∧ β−)

The set H×H together with the four constants and six operations defined above is

called the twist-construction over H and denoted by H./. As we said above, the

characterisation theorem states that, up to isomorphism, every bilattice arises in

this way.

Notice that the “logical” reduct (H×H; ∧,∨,ff , tt) and the “informational”

reduct (H×H; u,t,⊥,>) are automatically bounded distributive lattices. The as-

sociated orders, ≤ and v, however, are not the same; they may be (loosely) said

to be “at 90◦ to each other”, and this helps to explain that negation ¬ is antitone

w.r.t. the logical order and monotone w.r.t. the informational one.

2.2 D-frames

The motivation for d-frames comes from semantics, in particular, from the observa-

tion that “domains” (in the sense of Scott) carry two topologies which are loosely

5 The decomposition theorem is surprisingly robust; very little of the structure of bilattices is required.
While this is an intriguing aspect of the theory, it has also led to a proliferation of terminology, not all of
which is universally accepted. Our choice of “bilattice” for the purposes this paper is really just for brevity
and simplicity as we will have no need to consider any variations in the axiomatisation.
6 Note the overloading of ∧ and ∨ as operations on both the Heyting algebra and the bilattice. We hope
that the context will always make clear what we are referring to.

111

Jakl, Jung, Pultr

connected and in some sense complementary to each other, the Scott-topology and

the weak lower topology, [2,8]. Smyth, [15], proposed to interpret open sets as propo-

sitions of an “observational logic”, and Abramsky fully developed this programme

in his celebrated “Domain Theory in Logical Form”, [1], but both these works focus

entirely on the Scott-topology which begged the question what the logical status of

the other topology might be. Taking a step back from domain theory, [10] began

the exploration of bitopological spaces under Smyth’s interpretation. D-frames are

the result of this investigation.

A d-frame 7 is a structure L = (L+×L−; con, tot) where (L+;
∨
,∧, 0, 1) and

(L−;
∨
,∧, 0, 1) are frames 8 and the consistency con ⊆ L+×L− and totality tot ⊆

L+×L− predicates satisfy the following axioms, for all α, β ∈ L+×L−:

(con–↓) α ∈ con and β v α =⇒ β ∈ con,

(tot–↑) α ∈ tot and β w α =⇒ β ∈ tot,

(con–∧,∨) α, β ∈ con =⇒ α ∨ β ∈ con and α ∧ β ∈ con,

(tot–∧,∨) α, β ∈ tot =⇒ α ∨ β ∈ tot and α ∧ β ∈ tot,

(con,tot–tt ,ff) tt ∈ con and tt ∈ tot, ff ∈ con and ff ∈ tot,

(con–tot) α ∈ con, β ∈ tot and (αtβ = α∧β or αtβ = α∨β) =⇒ α v β
(con–

⊔↑) A ⊆ con and A is v-directed =⇒
⊔↑ A ∈ con.

where ∧,∨,u,t,ff , tt ,⊥, > and the induced logical order ≤ and information order v
are defined the same way as in bilattices. In fact, the similarity with bilattices

(presented as twist structures) is obvious and it may therefore be helpful to highlight

the differences:

• In d-frames, the two component lattices may be different, in bilattices they are

identical;

• (consequently) it is not possible to define negation or weak implication on

d-frames in the same way as it is done for bilattices;

• frames are complete Heyting algebras (but frame homomorphisms may not

preserve Heyting implication);

• the two predicates con and tot are relational, not algebraic structure.

These differences are also apparent in the definition of d-frame homomorphism

which we take to be a pair of frame homomorphisms h+ : L+ →M+, h− : L− →M−
such that h+×h−[conL] ⊆ conM and h+×h−[totL] ⊆ totM. We denote the category

of d-frames and d-frame homomorphisms by d-Frm.

As we said before, d-frames arose from consideration of bitopological spaces and

indeed, it is straightforward to adapt the open-set functor from spaces to frames to

one from the category biTop of bispaces to d-Frm. To this end, we set Ωd(X) =

(τ+, τ−; totX , conX) for a bispace (X; τ+, τ−) where, for U ∈ τ+ and V ∈ τ−,

(U, V) ∈ conX
def≡ U ∩ V = ∅ and (U, V) ∈ totX

def≡ U ∪ V = X.

7 This definition of d-frames agrees with the definition of reasonable d-frames in [10].
8 Frames are complete lattices satisfying the equation: b ∧ (

∨
i ai) =

∨
i (b ∧ ai). Frame homomorphisms

are monotone maps distributing over all joins and finite meets. For more information see [12].

112

Jakl, Jung, Pultr

Example 2.1 The dual of the one-point bispace 1 = ({∗}; τ, τ) has exactly four

elements: ⊥ = (∅, ∅), ff = (∅, {∗}), tt = ({∗}, ∅), and > = ({∗}, {∗}). These are the

truth values of bilattice logic and in that context the structure is usually denoted

FOUR. What we are saying here is that FOUR is also a canonical d-frame with

component frames L+ = L− = 2 = {0 < 1}.

3 Nd-frames

We saw in the Preliminaries that, in order to define negation and implication for

bilattices represented as twist-structures, we heavily use the fact that the carrier is

the product of a Heyting algebra with itself. Therefore, we can freely send elements

from one component of the product to the other.

Similarly to bilattices, d-frames are also formed of two components but those

do not have to be the same and it seems that there are no natural order-preserving

mappings between them (as required by the definition of ¬ and ⊃). For example,

taking pseudocomplements 9 is antitone and it could be used to define an operation

sometimes called conflation, but this is known to be different from negation.

However, looking at the semantic counterparts of d-frames, i.e. bitopological

spaces, suggests that we have very natural candidates for maps between both frames

of open sets. Let (X; τ+, τ−) be a bispace; then assigning for every τ+-open (or τ−-

open) set its interior with respect to the other topology is a monotone map. More-

over, it also distributes over intersections. Let us denote those maps by m : τ+ → τ−
and p : τ− → τ+; to wit:

m : U ∈ τ+ 7−→ U◦τ− ∈ τ− and p : V ∈ τ− 7−→ V ◦τ+ ∈ τ+.

When translated to the language of d-frames, one can postulate the existence of

maps m : L+ → L− and p : L− → L+ satisfying the following axioms:

(pm-1) m(a ∧ b) = m(a) ∧m(b), p(a ∧ b) = p(a) ∧ p(b),
(pm-2) m(1) = 1, p(1) = 1,

(pm-3) m(0) = 0, p(0) = 0,

(pm-4) p ◦m ≤ id, m ◦ p ≤ id.

Also, the intuition of p and m being the interiors with respect to the other

topology justifies the following axioms involving con and tot:

(a ∧ b, c) ∈ con
(con-m)

(a,m(b) ∧ c) ∈ con

(a, b ∧ c) ∈ con
(con-p)

(a ∧ p(b), c) ∈ con

(a,m(b) ∨ c) ∈ tot
(tot-m)

(a ∨ b, c) ∈ tot

(a ∨ p(b), c) ∈ tot
(tot-p)

(a, b ∨ c) ∈ tot

Definition 3.1 (L+×L−; con, tot; p,m) is an nd-frame if (L+, L−; con, tot) is a d-

frame and all axioms for (p,m) mentioned above, i.e. (pm-1), (pm-2), (pm-3), (pm-

4), (con-m), (con-p), (tot-m) and (tot-p), are satisfied.

9 See Section 6 for the definition.

113

Jakl, Jung, Pultr

Let us recall a known fact about continuous maps:

Lemma 3.2 Let f : X → Y be a continuous map and let M ⊆ Y , then f−1[M◦] ⊆
(f−1[M])◦.

This motivates the following definition:

Definition 3.3 A d-frame homomorphism h : L → M between two nd-frames is

an nd-frame homomorphism if h+ ◦ p ≤ p ◦ h− and h− ◦m ≤ m ◦ h+.

Since the component maps are monotone, it follows that nd-frame homo-

morphisms are closed under composition. We denote the resulting category

with nd-Frm.

Example 3.4 We have seen before that the bilattice FOUR may alternately be

viewed as a d-frame. The axioms (pm-1) – (pm-4) ensure that the identity function

is the unique choice for both p and m so that FOUR = 2×2 also qualifies as an

nd-frame. Whether we view it as a bilattice, d-frame, or nd-frame, we always denote

it with FOUR.

The theory of d-frames works best when the two topologies complement each

other, in the sense of the closed sets of one approximating the opens of the other.

Examples of this are given by the Scott-topology and the weak lower topology

considered in domain theory. If this is not the case, then the two relations con
and tot tend to be trivial, by which we mean that (a, b) ∈ con iff one of two elements

equals 0, and (a, b) ∈ tot iff one of them equals 1. For the new structure m and p,

the situation is exactly reversed. To see this, consider the following two bispaces:

(i) X1 = ({a, b}, τ, τ) where the only non-trivial open of τ is {a}.
(ii) X2 = ({aa, ab, ba, bb}, τ+, τ−) where the only non-trivial open of τ+ is {aa, ab}

and that of τ− is {aa, ba}.

In both cases, con and tot are trivial, which means that Ωd(X1) and Ωd(X2) are

isomorphic. On the other hand, the interior operators onX1 are the identity whereas

on X2 they are trivial. Both bispaces will turn out to be nd-sober, whereas only X2

is d-sober.

4 Logic of nd-frames

We introduced p and m to be able to define negation and implication for d-frames

similarly to how they are defined for bilattices in their twist-structures representa-

tion. Let (L+×L−; con, tot; p,m) be an nd-frame and define

¬ϕ def≡ (p(ϕ−),m(ϕ+)) and ϕ ⊃ ψ def≡ (ϕ+ → ψ+,m(ϕ+) ∧ ψ−).

Now any nd-frame L gives rise to the same signature as bilattices:

(L+×L−;∧,∨,u,t,ff , tt ,⊥,>,¬,⊃). Let Ln be the language of bilattices and let

Fm(Ln) be the term algebra of Ln (generated by countably many variables). Valua-

tions are the Ln-homomorphisms Fm(Ln)→ L. We can define (algebraic) semantic

validity the same way as it was defined for bilattices [14]; we say ϕ holds in (or, is

114

Jakl, Jung, Pultr

valid in) L, and write L |= ϕ iff

v(ϕ) = v(ϕ ⊃ ϕ) for all valuations v : Fm(Ln)→ L,

Before we get to the axioms let us first prove the following lemma.

Lemma 4.1 The following holds in all nd-frames L:

(L1) L |= ϕ iff v(ϕ) w tt (or equivalently: v(ϕ)+ = 1) for all valuations v into L;

(L2) L |= ϕ ⊃ ψ iff v(ϕ)+ ≤ v(ψ)+ for all valuations v into L; and

(L3) L |= ϕ ≡ ψ iff v(ϕ)+ = v(ψ)+ for all valuations v into L,

where ϕ ≡ ψ is a shorthand for (α ⊃ β) ∧ (β ⊃ α).

Proof.

(L1) Right-to-left implication: If v(ϕ) = (1, a) then v(ϕ ⊃ ϕ) = v(ϕ) ⊃ v(ϕ) =

(1→ 1,m(1) ∧ a) = (1, a) = v(ϕ). Reverse direction: v(ϕ) = v(ϕ ⊃ ϕ) =

v(ϕ) ⊃ v(ϕ) implies that the positive parts are equal and therefore we have

v(ϕ)+ = v(ϕ ⊃ ϕ)+ = 1 and v(ϕ) w tt .

(L2) From (L1) we know that L |= ϕ ⊃ ψ iff v(ϕ ⊃ ψ)+ = v(ϕ)+ → v(ψ)+ is equal

to 1 for all valuations v, and this is true if and only if v(ϕ)+ ≤ v(ψ)+.

(L3) Follows from (L2) and from the fact that L |= v(ϕ ∧ ψ) w tt iff L |= v(ϕ) w tt

and L |= v(ψ) w tt . Then, L |= v(ϕ ≡ ψ) iff L |= ϕ ⊃ ψ and L |= ϕ ⊂ ψ iff

v(ϕ)+ ≤ v(ψ)+ and v(ϕ)+ ≥ v(ψ)+ for all valuations v.

2

Arieli and Avron, [3], gave a Hilbert-style axiomatisation of a four-valued logic

which is sound and complete with respect to bilattices. Here we show that a large

part of their logic is still valid in nd-frames.

Theorem 4.2 The following axioms of four-valued logic are valid in any nd-frame:

(Weak implication)

(⊃ 1) ϕ ⊃ (ψ ⊃ ϕ)

(⊃ 2) (ϕ ⊃ (ψ ⊃ γ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ γ))

(¬¬ R) ¬¬ϕ ⊃ ϕ (?A)

(Logical conjunction and disjunction)

(∧ ⊃) (ϕ ∧ ψ) ⊃ ϕ and (ϕ ∧ ψ) ⊃ ψ
(⊃ ∧) ϕ ⊃ (ψ ⊃ (ϕ ∧ ψ))

(⊃ tt) ϕ ⊃ tt

(⊃ ∨) ϕ ⊃ (ϕ ∨ ψ) and ψ ⊃ (ϕ ∨ ψ)

(∨ ⊃) (ϕ ⊃ γ) ⊃ ((ψ ⊃ γ) ⊃ ((ϕ ∨ ψ) ⊃ γ))

(⊃ ff) ff ⊃ ϕ

(Informational conjunction and disjunction)

(u ⊃) (ϕ u ψ) ⊃ ϕ and (ϕ u ψ) ⊃ ψ
(⊃ u) ϕ ⊃ (ψ ⊃ (ϕ u ψ))

115

Jakl, Jung, Pultr

(⊃ >) ϕ ⊃ >
(⊃ t) ϕ ⊃ (ϕ t ψ) and ψ ⊃ (ϕ t ψ)

(t ⊃) (ϕ ⊃ γ) ⊃ ((ψ ⊃ γ) ⊃ ((ϕ t ψ) ⊃ γ))

(⊃ ⊥) ⊥ ⊃ ϕ

(Negation)

(¬∧ L) ¬(ϕ ∧ ψ) ⊂ ¬ϕ ∨ ¬ψ (?B)

(¬ ∨) ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ
(¬ u) ¬(ϕ u ψ) ≡ ¬ϕ u ¬ψ

(¬t L) ¬(ϕ t ψ) ⊂ ¬ϕ t ¬ψ (?B)

(¬⊃ R) ¬(ϕ ⊃ ψ) ⊃ ϕ ∧ ¬ψ (?A)

Furthermore, the rule of Modus Ponens is sound:

(MP) ϕ, (ϕ ⊃ ψ) ` ψ

Proof. The axioms (⊃ 1), (⊃ 2), all the logical conjunction and disjunction axioms

and the informational conjunction and disjunction axioms hold for the same reason.

We know from Lemma 4.1 (L1) that only the first coordinate determines their

validity. Moreover, those axioms do not contain negation and so they hold simply

because, when projected to the first coordinate, they hold in all Heyting algebras

(and therefore also in frames).

From (L2) we know that (¬∧ L) is equivalent to p(v(ϕ)−∨ v(ψ)−) ≥ p(v(ϕ)−)∨
p(v(ψ)−) for all valuations v which is true since p is monotone. The same argument

applies for (¬t L). From (L3) we know that (¬ ∨) and (¬ u) are equivalent to

p(v(ϕ)− ∧ v(ψ)−) = p(v(ϕ)−)∧ p(v(ψ)−) for all valuations v and this is true simply

because p preserves finite infima.

(L2) implies that (¬⊃ R) is equivalent to v(¬(ϕ ⊃ ψ))+ ≤ v(ϕ ∧ ¬ψ)+ by

expanding the definitions we get (¬v(ϕ ⊃ ψ))+ = p(v(ϕ ⊃ ψ)−) = p(m(v(ϕ)+) ∧
v(ψ)−) = p(m(v(ϕ)+)) ∧ p(v(ψ)−) which, by p ◦m ≤ id, is less or equal to v(ϕ)+ ∧
p(v(ψ)−) = v(ϕ ∧ ¬ψ)+ as we wanted.

For Modus Ponens, no matter if we interpret comma as ∧ or as u we get the

requirement that v(ϕ)+ ∧ (v(ϕ)+ → v(ψ)+) = 1 should imply v(ψ)+ = 1 which is

again true for all Heyting algebras. 2

Remark 4.3 The axioms denoted by (?A) or (?B) are the only axioms that differ

from the original axioms of bilattices because they are expressed as implications,

whereas the original axioms are equivalences. Requiring equivalence instead of

implication in the axioms marked by (?A) is equivalent to requiring that p ◦m =

id 10 and requiring equivalences for axioms marked by (?B) is the same as requiring

that p preserves finite suprema. Also, in some presentations of bilattices, [3], the

following axiom, called Peirce’s law, is added

(⊃ 3) ((ϕ ⊃ ψ) ⊃ ϕ) ⊃ ϕ

Assuming this to hold is equivalent to assuming that L+ is a Boolean frame.

10 Notice that assuming p ◦ m = id implies that m is a one-one frame homomorphism and p is its right
adjoint.

116

Jakl, Jung, Pultr

4.1 Implications and a cut rule

One of the nice properties of d-frames is that one can restrict one’s attention to

the set con of consistent predicates without losing any expressivity, see [10, Propo-

sition 7.4]. We can think of this structure as a semantics for predicates without

contradictions. Moreover, there is a binary relation between the elements of con
which is in many ways similar to a consequence relation (see Section 7 of [10]).

Define, for all α, β ∈ con,

α ≺ β def≡ (β+, α−) ∈ tot.

Given the many similarities between d-frames and bilattices one wonders what ex-

actly the relationship between ≺ and ⊃ is. We would like to suggest that the right

place to answer this question is within nd-frames as they generalise both notions.

Indeed, we will see below that ≺ is, from this perspective, much stronger than ⊃.

Theorem 4.4 Let L be an nd-frame and let α, β ∈ con such that α ≺ β. Then the

following also hold

(i) α′ ⊃ β′ w tt for all α′, β′ ∈ con with α′ w α and β′ w β;

(ii) ¬β′ ⊃ ¬α′ w tt for all α′, β′ ∈ con with α′ w α and β′ w β;

Remark: The logical conjunction of α ⊃ β with ¬β ⊃ ¬α is called strong

implication in the bilattice logic literature.

Proof. We know from [10, Proposition 7.1(4)] that α ≺ β implies α′ ≺ β′ when-

ever α′ w α and β′ w β in con, so it suffices to show the statements for α and β:

By Lemma 4.1 (L2), (α ⊃ β) w tt iff α+ ≤ β+ and this follows, by (con-tot),
from (β+, α−) ∈ tot and α ∈ con. Similarly, since (¬β ⊃ ¬α) = (p(β−) →
p(α−),mp(β−) ∧ m(α+)), then (¬β ⊃ ¬α) w tt iff p(β−) → p(α−) = 1 which is

equivalent to p(β−) ≤ p(α−). However, we know that (β+, α−) ∈ tot and β ∈ con,

therefore, by (con-tot), β− ≤ α− and, since p is monotone, also p(β−) ≤ p(α−). 2

The (tot-m) and (tot-p) axioms give us immediately the following two rules

combining strong implication and negation:

α ≺ ¬β ∨ γ
α ∧ β ≺ γ

and
α ∧ ¬β ≺ γ
α ≺ β ∨ γ

and from these the following cut rule follows by the transitivity of ≺ [10, Proposition

7.1 (3)]:

α ≺ ¬¬β ∨ γ γ ∧ ¬¬α′ ≺ β′

α ∧ α′ ≺ β ∨ β′

5 Stone duality for nd-frames

5.1 Spectra of nd-frames

In this section we define a spectrum functor Σ: nd-Frm→ biTop by extending the

definition of the spectrum functor for d-frames Σd : d-Frm → biTop as presented

117

Jakl, Jung, Pultr

in [10]. Let L = (L+×L−; con, tot; p,m) be an nd-frame. Define Σ(L) to be the

bispace (Σ(L); Φ+[L+],Φ−[L−]) where the underlying set Σ(L) is the set of nd-

points, that is, the pairs (F+, F−) where F+ and F− are complete prime filters of

L+ and L−, respectively, such that, for all α ∈ L+×L−,

(dpcon) α ∈ con =⇒ α+ 6∈ F+ or α− 6∈ F−;

(dptot) α ∈ tot =⇒ α+ ∈ F+ or α− ∈ F−;

(dpp) p(α−) ∈ F+ =⇒ α− ∈ F−;

(dpm) m(α+) ∈ F− =⇒ α+ ∈ F+.

Equivalently, we can define the underlying set of Σ(L) to be the set of all nd-

frame homomorphisms from L to FOUR. The topologies of Σ(L) are defined the

same way as for spectra of d-frames. That is, Φ+[L+] = {Φ+(a) : a ∈ L+} and

Φ−[L−] = {Φ−(b) : b ∈ L−} where

Φ+(a) = {(F+, F−) | a ∈ F+} and Φ−(b) = {(F+, F−) | b ∈ F−}.

Also, similarly to the d-frame spectrum functor, for every nd-frame homomor-

phism h : L →M, set Σ(h) : Σ(M)→ Σ(L) to be the map

Σ(h) : (F+, F−) 7−→ (h−1
+ [F+], h−1

− [F−]).

Proposition 5.1 Σ is a contravariant functor from nd-Frm to biTop.

Proof. Σ is well defined on objects for the same reason as the corresponding functor

for d-frames [10]. When we think of the nd-points of an nd-frame L as nd-frame ho-

momorphisms L → FOUR we see that Σ is also well defined on nd-Frm morphisms

simply because nd-frame homomorphisms are closed under composition. 2

5.2 Nd-frames from bispaces

Let X = (X; τ+, τ−) be a bispace. Set Ω(X) = (τ+, τ−; conX , totX ; pX ,mX) where

conX and totX are as before and

mX : U+ 7−→ U
◦τ−
+ and pX : U− 7−→ U

◦τ+
− .

Again, Ω acts on morphisms the same way as the d-frames analogue does, i.e.

for a bicontinuous map f : X → Y set Ω(f) : ΩY → ΩX to be the map

Ω(f) : (U+, U−) 7−→ (f−1[U+], f−1[U−]).

Proposition 5.2 Ω is a contravariant functor from biTop to nd-Frm.

Proof. Ω is clearly well defined on objects. From the duality for d-frames, we know

that the Ω-image of a bicontinuous map is a d-frame homomorphism. The fact that

it is also an nd-frame homomorphism, that is f(¬α) v ¬(fα) for all α, follows

directly from Lemma 3.2. 2

118

Jakl, Jung, Pultr

5.3 Sobriety, spatiality and the adjunction

We say that a bispace X is nd-sober if there exists an nd-frame L such that X ∼=
Σ(L). We also have the usual embedding into the sobrification of a space (the unit

of adjunction) ηX : X → ΣΩ(X) defined as x 7→ (U+(x),U−(x)) where U+(x) and

U−(x) are the neighbourhood filters in τ+ and τ−, respectively. For the same reason

as in the case of d-frames, ηX is natural in X.

Theorem 5.3 For a bitopological space X, the following are equivalent:

(i) X is nd-sober;

(ii) X is bihomeomorphic to ΣΩ(X);

(iii) The unit map ηX is a bihomeomorphism;

(iv) The unit map ηX is a bijection.

The reader may now check that the two examples we gave earlier (at the end of

Section 3) are indeed nd-sober.

We say that an nd-frame L is spatial if there exists a bitopological space X such

that L ∼= Ω(X). Again, similarly to d-frame theory, we have the (co-unit) map

εL : L → ΩΣ(L) defined as (a, b) 7→ (Φ+(a),Φ−(b)). This, again, is natural in L.

Theorem 5.4 For an nd-frame L, the following are equivalent:

(i) L is spatial.

(ii) L ∼= ΩΣ(L).

(iii) The co-unit εL is an isomorphism.

(iv) The co-unit εL is injective, reflects con and tot, and ε−1
L (¬α) v ¬ε−1

L (α) for all

α ∈ ΩΣ(L).

(v) L satisfies the following conditions:

(s+) ∀x 6≤ x′ ∈ L+ ∃(F+, F−) ∈ Σ(L). x ∈ F+, x
′ /∈ F+;

(s−) ∀y 6≤ y′ ∈ L− ∃(F+, F−) ∈ Σ(L). y ∈ F−, y′ /∈ F−;

(scon) ∀α /∈ con ∃(F+, F−) ∈ Σ(L). α+ ∈ F+, α− ∈ F−;

(stot) ∀α /∈ tot ∃(F+, F−) ∈ Σ(L). α+ /∈ F+, α− /∈ F−;

(sp) ∀a 6≤ p(x) ∈ L+ ∃(F+, F−) ∈ Σ(L). a ∈ F+, x /∈ F−;

(sm) ∀b 6≤ m(y) ∈ L− ∃(F+, F−) ∈ Σ(L). y /∈ F+, b ∈ F−.

Corollary 5.5 Ω and Σ form a (dual) adjunction with η and ε being the unit and

co-unit, respectively. Moreover, the restriction of Σ and Ω to spatial nd-frames and

nd-sober bispaces, respectively, forms a duality of categories.

It is a good sign that extending Stone duality for d-frames to nd-frames is quite

straightforward as it points towards the robustness of the theory. All the additional

assumptions make sense topologically given that p and m should correspond to

interior operators. The only difference with d-frame duality is that we added the

conditions (dpp) and (dpm). Similarly, in the characterisation of spatial nd-frames

we needed to assume (sp) and (sm) in addition to the original conditions for spatial

d-frames.

On the other hand, the language of nd-frames is definitely more expressive in

119

Jakl, Jung, Pultr

the sense that more bispaces are nd-sober than d-sober. We gave an example of

this at the end of Section 3.

6 Canonical (p,m)

Every d-frame can be turned into an nd-frame in a trivial way, just augment

(L+×L−; con, tot) with ptriv and mtriv where ptriv and mtriv are trivial in the sense

that they send 1 to 1 and everything else to 0. It is easy to see that this construction

provides a left adjoint to the forgetful functor from nd-Frm to d-Frm that erases

p and m.

The purpose of this section is to demonstrate that under mild conditions on a

d-frame, a more interesting choice for p and m is available, one which interacts well

with Stone duality. For motivation we begin by reviewing the notion of regularity

for d-frames.

For a d-frame L = (L+×L−; con, tot) and for c, a ∈ L+ we say that c is well-

inside a (and write c �+ a) if there exists a d ∈ L− such that (c, d) ∈ con and

(a, d) ∈ tot. We define c�− a for c, a ∈ L− dually, that is, with the roles of L+ and

L− switched. We say that L is d-regular if

a =
∨
{c ∈ L+ | c�+ a} and b =

∨
{c ∈ L− | c�− b}

for all a ∈ L+ and b ∈ L−. Finally, we say that a bitopological space X is d-regular

if Ωd(X) is. Note that the well-inside relation has a clear bitopological reading. For

U, V ∈ τ+, U �+ V just means that τ−-closure of U is a subset of V .

We can express the interior operations of d-regular bispaces explicitly in the

language of d-frames. Indeed, let X = (X; τ+, τ−) be d-regular. Then, for a U ∈ τ+,

U◦τ− =
⋃
{V ∈ τ− | ∃V ′ ∈ τ+. V ∩ V ′ = ∅ and V ′ ∪ U = X}

Let L = Ωd(X), then the term above becomes, for an a ∈ L+,

mr(a) =
∨
{x− ∈ L− | ∃x+ ∈ L+. (x+, x−) ∈ con and x+ ∨ a = 1}.

Notice the similarity of the relationship between x− and a in this definition, and

the well-inside relation defined above, except that here it is between elements from

the two different components of L. Also note that the definition of mr(a) does not

presuppose regularity of the underlying d-frame.

To simplify the definition of mr a bit further, recall for any x ∈ L− the pseudo-

complement x∗ of x is defined as
∨
{c ∈ L+ | (c, x) ∈ con}. This allows us to define

our candidate interior operators as follows

mr(a) =
∨
{x ∈ L− | x∗ ∨ a = 1} and pr(b) =

∨
{x ∈ L+ | x∗ ∨ b = 1}

and to prove some of the required properties. To begin we see that mr(1) =∨
{x | x∗ ∨ 1 = 1} ≥

∨
{1} = 1. For the preservation of 0 recall that x∗ = 1

implies x = 0 because (x∗, x) = (1, x) ∈ con and (1, 0) ∈ tot gives, by (con–tot),
x ≤ 0. Therefore mr(0) =

∨
{x | x∗ ∨ 0 = 1} =

∨
{0} = 0.

120

Jakl, Jung, Pultr

It is clear that mr is monotone, so in order to show that it preserves binary

meets, it suffices to check that mr(a ∧ a′) ≥ mr(a) ∧ mr(a′) for all a, a′ ∈ L+.

Assume x∗ ∨ a = 1 and x′∗ ∨ a′ = 1, then because pseudocomplement is antitone,

we have for x′′ = x ∧ x′, x′′∗ ∨ a = 1 and x′′∗ ∨ a′ = 1 from which it follows that

x′′∗ ∨ (a∧ a′) = 1 and hence x′′ ≤ mr(a∧ a′). Frame distributivity now allows us to

conclude the desired inequality.

We are also able to show (con–m). For this let (a∧ b, c) ∈ con and let x ∈ L− be

such that x∗∨b = 1. Since, (x∗, x) ∈ con, by (con–∨), we have that (a∧b, c)∨(x∗, x) ∈
con. Therefore, since con is v-downwards closed,

(a ∧ b, c) ∨ (x∗, x) = ((a ∨ x∗) ∧ (b ∨ x∗), c ∧ x) w (a, c ∧ x) ∈ con

where the inequality follows from x∗ ∨ b = 1. Since (a, c ∧ x) ∈ con for all x

such that x∗ ∨ b = 1, then by (con–
⊔↑) and frame distributivity we get that also

(a, c ∧mr(b)) = (a, c ∧
∨
{x | x∗ ∨ b = 1}) ∈ con.

However, we can show neither (pm-4) nor (tot–p) at this level of generality. To

make progress, recall the following two infinitary cut rules for d-frames (already

discussed in [10], but not part of the definition of d-frames):

(x, y ∨
∨
i∈I bi) ∈ tot, ∀i ∈ I. (x ∨ ai, y) ∈ tot, (ai, bi) ∈ con

(CUTr)
(x, y) ∈ tot

(x ∨
∨
i∈I ai, y) ∈ tot, ∀i ∈ I. (x, y ∨ bi) ∈ tot, (ai, bi) ∈ con

(CUTl)
(x, y) ∈ tot

These two rules are precisely what we need to complete our construction:

Proposition 6.1 Let L = (L+×L−; con, tot) be a d-frame satisfying the infinitary

cut rules. Then, (L; pr,mr) = (L+×L−; con, tot; pr,mr) is an nd-frame.

Proof. Only (pm-4) and (tot–p) remain to be shown. The former says that

mrpr(b) ≤ b for all b ∈ L−. Since

mrpr(b) =
∨
{y ∈ L− | y∗ ∨ pr(b) = 1},

it is enough to show that every y ∈ L−, such that y∗ ∨ pr(b) = 1, is less or equal

to b. From the definition of pr we have (1, 0) = (y∗ ∨
∨
{x | x∗ ∨ b = 1}, 0) ∈ tot,

therefore, from (tot-↑), we get

(1a) (y∗ ∨
∨
{x | x∗ ∨ b = 1}, b) ∈ tot

(2a) for all x such that x∗ ∨ b = 1: (y∗, x∗ ∨ b) ∈ tot

(3a) (x, x∗) ∈ con.

By applying (CUTl) to (1a), (2a) and (3a) we obtain (y∗, b) ∈ tot, and from (con–

tot) that y ≤ b as we wanted.

To show (tot–p), let (a ∨ pr(b), c) ∈ tot. Again, by unwrapping the definitions

we get (a ∨
∨
{x | x∗ ∨ b = 1}, c) ∈ tot and this, by (tot-↑), gives us

(1b) (a ∨
∨
{x | x∗ ∨ b = 1}, b ∨ c) ∈ tot

(2b) for all x such that x∗ ∨ b = 1: (a, x∗ ∨ b ∨ c) ∈ tot.

121

Jakl, Jung, Pultr

(3b) (x, x∗) ∈ con.

Therefore, (CUTl) applied to (1b), (2b) and (3b) gives us that (a, b ∨ c) ∈ tot. 2

Proposition 6.2 The mapping N : d-FrmCUT → nd-Frm assigning L 7→
(L; pr,mr) is functorial, where d-FrmCUT is the category of d-frames satisfying

the infinitary cut rules.

Proof. N is well defined on objects by Proposition 6.1. For morphisms, let h : L →
M be a d-frame homomorphism between two d-frames that satisfy the infinitary

cut rules. We need to show that h(¬α) v ¬h(α) for all α ∈ L+×L−. From the

definition we see that the corresponding plus coordinates are computed as follows:

(h(¬α))+ = h+(pr(α−)) = h+(
∨
{x | x∗ ∨ α− = 1}) =

∨
{h+(x) | x∗ ∨ α− = 1}

and

(¬h(α))+ = pr(h−(α−)) =
∨
{w | w∗ ∨ h−(α−) = 1}.

It is sufficient to show that x∗ ∨ α− = 1 implies h+(x)∗ ∨ h−(α−) = 1. This is true

because from (x, x∗) ∈ con we get that (h+(x), h−(x∗)) ∈ con and hence h+(x)∗ ≥
h−(x∗). Therefore, by applying the frame homomorphism h− to x∗ ∨ α− = 1 we

obtain h−(x∗) ∨ h−(α−) = 1 and this implies h+(x)∗ ∨ h−(α−) = 1. 2

Remark 6.3 The d-frame of truth values FOUR satisfies the cut rules (as it is

spatial, for example) so we can also apply the functor N to equip it with interior

operators. However, only the identity maps 2 → 2 are available, so this is what N
will produce.

6.1 Spectra and comparison with the interior operations

We are now ready to show that the spectrum of a (pr,mr) enriched d-frame is the

same as the spectrum of the original d-frame.

Proposition 6.4 Let L be a d-frame satisfying the infinitary cut rules. Then, the

spectra of L and (L; pr,mr) are the same; that is

Σd(L) = Σ(L; pr,mr).

Proof. This follows from the functoriality of N as proved in Proposition 6.2: Every

d-point of L viewed as a d-frame homomorphism p : L → FOUR is also an nd-point

N(p) : (L; pr,mr)→ FOUR. The converse inclusion is immediate. 2

From the fact that spatial d-frames satisfy the infinitary cut rules (Lemma 5.10 and

Corollary 5.13 in [10]), we have:

Corollary 6.5 Let L be a spatial d-frame. Then (L; pr,mr) is an nd-frame and,

moreover, the spectra of L and (L; pr,mr) are the same.

Note that this still does not mean that, for a spatial d-frame L, pr and mr

are the interior operations of the corresponding bispace, but in the d-regular case

everything works out:

122

Jakl, Jung, Pultr

Proposition 6.6 Let L be a spatial d-regular d-frame. Then the nd-frame

(L; pr,mr) is spatial.

Proof. We need to prove that the conditions (sp) and (sm) hold in (L; pr,mr). For

(sp), assume a 6≤ pr(b) for some a ∈ L+ and b ∈ L−. From d-regularity, there exists

c ∈ L+ such that (a, c∗) ∈ tot and c 6≤ pr(b). Since pr(b) =
∨
{x | x∗ ∨ b = 1}, the

latter condition on c implies that c∗∨b 6= 1 or, in other words, (0, c∗∨b) /∈ tot. From

spatiality of L, there exists a point (F+, F−) such that c∗ ∨ b /∈ F− and, therefore,

also c∗ /∈ F− and b /∈ F−. Finally, we know that (a, c∗) ∈ tot, therefore it has to be

the case that a ∈ F+. 2

6.2 Maximality of (pr,mr)

We saw before that d-regularity is enough to ensure that pr and mr correspond to

the interior operations on the corresponding bispace. Here we show (assuming just

d-regularity) that (pr,mr) is “larger” than any other (p,m) pair:

Proposition 6.7 Let L be a d-regular d-frame and let (p,m) be such that (L; p,m)

is an nd-frame. Then, p ≤ pr and m ≤ mr in the pointwise order.

Proof. Let b ∈ L−. Since L is d-regular, p(b) =
∨
{c | (p(b), c∗) ∈ tot}. But, any

time (p(b), c∗) ∈ tot, from (tot-p), we also have that (0, c∗ ∨ b) ∈ tot and this is

equivalent to c∗ ∨ b = 1. Therefore, p ≤ pr. 2

The fact that (pr,mr) is maximal says that it frame-theoretically mimics the in-

terior operations as closely as possible. Indeed, if (p◦,m◦) were the interior operators

of a (spatial) d-regular d-frame then, since (p◦,m◦) satisfies the (p,m) axioms, the

previous proposition says that (p◦,m◦) is pointwise smaller than (pr,mr). On the

other hand, pr(b) is computed as a join of τ+-open elements well-inside b, whereas

p◦(b) is computed as the join of all τ+-open subsets of b. Therefore, (pr,mr) is also

pointwise smaller than (p◦,m◦). This means that in the spatial case (pr,mr) and

(p◦,m◦) coincide.

6.3 Proof-theoretic negation

Assuming the Gentzen cut rule in the original paper [10] allowed Jung and Moshier

to give a proof-theoretic characterisation of negation. For a γ ∈ L, let Iγ = {ϕ ∈
con | ϕ∧ γ ≺ ff } and Fγ = {ψ ∈ con | tt ≺ γ ∨ψ}. Then, define the proof-theoretic

negation of γ as

γ
def≡ (

∨↑
ϕ∈Iγϕ+,

∨↑
ψ∈Fγψ−) (†)

We can now observe that this negation is actually exactly the same as the one

obtained from the canonical (pr,mr):

Theorem 6.8 Let L be a d-frame. Then, γ = (pr(γ−),mr(γ+)) for all γ ∈
L+×L−.

Proof. For “v”, let ϕ ∈ Iγ. Notice that ϕ∧γ ≺ ff is equivalent to (0, ϕ−∨γ−) ∈ tot
which is the same as ϕ−∨γ− = 1. Since ϕ ∈ con, (ϕ+)∗ ≥ ϕ− and so (ϕ+)∗∨γ− = 1,

123

Jakl, Jung, Pultr

therefore ϕ+ ≤ pr(γ−). Dually also ψ ∈ Fγ implies ψ− ≤ mr(γ+). For “w”, let

ϕ+ ∈ L+ be such that (ϕ+)∗ ∨ γ− = 1. Define

χ
def≡ (ϕ+, (ϕ+)∗).

Obviously χ ∈ con and χ ∧ γ ≺ ff (this is exactly the condition χ− ∨ γ− = 1).

Therefore, χ ∈ Iγ and ϕ+ = χ+ ≤ γ+. Dually, for every ϕ− ∈ L− such that

(ϕ−)∗ ∨ γ+ = 1, ϕ− ≤ γ− holds. 2

In fact, the proof that mrpr ≤ id and prmr ≤ id in Proposition 6.1 is a direct

translation of the proof that γ v γ in [10]. The only, but very important, difference

is that γ was originally defined only for the consistent predicates whereas (pr,mr)

is defined for the whole d-frame. On top of that, the previous theorem provides the

proof-theoretic negation with a bitopological interpretation.

Acknowledgements

We would like to thank the referees of the MFPS 32 conference for their detailed

comments on an earlier version of this paper.

References

[1] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic, 51:1–77, 1991.

[2] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Semantic Structures, volume 3 of Handbook of Logic in Computer Science, pages 1–168.
Clarendon Press, 1994.

[3] O. Arieli and A. Avron. Reasoning with logical bilattices. Journal of Logic, Language and Information,
5:25–63, 1996.

[4] A. Avron. The structure of interlaced bilattices. Mathematical Structures in Computer Science, 6:287–
299, 1996.

[5] N. D. Belnap. A useful four-valued logic. In J. M. Dunn and G. Epstein, editors, Modern Uses of
Multiple-Valued Logic, pages 8–37. Reidel Publishing Company, 1977.

[6] Félix Bou, Ramon Jansana, and Umberto Rivieccio. Varieties of interlaced bilattices. Algebra
universalis, 66(1):115–141, 2011.

[7] M. Fitting. Bilattices and the semantics of logic programming. Journal of Logic Programming, 11:91–
116, 1991.

[8] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continuous Lattices
and Domains, volume 93 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 2003.

[9] M. Ginsberg. Multivalued logics: A uniform approach to inference in artificial intelligence.
Computational Intelligence, 4:265–316, 1988.

[10] A. Jung and M. A. Moshier. On the bitopological nature of Stone duality. Technical Report CSR-06-13,
School of Computer Science, The University of Birmingham, 2006. 110 pages.

[11] B. Mobasher, D. Pigozzi, G. Slutzki, and G. Voutsadakis. A duality theory for bilattices. Algebra
Universalis, 43:109–125, 2000.

[12] Jorge Picado and Aleš Pultr. Frames and Locales: Topology without points. Springer-Birkhäuser Basel,
2011.

[13] G. Priest. Paraconsistent logic. In D. Gabbay and F. Guenther, editors, Handbook of Philosophical
Logic, volume 6, pages 287–393. Kluwer Academic Publishers, 2nd edition, 2002.

[14] U. Rivieccio. An Algebraic Study of Bilattice-based Logics. PhD thesis, University of Barcelona, 2010.

[15] M. B. Smyth. Powerdomains. Journal of Computer and Systems Sciences, 16:23–36, 1978.

124

Jakl, Jung, Pultr

A Appendix: Proofs omitted from the main text

A.1 Proofs related to Remark 4.3

Proposition A.1 Satisfying any one of the following axioms is equivalent to re-

quiring that p ◦m = id:

(¬¬ L) ¬¬ϕ ⊂ ϕ
(¬⊃ L) ¬(ϕ ⊃ ψ) ⊂ ϕ ∧ ¬ψ

and satisfying any one of the following axioms is equivalent to requiring that p

preserves finite suprema:

(¬∧ R) ¬(ϕ ∧ ψ) ⊃ ¬ϕ ∨ ¬ψ
(¬t R) ¬(ϕ t ψ) ⊃ ¬ϕ t ¬ψ

Proof. (¬¬ L) is equivalent to p ◦m = id as, by Lemma 4.1 (L2), L |= ϕ ⊃ ¬¬ϕ
is equivalent to v(ϕ)+ ≤ v(¬¬ϕ)+ = p(m(v(ϕ)+)) for all valuations v. To show the

same for (¬⊃ L), again by Lemma 4.1 (L2), L |= ϕ ∧ ¬ψ ⊃ ¬(ϕ ⊃ ψ) is equivalent

to v(ϕ)+∧p(v(ψ)−) ≤ p(m(v(ϕ)+))∧p(v(ψ)−) for all valuations v. This has to hold

for all ϕ and ψ. If ψ is such that ψ− = 1 we get v(ϕ)+ ∧ p(1) ≤ p(m(v(ϕ)+))∧ p(1)

and, since both p and m preserve 1, we get v(ϕ)+ ≤ p(m(v(ϕ)+)) as we wanted.

For the second part we use Lemma 4.1 (L2) once again to show that (¬∧ R) is

equivalent to p(ϕ− ∨ ψ−) = p(ϕ−) ∨ p(ψ−) for all ϕ and ψ. Notice that, p(x ∨ y) ≥
p(x) ∨ p(y) holds always from monotonicity of p, and L |= ¬(ϕ ∧ ψ) ⊃ ¬ϕ ∨ ¬ψ
is equivalent to p(v(ϕ)− ∨ v(ψ)−) ≤ p(v(ϕ)−) ∨ p(v(ψ)−) for all valuations v. The

same argument applies for (¬t R). 2

We can also assume the following axiom

(⊃ 3) (ϕ ⊃ ψ) ⊃ ϕ) ⊃ ϕ

which is equivalent to assuming that L+ is a Boolean algebra as it forces ((v(ϕ)+ →
v(ψ)+)→ v(ϕ)+)→ v(ϕ)+ = 1 to hold for all valuations v.

A.2 Proofs of the main theorems in Section 5

Lemma A.2 Let L be an nd-frame. Then, (Φ+(x))◦τ− ⊇ Φ−(m(x)) and

(Φ−(y))◦τ+ ⊇ Φ+(p(y)) in Σ(L), for all x ∈ L+ and y ∈ L−.

Proof. The second statement is true because, from (dpp), Φ+(p(y)) ⊆ Φ−(y). 2

Proof of Theorem 5.3 (following the proof of Theorem 4.1 in [10]). Clearly,

(iii) implies (ii) which implies (i). As in the original paper, ηX is bicontinuous,

biopen onto the image and natural in X we see that (iii) and (iv) are equivalent.

To show that (i) implies (iv) assume that ι : X ∼= Σ(L). If we prove that ηΣ(L) is

a bijection, we get that also ηX is because the following square commutes (from

naturality of η):

125

Jakl, Jung, Pultr

X Σ(L)

ΣΩ(X) ΣΩΣ(L)

ι

ηX ηΣ(L)

ΣΩ(ι)

Observe that ηΣ(L) is injective for all L. For the surjectivity of ηΣ(L), take a

(F+,F−) ∈ ΣΩΣ(L) and define

F+ = {x ∈ L+ | Φ+(x) ∈ F+} F− = {y ∈ L− | Φ−(y) ∈ Fi}.

We will show that (F+, F−) is an nd-point of L. As in [10], the pair (F+, F−) is a d-

point. To show that it is actually an nd-point, we need to show that it satisfies (dpp)

and (dpm). For the former, let p(x) ∈ F+. This is equivalent to Φ+(p(x)) ∈ F+.

From Lemma A.2 we also know that Φ+(p(x)) ⊆ (Φ−(x))◦τ+ ∈ F+. And, since

(F+,F−) is an nd-point, we know that Φ−(x) ∈ F−. Finally, from the definition of

F− we get that x ∈ F− as we wanted. The proof of (dpm) is the same but dual.

The argument that ηΣ(L)(F+, F−) = (F+,F−) is exactly the same as in [10]. 2

Lemma A.3 εL is an onto nd-frame homomorphism. Moreover, ε is natural in L.

Proof. Since ε is defined the same way as for d-frames, we see that εL is a d-frame

homomorphism and that ε is natural in L. We need to show that it is indeed an nd-

frame homomorphism. That is that it satisfies εL(¬α) v ¬εL(α) for all α ∈ L+×L−
but this is exactly the same statement as Lemma A.2. 2

Proof of Theorem 5.4 (following the proof of Theorem 5.1 in [10]). The

implications (iii) =⇒ (ii) =⇒ (i) are immediate, and (iv) =⇒ (iii) follows from

the fact that εL is onto (by Lemma A.3).

To show that (i) implies (v), it is enough to show that (sp) and (sm) hold for all

images of Ω (the other conditions were already proved in [10] for d-frames). Clearly,

for U+ ∈ τ+ and V− ∈ τ−, U+ ⊆ V
◦τ+
− iff U+ ⊆ V−. Therefore, if U+ 6⊆ V

◦τ+
− , then

there exists an x ∈ U+ \ V− such that U+ ∈ U+(x) and V− 6∈ U−(x). Moreover,

(U+(x),U−(x)) is an nd-point.

Finally, (v) implies (iv). As already proved in [10], εL is injective and reflects

con and tot. It remains to prove that ε−1
L (¬(Φ+(x),Φ−(y))) v ¬ε−1

L (Φ+(x),Φ−(y)).

Let us focus on the plus coordinates, that is to prove that

(εL)−1
+ (Φ−(y)◦τ+) ≤ p(εL)−1

− (Φ−(y)).

Observe that Φ−(y)◦τ+ = Φ+(x) for some x ∈ L+ because εL is onto. Since εL
is injective, (εL)−1

+ (Φ−(y)◦τ+) = (εL)−1
+ (Φ+(x)) = x and also p((εL)−1

− (Φ−(y))) =

p(y). Now, assume for a contradiction that x 6≤ p(y). Then, from (sp), there exists

an nd-point (F+, F−) such that x ∈ F+ and y /∈ F− but this is impossible since

Φ+(x) = Φ−(y)◦τ+ ⊆ Φ−(y). 2

126

MFPS 2016

Effectuses from Monads

Bart Jacobs
Institute for Computing and Information Sciences (iCIS),

Radboud University Nijmegen, The Netherlands.
Web address: www. cs. ru. nl/ B. Jacobs

May 20, 2016

Abstract

Effectuses have recently been introduced as categorical models for quantum computation, with probabilistic
and Boolean (classical) computation as special cases. These ‘probabilistic’ models are called commutative
effectuses. All known examples of such commutative effectuses are Kleisli categories of a monad. This
paper answers the open question what properties a monad should satisfy so that its Kleisli category is a
(commutative) effectus. The relevant properties are: strong affineness and partial additivity, together with
some non-triviality conditions.

Keywords: monad, effectus, probabilistic computation

1 Introduction

An effectus is a relatively simple category, with finite coproducts and a final ob-

ject, satisfying some elementairy properties: certain squares have to be pullbacks

and certain parallel maps have to be jointly monic, see (9) and (8) below. These

effectuses have been introduced in [8], and give rise to a rich theory that includes

quantum computation, see the overview paper [4]. Subclasses of ‘commutative’

effectuses and ‘Boolean’ effectuses have been identified. These Boolean effectuses

capture classical (deterministic) computation, and can be characterised as extensive

categories, see [4, Sec. 13] for details. This is a non-trivial result. A similar result

for commutative effectuses is still missing. It should lead to a characterisation of

(categorical) models of probabilistic computation.

This paper builds on [9] and makes a significant step towards a conjectured char-

acterisation of these commutative effectuses as Kleisli categories of certain monads.

The main result of this paper says that if the monad is strongly affine and partially

additive, then its Kleisli category is an effectus. Affineness of a monad T means

that it preserves the final object: T (1) ∼= 1. The property ‘strong affineness’ comes

from [9], where it is used to prove that it yields a bijective correspondence between

1 bart@cs.ru.nl

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

www.cs.ru.nl/B.Jacobs

Jacobs

predicates and side-effect-free instruments (as in a non-quantum settings). Partial

additivity of a monad has been introduced in [7] where it is used to obtain partially

additive structure on homsets of a Kleisli category. This result is re-used here, as a

step towards constructing effectuses, following [3].

We describe five monads to which our main result applies: distribution, Giry,

probabilistic powerdomain, Radon, and expectation. These monads are all ‘prob-

abilistic’ in an intuitive sense, and their Kleisli categories are (commutative) ef-

fectuses. In future work we hope to find a construction in the other direction,

turning a commutative effectus, possibly satisfying some additional properties, into

a ‘probabilistic’ monad.

This paper is organised as follows. After some preliminary remarks about cate-

gories and monads in Section 2 – 4 we describe the properties of strong affineness

and partial additivity of monads in Section 5. Our main result, Theorem 6.3, stat-

ing conditions on a monad that make its Kleili category an effectus, is in Section 6.

Subsequently, Section 7 shows in some details that the requirements hold for two of

the monad examples, namely the probabilistic power monad and the Radon monad.

2 Categorical preliminaries

This section briefly describes our assumptions about the underlying category that

we will be using. It is a distributive category, which is non-trivial in a suitable sense

that will be explained below. We recall from [5] that coprojections κi : Xi → X1+X2

in a distributive category are monic, and that the initial object 0 is strict — that

is, each map X → 0 is an isomorphism.

Definition 2.1 A category is called distributive if it has finite products (×, 1) and

coproducts (+, 0), where products distribute over coproducts, in the sense that the

following maps are isomorphisms.

0 ! // 0×X (A×X) + (B ×X)
dis1=[κ1×id,κ2×id] // (A+B)×X (1)

We call such a distributive category non-trivial if it satisfies the following two ad-

ditional requirements.

(i) For each object X we have: X 6∼= 0 iff there is a map x : 1 → X. This implies

1 6∼= 0.

(ii) The coprojections κ1, κ2 : 1→ 1 + 1 are disjoint, i.e. form a pullback:

0 //

��

1
κ2��

1 κ1
// 1 + 1

(2)

This implies 1 + 1 6∼= 1, or equivalently, κ1 6= κ2, using point (i).

Swapping the distributivity map dis1 in (1) yields an associated distributivity

map:

(X ×A) + (X ×B)
dis2=[id×κ1,id×κ2]

= γ◦dis1◦(γ+γ)
//X × (A+B)

where γ = 〈π2, π1〉 is the (product) swap isomorphism.

128

Jacobs

3 Monad preliminaries

In this paper we will be working with a monad T = (T, η, µ) on a non-trivial

distributive category C. This section describes the notation and terminology that

we use for monads.

We shall write K̀ (T) for the Kleisli category of the monad T , and • for Kleisli

composition, that is, for composition in K̀ (T), in order to distinguish it from com-

position ◦ in the underlying category C. Explicitly for ‘Kleisli’ maps f : X → Y and

g : Y → Z in K̀ (T) we have g • f = µ ◦ T (g) ◦ f : X → T (Y) → T 2(Z) → T (Z).

The identity map on an object X ∈ K̀ (T) is given by the unit map η : X → T (X).

Each map f : X → Y in C yields a map ‹f› = η ◦ f : X → Y in K̀ (T). This gives

a functor ‹−› : C→ K̀ (T).

The Kleisli category K̀ (T) inherits coproducts (+, 0) from C, with coprojections

of the form ‹κi› : Xi → X1 + X2. We call the monad T non-trivial if, in analogy

with diagram (2), the following rectangle is a pullback in C.

0 //

��

T (1)
T (κ2)��

T (1)
T (κ1)
// T (1 + 1)

(3)

In the terminology that will be used later, this says that the scalars 1 and 0 are not

the same.

The lift monad (−) + 1 exists not only on C, but also on K̀ (T), with unit and

multiplication of the latter described in C as:

X
‹κ1› // T (X + 1) (X + 1) + 1

‹[id,‹κ2›]› // T (X + 1)

These maps are obtained via the functor ‹−› from the unit and multiplication of

the lift monad (−) + 1 on C. It is not hard to see that the Kleisli category of the

lift monad (−) + 1 on K̀ (T) is the Kleisli category of the monad T ′ = T ((−) + 1)

on C. Hence we consider the category K̀ (T ′) as the category of partial maps in

K̀ (T). The unit η′ and multiplication µ′ of T ′ are given by:

X
η′=
‹κ1›

// T (X + 1) T
(
T (X + 1) + 1

) µ′=

µ◦T ([id,‹κ2›])
// T (X + 1)

Abstractly, this T ′ is monad since there is always a distributive law of monads

T (−) + 1 ⇒ T (− + 1). In general, given such a law ST ⇒ TS, the composite TS

is a monad again. Moreover, the monad S can be lifted to a monad S on K̀ (T),

and its Kleisli category K̀ (S) is the same as the Kleisli category K̀ (TS) of the

composite monad.

Kleisli composition in K̀ (T ′), written as •′, is related to composition • in K̀ (T)

via:

g •′ f = µ′ ◦ T ′(g) ◦ f = µ ◦ T ([id, ‹κ2›]) ◦ T (g + id) ◦ f
= µ ◦ T ([g, ‹κ2›]) ◦ f = [g, ‹κ2›] • f.

To summarise, we will be working with three different categories with identity and

129

Jacobs

composition notation as described below.

(C, id, ◦) (K̀ (T), η, •) (K̀ (T ′), ‹κ1›, •′).

4 Monad examples

There are (at least) five monad that are of interest in the current setting: the distri-

bution monad D on sets, the Giry monad G on measurable spaces, the expectation

monad E on sets, the probabilistic powerdomain monad V on (continuous) dcpos,

and the Radon monad R on compact Hausdorff spaces. Due to space restrictions

we will only elaborate the last two examples and refer to [9] for the first three.

4.1 The probabilistic powerdomain monad V on Dcpo

We write Dcpo for the category of directed complete partial orders (dcpo’s), with

(Scott) continuous functions between them. For a dcpo X we write O(X) for

the complete lattice of Scott open subsets: upward closed subsets U ⊆ X with:

if
∨
i xi ∈ U , then xi ∈ U for some index i. A valuation on the dcpo X is a

Scott continuous map φ : O(X) → [0, 1] which satisfies φ(∅) = 0, φ(X) = 1, and

φ(U ∪V) = φ(U) +φ(V)−φ(U ∩V) for all opens U, V . The requirement φ(X) = 1

means that valuations as used here are normalised. Without this requirement we

speak of ‘sub-valuations’; they are standardly used in the theory of probabilistic

powerdomains. We prefer to use proper, normalised valuations to obtain affineness,

see below.

We write V(X) for the set of valuations on a dcpo X, ordered pointwise,

with pointwise directed joins. This yields a dcpo again, and an endofunctor

V : Dcpo → Dcpo, where V(f)(φ)(V) = φ
(
f−1(V)

)
, for f : X → Y , φ ∈ V(X)

and V ∈ O(Y). This functor restricts to the category Cdcpo of continuous dcpo’s,

see [11, Thm. 8.2], where each element is a directed joint of elements way below it.

It is not hard to see that V(1) ∼= 1 and V(2) ∼= [0, 1]. A predicate on X is a map

X → 2 in the Kleisli category K̀ (V), and thus corresponds to a continuous function

p : X → [0, 1]. Given a valuation φ : O(X)→ [0, 1] on X one can define an integral∫
p dφ ∈ [0, 1] as join of integrals of simple functions, see [10,11] for details.

This V forms a monad [10,11] on (continuous) dcpo’s, that is, on both the

categories Dcpo and Cdcpo. The unit η : X → V(X) is given by η(x)(U) = 1U (x),

where 1U : X → [0, 1] is the indicator function for U , with 1U (x) = 1 if x ∈ U and

1U (x) = 0 otherwise. The Kleisli extension f∗ : V(X)→ V(Y) of a continuous map

f : X → V(X) is given by integration: f∗(φ)(V) =
∫
f(−)(V) dφ.

This monad V is strong, with strength map st1 : V(X)×Y → V(X×Y) given by

st1(φ, y)(U×V) = φ(U)·1V (y). The induced ‘double’ strength dst : V(X)×V(Y)→
V(X × Y) is given by dst(φ, ψ)(U × V) = φ(U) · ψ(V). This V is a commutative

monad, by Fubini for V.

4.2 The Radon monad R on CH

We can only describe the essentials of the Radon monad R on the category CH

of compact Hausdorff spaces (with continuous maps) and refer to [6] for more in-

130

Jacobs

formation. This monad sends a compact Hausdorff space X to the states on the

associated commutative C∗-algebra C(X) of continuous functions X → C. Hence

we write R(X) = Stat(C(X)), where states are positive unital maps ω : C(X)→ C.

This R is a ‘double dual’ monad, with familiar unit and Kleisli extension definitions:

η(x)(φ) = φ(x) and f∗(ω)(ψ) = ω
(
λx. f(x)(ψ)

)
for f : X → R(Y).

One of the main results of [6] — presented as a probabilistic version of Gelfand

duality — states that the Kleisli category K̀ (R) is the opposite (CCstarPU)op of

the the category of commutative C∗-algebras, with positive unital maps between

them. This is a prime example of a (commutative) effectus, see [8,4].

5 Monad requirements

In this section we assume that T is a monad on a distributive category C. As before,

we write T ′ = T ((−) + 1) for the induced monad on C.

Definition 5.1 The monad T is called affine if T (1) ∼= 1, and strongly affine if T

is strong and all rectangles below are pullbacks.

T (X)× Y π2 //

st1
��

Y

ηY
��

T (X × Y)
T (π2)

// T (Y)

(4)

It is not hard to see that a strongly affine monad is affine, see [9] for details.

The following result forms the technical core of this paper.

Lemma 5.2 Let T be strongly affine monad on a non-trivial distributive category

C. The following diagrams are then pullbacks in the Kleisli category K̀ (T).

X
‹κi›
��

! // 1
‹κi›
��

1
‹κ2›
��

1
‹κ2›
��

X
‹κ1›
��

! // 1
‹κ1›
��

X +X
!+!

// 1 + 1 X + 1
!+id

// 1 + 1 X + 1
!+id

// 1 + 1

(5)

For this last (third) pullback we need to assume that the monad T is non-trivial.

We can then prove that maps T (κi) are monic in C — making coprojections ‹κi›
monic in K̀ (T).

Proof The proof that the diagram on the left in (5) is a pullback is obtained by

taking Y = 2 = 1 + 1 in Diagram (4) and using the distributivity isomorphism

sep2 = (π1 + π1) ◦ dis−1
2 : X × 2 → X × 1 + X × 1 → X + X. We leave it to the

meticulous reader to check that the following two diagrams commute.

X × 1
id×κ1 //

π1

��

X × 2

sep2

��

π2

""

T (X)× 2
st1 //

sep2

��

T (X × 2)

T (sep2)

��
X κ1

//X +X
!+!
// 2 T (X) + T (X)

[T (κ1),T (κ2)]
// T (X +X)

(∗)

131

Jacobs

We now show that the left diagram in (5) is a pullback in K̀ (T), for i = 1. Let

f : Y → T (X +X) satisfy (! + !) • f = ‹κ1› • !, that is, T (! + !) ◦ f = T (κ1) ◦ η ◦ !.

Take f ′ = T (sep−1
2) ◦ f : Y → T (X × 2), and consider the pullback (4). We get:

T (π2) ◦ f ′ = T (π2) ◦ T (sep−1
2) ◦ f (∗)

= T (! + !) ◦ f = η ◦ κ1 ◦ !.

Hence there is a unique map g : Y → T (X) in (4) with st1 ◦ 〈g, κ1 ◦ !〉 = f ′. This g

is the mediating map that we want, since:

f = T (sep2) ◦ f ′ = T (sep2) ◦ st1 ◦ 〈g, κ1 ◦ !〉
(∗)
= [T (κ1), T (κ2)] ◦ sep2 ◦ (id × κ1) ◦ 〈g, !〉
(∗)
= [T (κ1), T (κ2)] ◦ κ1 ◦ π1 ◦ 〈g, !〉
= T (κ1) ◦ g
= ‹κ1› • g.

Uniqueness is left to the reader.

We continue with the diagram in the middle in (5). The case X ∼= 0 trivially

holds. If X 6∼= 0, then we may assume a map x : 1 → X, since the underlying

category is non-trivial, see Definition 2.1 (i). Now let f : Y → T (X + 1) satisfy

T (! + id) ◦ f = ‹κ2› ◦ !. Then f ′ = T (id + x) ◦ f : Y → T (X + X) satisfies

T (! + !) ◦ f ′ = T (! + id) ◦ f = ‹κ2› ◦ !. Using the pullback on the left in (5) we get

a g : Y → T (X) with T (κ2) ◦ g = f ′. But then:

f = T (id + !) ◦ f ′ = T (id + !) ◦ T (κ2) ◦ g = T (κ2) ◦ T (!) ◦ g
(∗∗)
= T (κ2) ◦ η ◦ ! = ‹κ2› • !.

The equation
(∗∗)
= holds because T (1) is final. This finality also yields uniqueness of

the mediating map !.

For the third rectangle in (5) the case X ∼= 0 is covered by the requirement that

T is non-trivial: if f : Y → T (0 + 1) satisfies T (! + id) ◦ f = T (κ1) ◦ η ◦ !, then

f = T (κ2) ◦ η ◦ !, since T (0 + 1) ∼= T (1) ∼= 1. We thus have T (κ1) ◦ η ◦ ! = T (κ2) ◦
η ◦ !, so that Y → T (1) factors through 0, via the pullback (3). This implies Y ∼= 0,

since the initial object in a distributive category is strict [5]. But then we are done.

When X 6∼= 0 we can use a map x : 1 → X and proceed like for the middle

rectangle. Finally, we show that the maps T (κ1) : T (X)→ T (X + Y) are monic in

C. If f, g : Y → T (X) satisfy T (κ1) ◦ f = T (κ1) ◦ g, then f = g by uniqueness of

the mediating map in the pullback on the right in (5). Obviously, ! • f = ! • g, but

also:

‹κ1› • f = T (κ1) ◦ f = T (id + !) ◦ T (κ1) ◦ f
= T (id + !) ◦ T (κ1) ◦ g = T (κ1) ◦ f = ‹κ1› • g. �

If T is an affine monad on C, the initial object 0 ∈ C is both initial and final in

K̀ (T ′). It is always initial, and final since: T ′(0) = T (0 + 1) ∼= T (1) ∼= 1. Hence 0

is a zero object in K̀ (T ′). In particular, for each pair of objects X,Y ∈ C there is

132

Jacobs

a zero map 0 = 0X,Y : X → T ′(Y) given by:

0X,Y =
(
X ! // 1 ∼= T ′(0)

T ′(!) // T ′(Y)
)

=
(
X ! // 1

η◦κ2 // T (Y + 1)
)

We have 0 •′ f = 0 = g •′ 0 for all maps f, g in K̀ (T ′). We can now define ‘partial

projections’ �1 : X + Y → X and �2 : X + Y → Y in K̀ (T ′) via cotuples:

�1 =
(
X + Y

[η◦κ1,0] =

η◦(id+!)
// T (X + 1)

)
�2 =

(
X + Y

[0,η◦κ1] =

η◦[κ2◦!,κ1]
// T (Y + 1)

)
.

These maps are natural in X,Y , in the category K̀ (T ′). Notice that �1 : 1 + 1 →
T (1 + 1) is the unit/identity and �2 : 1 + 1→ T (1 + 1) is the swap map η ◦ [κ2, κ1].

We can then form ‘bicartesian’ maps bc = bcX,Y : T ′(X +Y)→ T ′(X)×T ′(Y),

as a tuple of the Kleisli liftings of �1,�2. That is,

bc = 〈µ′ ◦ T ′(�1), µ′ ◦ T ′(�2) 〉. (6)

Definition 5.3 [After [7]] An affine monad T on C is partially additive if these

maps bc from (6) are monic in C, and the naturality squares below are pullbacks

in C, for all f : X → A, g : Y → B in C.

T ′(X + Y)
��

bc
��

T ′(f+g) // T ′(A+B)
��
bc
��

T ′(X)× T ′(Y)
T ′(f)×T ′(g)

// T ′(A)× T ′(B)

(7)

The requirement that bc is monic means that the two partial projections �1 : X +

Y → X,�2 : X + Y → Y are jointly monic in K̀ (T ′). In particular, the following

two maps in K̀ (T) are jointly monic (see [8, Assump. 1]).

(1 + 1) + 1

····· =[�1,κ2]=[id,κ2] //

····· =[�2,κ2]=[[κ2,κ1],κ2]

// 1 + 1 (8)

Our next aim is to prove that the Kleisli category K̀ (T) of a strongly affine

partially additive monad T on a non-trivial distributive category C is an effectus.

6 The Kleisli category is an effectus

We proceed towards our main theorem in a number of steps, combining the ap-

proaches of [7] and [3] (see also [4, Sect. 8]). We first show how to get a FinPAC

(after [2]).

Proposition 6.1 Let T be a strongly affine partially additive monad on a non-

trivial distributive category C. The Kleisli category of the monad T ′ = T ((−) + 1)

is then a finitely partially additive category (a FinPAC, for short, see [2,4]).

133

Jacobs

Explicitly, for maps f, g : X → T ′(Y) one says that f, g are orthogonal, written

as f ⊥ g, if there is a (necessarily unique) bound b : X → T ′(Y + Y) such that

bc ◦ b = 〈f, g〉, i.e. such that �1 •′ b = f and �2 •′ b = g. In that case we define

their sum > by f > g = ∇ •′ b = T ′(∇) ◦ b : X → T ′(Y).

The above proposition says that this partial sum > with the zero map 0

forms a partial commutative monoid (PCM), which is preserved by pre- and post-

composition in K̀ (T ′) and satisfies the ‘untying axiom’ of [2,12,3]: if f ⊥ g then

(κ1 •′ f) ⊥ (κ2 •′ g).

Proof All this is rather straightforward and can be copied from [7,4]. We only

point out that we need the pullback property (7) in the proof of associativity: let

f, g, h : X → Y be given in K̀ (T ′) with f ⊥ g via bound b, and (f > g) ⊥ h via

bound c. We thus have �1 •′ b = f , �2 •′ b = g and �1 •′ c = f > g = ∇ •′ b,
�2 •′ c = h. Consider the following pullback in C.

X c

**

〈b,h〉
((

d

))
T ′((Y + Y) + Y)

��
bc
��

T ′(∇+id)
// T ′(Y + Y)

��
bc
��

T ′(Y + Y)× T ′(Y)
T ′(∇)×id

// T ′(Y)× T ′(Y)

Take d′ = T ([[[κ2 ◦ !, κ1 ◦ κ1], κ1 ◦ κ2], κ2]) ◦ d : X → T ′(Y + Y). Then g ⊥ h via

d′. Next we take d′′ = T ′([id, κ2]) ◦ d : X → T ′(Y + Y). It proves f ⊥ (g > h) and

associativity, in:

f > (g > h) = ∇ •′ d′′ = T (∇+ id) ◦ T ([id, κ2] + id) ◦ d
= T ([∇, id] + id) ◦ d
= T (∇+ id) ◦ T ((∇+ id) + id) ◦ d
= T ′(∇) ◦ T ′(∇+ id) ◦ d
= ∇ •′ c
= (f > g) > h.

The untying axiom follows directly from the way that orthogonality ⊥ is defined:

if f ⊥ g, for f, g : X → T ′(Y), say via bound b : X → T ′(Y + Y), then one can take

as new bound b′ = T ′(κ1 + κ2) ◦ b : X → T ′((Y + Y) + (Y + Y)). It is easy to see

that b′ proves (κ1 •′ f) ⊥ (κ2 •′ g). �

The maps X → 2 = 1 + 1 in K̀ (T) are called predicates on X. Equivalently,

these predicates may be described as maps X → T (2) in C, or as maps X → 1 in

K̀ (T ′). There are truth and falsity predicates 1 and 0 defined in C as:

1 =
(
X ! // 1

κ1 // 2
η // T (2)

)
0 =

(
X ! // 1

κ2 // 2
η // T (2)

)
Orthosupplement is p⊥ = T ([κ2, κ1]) ◦ p, so that p⊥⊥ = p : X → T (2). Predicates

on 1, of the form 1→ 2, are called scalars.

134

Jacobs

In order to prove that the Kleisli category K̀ (T) is an effectus the properties

below are crucial. They all apply to the associated category K̀ (T ′) of partial maps.

This emphasis on the partial maps in an effectus is due to [3].

Lemma 6.2 For a monad T as in Proposition 6.1 we additionally have:

(i) if 1 •′ f = 0 then f = 0, for each f : X → T (Y + 1);

(ii) if (1 •′ f) ⊥ (1 •′ g) then f ⊥ g, for all f, g : X → T (Y + 1);

(iii) each homset K̀ (T ′)(X, 1) = K̀ (T)(X, 2) = C(X,T (2)) is an effect algebra.

(iv) if T is non-trivial, then 1 •′ f = 1 implies that f in K̀ (T ′) is total, i.e. is of

the form f = T (κ1) ◦ g, for a necessarily unique map g in K̀ (T).

Proof (i) The assumption 1 •′ f = 0 mean T (! + id) ◦ f = η ◦ κ2 ◦ !. Using the

pullback in the middle of (5) we obtain f = ‹κ2› • ! = 0.

(ii) Let (1 •′ f) ⊥ (1 •′ g), for f, g : X → T ′(Y), via bound b : X → T ′(1 + 1).

Then we use the following pullback instance of (7).

X b

**

〈f,g〉
((

c

**
T ′(Y + Y)

��
bc
��

T ′(!+!)
// T ′(1 + 1)

��
bc
��

T ′(Y)× T ′(Y)
T ′(!)×T ′(!)

// T ′(1)× T ′(1)

The map c is by construction a bound for f, g, showing f ⊥ g.

(iii) Since we already know from Proposition 6.1 that each homset of the Kleisli

category K̀ (T ′) is a partial commuative monoid (PCM), we only have to prove

the following three points.

(a) For each predicate p we have p> p⊥ = 1.

(b) The predicate p⊥ is unique with this property: p> q = 1 implies q = p⊥.

(c) If 1 ⊥ p, then p = 0.

We shall handle them one by one.

For (a), let p : X → T (2) = T ′(1) be a predicate. We take as bound b =

T (κ1) ◦ p : X → T ′(1 + 1) = T ((1 + 1) + 1). One easily checks that �1 •′ b = p

and �2 •′ b = p⊥, and also that p> p⊥ = ∇ •′ b = 1.

In (b) let p > q = 1, say via bound b : X → T ′(1 + 1). Then: p > q = 1 =

∇ •′ b = T (∇+ id) ◦ b = T (! + id) ◦ b. The third rectangle in (5) is a pullback

in K̀ (T), which we use on the left below.

X

b

$$

!

$$
c

%%

X

T (σ)◦b
$$

!

$$
d

%%
2

‹κ1›
��

! // 1
‹κ1›
��

1
‹κ2›
��

1
‹κ2›
��

2 + 1
!+id

// 1 + 1 2 + 1
!+id

// 1 + 1

135

Jacobs

We thus have b = T (κ1) ◦ c. But then we are done:

p⊥ = T ([κ2, κ1]) ◦ p = T ([κ2, κ1]) ◦ (�1 •′ b)
= T ([κ2, κ1]) ◦ T ([id, κ2]) ◦ T (κ1) ◦ c
= T ([[κ2, κ1], κ2]) ◦ T (κ1) ◦ c
= �2 •′ b
= q.

Finally, for (c) let 1 ⊥ p, say via b : X → T ′(1 + 1), so that T ([id, κ2]) ◦ b =

�1 •′ b = 1 = ‹κ1› ◦ !, as in the above diagram on the right. Consider the

isomorphism σ = ······ = [[κ2, κ1 ◦ κ1], κ1 ◦ κ2] : 2 + 1
∼=−→ 2 + 1, so that the outer

diagram on the right commutes:

T (! + id) ◦ T (σ) ◦ b = T ([[κ2, κ1 ◦ ! ◦ κ1], κ1 ◦ ! ◦ κ2]) ◦ b
= T ([[κ2, κ1], κ1]) ◦ b
= T ([κ2, κ1]) ◦ T ([id, κ2]) ◦ b
= T ([κ2, κ1]) ◦ ‹κ1› ◦ !

= ‹κ2› ◦ !.

Hence T (σ) ◦ b = ‹κ2› ◦ ! by the middle pullback in (5). But then:

p = �2 •′ b = T ([[κ2, κ1], κ2]) ◦ T (σ−1) ◦ ‹κ2› ◦ !

= T ([[κ2, κ1], κ2]) ◦ T ([κ2 + id, κ1 ◦ κ1]) ◦ T (κ2) ◦ η ◦ !

= T (κ2) ◦ η ◦ !

= 0.

(iv) If T is a non-trivial monad, then the diagram on the right in (5) is a pullback.

Hence the assumption 1 •′ f = 1 translates to (! + id) • f = ‹κ1› • !, so that

there is a unique map g in K̀ (T) with ‹κ1› • g = f , and thus T (κ1) ◦ g = f .

�

Our main result below gives conditions that ensure that a Kleisli category is an

effectus, see [8,4]. Briefly, an effectus is a category with finite coproducts and a final

object in which the two maps ····· , ····· : (1 + 1) + 1 ⇒ 1 + 1 in (8) are jointly monic,

and in which the following diagrams are pullbacks.

X + Y

!+id
��

id+! //X + 1

!+id
��

X

‹κ1›
��

! // 1

‹κ1›
��

1 + Y
id+!

// 1 + 1 X + Y
!+!
// 1 + 1

(9)

Equivalent conditions can be formulated for the associated category of partial maps,

see the original [3, Def. 4.4], copied into [4, Def. 51]. The proof below heavily builds

on this partial perspective.

136

Jacobs

Theorem 6.3 A Kleisli category K̀ (T) is an effectus when T is a non-trivial

strongly affine partially additive monad on a non-trivial distributive category.

If the monad T is additionally commutative, then its Kleisli category K̀ (T) is a

commutative effectus.

Proof Since partial additivity of the monad T implies that we have jointly monic

maps (1 + 1) + 1 ⇒ 1 + 1 in (8), one only has to show that the diagrams in (9) are

pullbacks in K̀ (T). This is an application of [3, Thm. 4.10], which re-appears as [4,

Thm. 53 (2)], using Proposition 6.1 and Lemma 6.2. The category of total maps in

K̀ (T ′) is then K̀ (T), by Lemma 6.2 (iv).

The statement that the Kleisli category K̀ (T) is a commutative effectus if T is

a commutative monad is based on results (and definitions) from [9]. �

7 The monad examples revisited

Our five monad examples D, G, V, R and E from Section 3 satisfy the assumptions

of Theorem 6.3. We concentrate on the probabilistic powerdomain V and the Radon

monad R since the others have been studied elsewhere [9].

7.1 The probabilistic powerdomain V

We first check that the probabilistic powerdomain V on the category Cdcpo of

continuous dcpo’s is strongly affine. We use the result, due to Lawson, that a

valuation on the opens O(X) of a continuous dcpo X can be extended in a unique

way to a measure on the Borel sets B(X), see [11,1]. We recall that B(X) is the

least σ-algebra that contains O(X).

We show that Diagram (4) is a pullback, for T = V. The proof is similar to

the one for the Giry monad in [9], but uses the unique extension to Borel sets. Let

ψ ∈ V(X × Y) satisfy V(π2)(ψ) = η(z), for a given element z ∈ Y . This means

ψ(X × V) = ψ(π−1
2 (V)) = V(π2)(ψ)(V) = η(z)(V) = 1V (z), for each V ∈ O(Y).

We write ψ̂ : B(X) → [0, 1] for the unique extension of ψ : O(X) → [0, 1]. Since

η extends to a measure on B(X), and ψ̂(X × −) is also a measure that extends

ψ(X ×−) we get:

ψ̂(X × V) = 1V (z), for each V ∈ B(X). (10)

Our first aim is to show that ψ̂ is non-entwined, that is, satisfies ψ̂(U × V) =

ψ̂(U × Y) · ψ̂(X × V) for all U, V ∈ B(X). We distinghuish two cases.

• If z 6∈ V , then by monotonicity:

ψ̂(U × V) ≤ ψ̂(X × V)
(10)
= 1V (z) = 0.

Hence ψ̂(U × V) = 0 = ψ̂(U × Y) · ψ̂(X × V).

• If z ∈ V , then z 6∈ ¬V . We note that Borel sets (but not open sets) are closed

under negation/complement. Hence with the extension ψ̂ to Borel sets we can

137

Jacobs

reason as follows.

ψ̂(U × V) = ψ̂(U × V) + 0

= ψ̂(U × V) + ψ̂(U × ¬V) as just shown

= ψ̂
(
(U × V) ∪ (U × ¬V)

)
by additivity

= ψ̂(U × Y)

= ψ̂(U × Y) · 1V (z)
(10)
= ψ̂(U × Y) · ψ̂(X × V).

But now we are done since we can take φ = V(π1)(ψ) = ψ(−×Y) ∈ V(X), satisfying:

st1(φ, z)(U × V) = φ(U) · 1V (z)
(10)
= ψ(U × Y) · ψ(X × V) = ψ(U × V).

The associated monad V ′(X) = V(X+ 1) contains sub-valuations φ, which need

not satisfy φ(X) = 1. The map bc: V ′(X+Y)→ V ′(X)×V ′(Y) from (6) is given by

bc(φ) = 〈bc1(φ), bc2(φ)〉, where bci(φ)(U) = φ(κiU). This map is clearly injective.

We leave it to the reader to verify that the naturality squares are pullbacks.

7.2 The Radon monad R

The proof that the Radon monad is strongly affine that is presented below is due

to Robert Furber; it is analogous to the proof for V, but uses the Cauchy-Schwartz

inequality for positive maps on C∗-algebras. We first note that the strength map

st1 : R(X)×Y → R(X×Y) is determined by st1(ω, z)(φ ⊗ ψ) = ω(φ) ·ψ(z). These

tensors φ ⊗ ψ = λ(x, y). φ(x) · ψ(y) ∈ C(X × Y) ∼= C(X) ⊗ C(Y) form a dense

subset. Hence the above description of st1 suffices.

We turn to Diagram (4). Let ω ∈ R(X×Y) and z ∈ Y be given withR(π2)(ω) =

η(z). This means that ω(1 ⊗ ψ) = ψ(z), for each ψ ∈ C(Y), where 1 ∈ C(X) is the

function that is constantly 1. The Cauchy-Schwartz inequality for the positive map

ω yields:

∣∣ω(φ ⊗ ψ)
∣∣2 = ω

(
(φ ⊗ 1) · (1 ⊗ ψ)

)∗ · ω((φ ⊗ 1) · (1 ⊗ ψ)
)

≤ ω
(
(φ ⊗ 1) · (φ ⊗ 1)∗

)
· ω
(
(1 ⊗ ψ)∗ · (1 ⊗ ψ)

)
= ω

(
(φ · φ∗) ⊗ 1

)
· ω
(
1 ⊗ (ψ∗ · ψ)

)
= ω

(
(φ · φ∗) ⊗ 1

)
· (ψ∗ · ψ)(z)

= ω
(
(φ · φ∗) ⊗ 1

)
· ψ(z)∗ · ψ(z).

Hence if ψ(z) = 0, then ω(φ ⊗ ψ) = 0. Consider the function ψ′ ∈ C(Y) given by

ψ′(y) = ψ(z) − ψ(y). Since ψ′(z) = 0, we get ω(φ ⊗ ψ′) = 0, as just shown, and

138

Jacobs

thus by linearity of ω:

ω(φ ⊗ ψ) = ω(φ ⊗ ψ) + ω(φ ⊗ ψ′) = ω(φ ⊗ (ψ − ψ′))
= ω(φ ⊗ ψ(z))

= ω(φ ⊗ 1) · ψ(z)

= ω(φ ⊗ 1) · ω(1 ⊗ ψ).

We can now take as state ρ = R(π1)(ω) ∈ R(X) given by ρ(φ) = ω(φ ⊗ 1). This

gives the mediating element we seek, since:

st1(ρ, z)(φ ⊗ ψ) = ρ(φ) · ψ(z) = ω(φ ⊗ 1) · ω(1 ⊗ ψ) = ω(φ ⊗ ψ).

The monad R′(X) = R(X+1) contains the states on C(X+1) ∼= C(X)⊕C, and

thus the subunital positive maps C(X) → C, which are also known as substates.

The map bc: R′(X + Y) → R′(X) × R′(Y) is given by bc(ω) = (ω1, ω2), where

ω1(φ) = ω([φ,0]) and ω2(ψ) = ω([0, ψ]). It is obviously injective.

8 Conclusions and outlook

Our main result gives sufficient conditions for a monad so that its Kleisli category is

an effectus. These conditions are, roughly: strong affineness and partial additivity.

This solves a problem that has been open for a couple of years, since the inception of

effectus theory. In [9] it is shown that strong affineness of a monad T gives a bijective

correspondence between predicates X → 2 in K̀ (T) and instruments f : X → X+X

in K̀ (T) which are side-effect-free, in the sense that ∇ • f = id. This part of the

definition of a commutativity effectus. In [4, Example 58] one more property is

used that is important for probabilistic computation, namely normalisation, giving

conditional probability.

We expect that commutativity and normalisation play a role in a categorical

characterisation of probabilistic computation that we have as long term goal, as

discussed in the introduction to this paper.

Acknowledgements

Thanks to Kenta Cho, Robert Furber, and Bram Westerbaan for helpful discussions,

and to the anonymous referees for their critical feedback.

References

[1] M. Alvarez-Manilla, A. Edalat, and N. Saheb-Djahromi. An extension result for continuous valuations.
Journ. London Math. Soc., 61(02):629–640, 2000.

[2] M. Arbib and E. Manes. Partially additive categories and flow-diagram semantics. Journ. Algebra,
62(1):203–227, 1980.

[3] K. Cho. Total and partial computation in categorical quantum foundations. In C. Heunen, P. Selinger,
and J. Vicary, editors, Quantum Physics and Logic (QPL) 2015, number 195 in Elect. Proc. in Theor.
Comp. Sci., pages 116–135, 2015.

[4] K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. An introduction to effectus theory. see
arxiv.org/abs/1512.05813, 2015.

139

arxiv.org/abs/1512.05813

Jacobs

[5] R. Cockett. Introduction to distributive categories. Math. Struct. in Comp. Sci., 3:277–307, 1993.

[6] R. Furber and B. Jacobs. From Kleisli categories to commutative C∗-algebras: Probabilistic Gelfand
duality. Logical Methods in Comp. Sci., 11(2):1–28, 2015.

[7] B. Jacobs. From coalgebraic to monoidal traces. In B. Jacobs, M. Niqui, J. Rutten, and A. Silva,
editors, Coalgebraic Methods in Computer Science, volume 264 of Elect. Notes in Theor. Comp. Sci.,
pages 125–140. Elsevier, Amsterdam, 2010.

[8] B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic. Logical
Methods in Comp. Sci., 11(3):1–76, 2015.

[9] B. Jacobs. Affine monads and side-effect-freeness. CMCS’16, 2016.

[10] C. Jones. Probabilistic Non-determinism. PhD thesis, Edinburgh Univ., 1989.

[11] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Logic in Computer Science,
pages 186–195. IEEE, Computer Science Press, 1989.

[12] E. Manes and M. Arbib. Algebraic Appoaches to Program Semantics. Texts and Monogr. in Comp.
Sci.,. Springer, Berlin, 1986.

140

MFPS 2016

Programs as Data Structures in λSF -Calculus

Barry Jay

Centre for Quantum Computing & Intelligent Systems
School of Software

University of Technology Sydney
Sydney

Australia

Abstract

Lambda-SF-calculus can represent programs as closed normal forms. In turn, all closed normal forms
are data structures, in the sense that their internal structure is accessible through queries defined in the
calculus, even to the point of constructing the Goedel number of a program. Thus, program analysis and
optimisation can be performed entirely within the calculus, without requiring any meta-level process of
quotation to produce a data structure.
Lambda-SF-calculus is a confluent, applicative rewriting system derived from lambda-calculus, and the
combinatory SF-calculus. Its superior expressive power relative to lambda-calculus is demonstrated by the
ability to decide if two programs are syntactically equal, or to determine if a program uses its input. Indeed,
there is no homomorphism of applicative rewriting systems from lambda-SF-calculus to lambda-calculus.
Program analysis and optimisation can be illustrated by considering the conversion of a programs to combi-
nators. Traditionally, a program p is interpreted using fixpoint constructions that do not have normal forms,
but combinatory techniques can be used to block reduction until the program arguments are given. That
is, p is interpreted by a closed normal form M. Then factorisation (by F) adapts the traditional account
of lambda-abstraction in combinatory logic to convert M to a combinator N that is equivalent to M in the
following two senses. First, N is extensionally equivalent to M where extensional equivalence is defined in
terms of eta-reduction. Second, the conversion is an intensional equivalence in that it does not lose any
information, and so can be reversed by another definable conversion. Further, the standard optimisations
of the conversion process are all definable within lambda-SF-calculus, even those involving free variable
analysis.
Proofs of all theorems in the paper have been verified using the Coq theorem prover.

Keywords: lambda-calculus, SF-calculus, self-interpretation, xi-rule

1 Introduction

λ-calculus [1] provides a completely general account of the extensional behaviour of

functions, of all that can be discovered by evaluating them. This may be enough for

applications, but the implementation of programming languages requires access to

the internal structure of programs. As this is not possible from within the pure λ-

calculus, meta-level analysis is commonly required. For example, self-interpretation

of λ-calculus [12,17,2,14,15,4,3,18,9], usually begins by applying a meta-function

1 Thanks to Thomas Given-Wilson, Neil Jones, Jens Palsberg and Jose Vergara for helpful discussions as
this work gestated, and the anonymous referees.
2 Email:Barry.Jay@uts.edu.au

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:Barry.Jay@uts.edu.au

Jay

M,N,P := x | S | F | λx.M | MN

(λx.M)N −→ {N/x}M

SMNP −→ MP (NP)

FOMN −→ M (O is S or F)

FPMN −→ NP e dP (P is a compound of P e and dP).

Fig. 1. λSF -calculus

quote which converts an arbitrary λ-term into a data structure, whose internal

structure can be queried at will.

Recent work suggests an alternative approach, using calculi that support a more

general class of queries. Pure pattern calculus [8,5] uses pattern matching to define

generic queries of data structures built from arbitrary constructors. However, it is

unable to analyse pattern-matching functions themselves. SF -calculus [7] can query

any closed normal form by using its operator F to reveal its internal structure, e.g.

the components P1 and P2 of a closed normal application P1P2. However, it does

not provide first-class support for λ-abstraction or any other mechanism for binding

variables.

This paper shows how to factorise abstractions in a new calculus, the λSF -

calculus, by converting them to combinators when it is safe to do so, i.e. when

this will not break any redexes in the body of the abstraction. The syntax and

reduction rules of λSF -calculus are just those of λ-calculus and SF -calculus, as

given in Figure 1, on the understanding that the compounds now include some

abstractions as well as some applications. The result is a proper extension of λ-

calculus in the sense that there is no function from λSF -calculus to λ-calculus that

preserves its structure as an applicative rewriting system.

This expressive power can be used to support arbitrary queries of closed normal

forms. In this sense, we can identify the data structures with the closed normal

forms. What about programs? The standard interpretation of programs does not

yield normal forms since recursion is modeled by a fixpoint function that does not

have a normal form. However, traditional combinators can be used to identify

programs, even recursive ones, with closed normal forms. Hence, we can identify

the programs with closed normal forms, to get

programs = closed normal forms = data structures.

That is, programs can be represented by terms that are simultaneously functions,

ready to act on arguments, and data structures, ready for analysis and optimisation,

and this without any need for quotation. Except when justifying this equation, we

will identify the programs with the closed normal forms.

This provides a more flexible foundation for computation than any of the tradi-

tional models, as these emphasise only one aspect of a program’s nature. In partic-

ular, λ-calculus emphasises its functional aspect, while Turing machines emphasise

its structure, as a string of symbols on a tape. This new flexibility suggests fresh

approaches to many issues in theory and practice, especially the implementation of

142

Jay

programming languages.

The structure of the paper is as follows. Section 1 is the introduction. Section 2

introduces λSF -calculus and its basic properties. Section 3 shows that equality of

programs is definable. Section 4 defines extensional equivalence. Section 5 shows

that there is no homomorphism of applicative rewriting systems from λSF -calculus

to λ-calculus. Section 6 show how to represent recursive programs as closed normal

forms. Section 7 converts programs to extensionally equivalent combinators. Sec-

tion 8 optimises the conversion by program analysis. Section 9 converts programs

to combinators in a way that preserves intensions as well as extensions. Section 9

discusses the proof verifications in Coq. Section 10 suggests some fresh approaches

to existing issues. Section 11 draws conclusions.

2 λSF -calculus

The terms and reduction rules of λSF -calculus are given in Figure 1. The terms

(meta-variables M,N,P, . . . consist of variables x, y, z, . . . , f, g, . . ., the operators S

and F , abstractions λx.M with bound variable x and body M , and applications MN

of M to N . The reduction rules for λ and S are standard. The rules for F have

the same high-level semantics as in SF -calculus in that F branches according to

whether its first argument P is an atom, i.e. an operator, or a compound. If P is

an atom then return the first branch: if P is a compound then apply the second

branch to its two components. The intention is that the compounds are terms whose

decomposition into components does not break any redexes. They are, in a sense,

head normal forms. The technical point is that there is a syntactic test for this

property, even in the presence of abstractions. The reflexive, transitive closure of

−→ is denoted −→∗.

2.1 Compounds

In combinatory calculi, the compounds are all the partially applied operators. For

example, in SF -calculus, the compounds are all terms of the form SM or SMN

or FM or FMN . These forms are compounds in λSF -calculus, too. All other

compounds of λSF -calculus are abstractions λx.M whose decomposition is safe

because either M is already an atom or compound, or outermost reduction in M

awaits the instantiation of x, i.e. x is active in M in the following sense.

Define the set active(M) of active variables of a term M to be a set that has at

most one element, that is defined by the pattern-matching function in Figure 2.1

(active(M)− {x} removes x from active(M)).

Here are some examples of compounds. The body of λx.x y has x active. The

body of λx.λy.x has x active. The body of λx.λy.y is a compound. The body of

λx.F is an atom. The body of λx.Fx is a compound. The body of λx.FxM is a

compound. The body of λx.FxMN has x active, since F is an intensional operator

that needs to know the value of x to reduce. The body of λx.λy.F (FxMN)PQ has

x active.

143

Jay

active =

| x⇒ {x}
| O ⇒ {}
| λx.M ⇒ active(M)− {x}
| OM ⇒ {}
| OMN ⇒ {}
| SMNP ⇒ {}
| FMNP ⇒ active M

| MN ⇒ active M otherwise.

Fig. 2. Active Variables

2.2 Star Abstraction

The decomposition of an abstraction λx.M will use the star abstraction λ∗x.M of

M with respect to x. This is an adaptation of the standard technique for defining

the abstraction of a combinator M with respect to a variable. Since this is defined

using the combinators S,K and I, the latter two must be defined in terms of S and

F , as follows. Define

K = FF

so that KMN = FFMN −→M for any choice of M and N . Then define

I = SKK

so that IM = SKKM −→ KM(KM) −→M for any M .

The star abstraction λ∗x.M of M with respect to x is defined by

λ∗x.x= I

λ∗x.y=Ky (y 6= x)

λ∗x.O=KO (O an operator)

λ∗x.λy.M = λx.λ∗y.M

λ∗x.MN =S(λx.M)(λx.N) .

This definition modifies the traditional definition of λ∗x.M for combinators M in

two ways. First, when the body is an application MN the result uses λx.N instead

of λ∗x.N . To see why this is necessary, consider λ∗x.F (KN1N2). Now F (KN1N2)

is a compound, so it is safe to separate F from KN1N2 but λ∗x.KN1N2 breaks the

redex KN1N2 so a recursive call to λ∗x would here be unsafe. Second, there needs

to be a rule for λ∗x when the body is an abstraction λy.M . The result is λx.λ∗y.M

and not λ∗x.λ∗y.M since it is important that only one abstraction is eliminated at

a time, namely, the innermost one.

Here are some simple examples of star abstraction. In SKI-calculus, the λ-

abstraction λx.λy.y can be represented by

λ∗x.λ∗y.y = λ∗x.I = KI

where λ∗ is used to convert abstractions into combinators in the traditional man-

ner. In λSF -calculus, the λx.λy.y is already a closed normal form. However, its

factorisation will introduce λ∗x.λy.y which is calculated as follows:

λ∗x.λy.y = λx.λ∗y.y = λx.I .

This has eliminated the innermost abstraction, just like the first step in the calcu-

144

Jay

lation of λ∗x.λ∗y.y in SKI-calculus. A second factorisation exposes

λ∗x.SKK = S(λx.SK)(λx.K) .

Further factorisation eliminates the remaining abstractions to produce the combi-

nator

S(S(KS)(S(KF)(KF)))(S(KF)(KF))

which when applied to terms M and N reduces to N , just like the original ab-

straction. Of course, it is much bigger than the original term, as it does not take

advantage of the standard optimisation, in which λ∗x.I takes advantage of the fact

that x is not free in I to produce KI. This will be addressed in Section 8.

2.3 Components

The left component Me of a term M is defined as follows

(MN)e=M

Me= abs left (otherwise)

where abs left = SKF will be used as the left component of any term that is not

an application, especially of any abstraction. The key point about abs left is that it

cannot be the left component of an application to some N since abs left N = SKFN

is a fully applied instance of S. In general, words in sans-serif, such a abs left may

be used to name particular terms of λSF -calculus, as well as the meta-variables M

and N , etc.

Now the right component dM of M is defined by

d(MN) =N

d(λx.M) = λ∗x.M

dM =M (otherwise.)

It follows that if M is a compound and M −→ N then Me −→ Ne and dM −→
dN . That is, no redexes are broken by taking components of compounds. To put is

another way, there is a derived reduction rule

(ξ)
M −→ N

λ∗x.M −→ λ∗x.N
(λx.M is a compound.)

2.4 Confluence

Theorem 2.1 (confluence lamSF red) Reduction in λSF -calculus is confluent.

Proof. The proof can be seen as an instantiation of Klop’s result [13] for extensions

of λ-calculus, in that the additional reduction rules are left-linear and orthogonal.

The only catch is that the reduction rule for F has a side-condition, so some care

is required. 2

2.5 Normal Forms

The normal forms are defined to be the variables, operators, abstractions of normal

forms, and applications MN in which M and N are both normal and MN is either

145

Jay

a compound or has an active variable.

Theorem 2.2 (irreducible iff normal) A term is irreducible if and only if it is

a normal form.

A program is a closed normal form. A factorable form is either an operator or a

compound.

Theorem 2.3 (programs are factorable) All programs are factorable forms.

Hence, any closed term of the form FPMN must reduce. This is a form of

progress result.

3 Definable Equality

It follows from Theorem 2.3 that the equality term defined in SF -calculus [7] serves

to define equality in λSF -calculus too. The algorithm is as follows. Operators are

equal if they have the same extensional behaviour, which can be decided by some

term eqop. Atoms and compounds are never equal. Compounds are equal if their

components are. The actual term is given

fix (λe.λx.λy.F x (eqop x y) (λxl.λxr.Fy(KI)(λyl.λyr.e xl yl(e xr yr)(KI)))) .

where fix is a fixpoint term. This, and other approaches to recursion, will be

addressed in Section 6.

Theorem 3.1 (equal programs) equal M M −→∗ K for all programs M .

Theorem 3.2 (unequal programs) equal M N −→∗ KI for all distinct pro-

grams M and N .

Proof. The proof is by induction on the rank of M , as defined in the Coq imple-

mentation. The only case of interest arises when M is an abstraction and N is an

application. Now the left component of N cannot be abs left since any application

of abs left reduces, and so the left components of M and N cannot be equal. 2

4 Extensionality

Mathematically, two functions f and g are extensionally equivalent if they have the

same graph. For unary functions, this means that f x = g x for all x. In λ-calculi,

extensionality is captured by adding the η-reduction rule

λx.f x −→ f if x is not free in f .

When added to the basic λ-calculus, with just the β-rule, we get the λβη-calculus,

which is confluent. Define =βη to be the equivalence relation on λ-calculus induced

by β-reduction and η-reduction. However, adding the η-rule to λSF -calculus is

unsound, as can be seen from the following calculations. Define ≡βηSF to be the

equivalence relation on λSF induced by its reduction rules and the η-rule. First,

the operators S,K and I become equal to their usual interpretations, by

S ≡βηSF λx.λy.λz.Sxyz ≡βη λx.λy.λz.xz(yz)
K ≡βηSF λx.λy.Kxy ≡βηSF λx.λy.x

146

Jay

I ≡βηSF λx.Ix ≡βηSF λx.x .
Then we have SKM ≡βηSF λx.x ≡βηSF (SKN) for any terms M and N . Further,

F (SKM)I(KI) ≡βηSF KI(SK)M =βηSF M

shows that M ≡βηSF N and this for any M and N . The calculus has collapsed.

A more useful relation is obtained by excluding the rule for factoring compounds

from the equivalence relation, to get the equivalence relation ≡βηSK . Define terms

M and N of λSF to be extensionally equivalent if M ≡βηSK N . For example, we

have the following lemma.

Lemma 4.1 (star equiv abs) λ∗x.M ≡βηSK λx.M for all terms M .

Here are three more examples of definable program manipulations that preserve

extensional behaviour.

Define a combinator wait so that

wait M N −→∗ S(S(KM)(KN))I

using standard combinatorial techniques. The right-hand side is normal if M and

N are, but application to some P reduces this to M N P so that wait M N waits

for P before applying M to N . It follows that

Lemma 4.2 (wait ext) For all terms M and N , wait M N ≡βηSK M N .

Define a combinator tag with the property that

tag T M −→∗ S(KM)(SKT) .

Now SKT is an identity function for any T since

SKTP −→ KP (TP) −→ P .

It follows that when tag M N is applied to some P then it reduces by

S(KM)(SKT)P −→ KMP (SKTP) −→∗ MP .

Lemma 4.3 (tag ext) For all terms T and M , tag T M ≡βηSK M .

The resulting system of tags is as rich as the calculus as a whole, and so can be

used to carry information about, say, constructors or types. In this paper, we will

use just three tags in program analysis as follows: abs = tag F will tag abstractions;

com = tag S will tag combinators; and app = λx.λy.tag K (wait x y)) will tag

applications.

Define a combinator eager such that eager M N reduces to M N if and only

if N is factorable. That is, replacing M N by eager M N forces the application

to evaluate N before evaluating the application of M to it. The target is a term

similar to

FN(λx.xN)(λy.λz.λx.x(yz))M

where x, y and z are fresh. Now M is applied to N only if N has been reduced to

factorable form. The new abstractions can be eliminated by ensuring

eager M N −→∗ FN(SI(KN))(S(K(S(K(SI))))(S(KK)))

This will be used later to block non-terminating reductions. However, if your

goal is to avoid re-computation of N then this approach has the weakness that

147

Jay

if N reduces to an operator then it will be evaluated twice! This problem can

be eliminated by introducing a variant of F in which the atomic branch uses its

argument.

Lemma 4.4 (eager is eager) eagerM N −→∗ M N for all programs M and N .

5 Homomorphisms

The common features shared by all these calculi are that they are applicative rewrit-

ing systems [20] that have variables as a term form. Accordingly, it makes sense

to define a homomorphism of applicative rewriting systems with variables to be a

function from one such to another which has the following characteristics:

• it preserves the equivalence relation derived from reduction;

• it preserves applications;

• it preserves variables;

• it does not introduce free variables.

It is enough to require preservation up to equivalence, but for convenience, we will

demand strict equality. Similarly, the requirement that a homomorphism does not

introduce free variables can be weakened to require that closed terms be mapped

to closed terms, or even that operators be mapped to closed terms. Note that the

definition does not require that λ-abstractions be preserved, or that the image of S

takes any particular form. All conditions are expressed in terms of concepts common

to all the calculi under consideration, namely rewriting, variables and applications.

Theorem 5.1 (no homomorphism) There is no homomorphism from λSF -

calculus to λ-calculus.

Proof. Assume that there is such a homomorphism. Then it can be composed

with the embedding of λ-calculus into λβη-calculus to get a homomorphism [[−]]. It

follows that

[[S]] ≡βη λx.λy.λz.[[S]]xyz ≡βη λx.λy.λz.[[Sxyz]] ≡βη λx.λy.λz.xz(yz) .

Similarly, we can show that [[K]] ≡βη λx.λy.x and [[I]] ≡βη-equivalent to λx.x. Finally,

in SF -calculus we have F (SKM)F (KI) −→ KI(SK)M −→∗ M , for each term

M , and so

[[F (SKM)I(KI)]]≡βη [[F]]([[S]][[K]][[M]])[[I]]([[K]][[I]])

≡βη [[F]](λx.x)(λx.x)(λx.λy.y) .

Hence, by the homomorphism property, we have

[[M]] ≡βη [[F]](λx.x)(λx.x)(λx.λy.y) .

Now the right-hand side is independent of M and so we have, for any N , that

[[M]] ≡βη [[N]]. In particular we have x = [[x]] ≡βη [[y]] = y for any variables x and y,

which yields a contradiction. 2

Corollary 5.2 There is no homomorphism from SF -calculus to λ-calculus.

Proof. The proof of Theorem 5.1 applies equally to SF -calculus. 2

148

Jay

6 Programs as Normal Forms

The identification of programs with (closed) normal forms in an untyped setting

is rather unusual. Of course, we cannot isolate the terminating computations, as

this would solve the Halting Problem. If, further, we allow any computation to be

a program, i.e. albeit one that takes no inputs, then the game is over. However,

by separating the program from its inputs, we can use combinatory techniques to

block any troublesome reductions in the program until the input is given. In this

manner, programs can be made strongly normalising, and so can be identified with

(closed) normal forms.

A crude solution would be to replace all abstractions with the corresponding

star abstractions, as these are closed normal forms by construction. However, this

is surely more violent than necessary.

Ideally, the identification should be demonstrated using a small programming

language, with a conversion function from programs to closed normal forms of λSF -

calculus, but this is beyond our current scope. There may be several ways to do

this, and the options will change dramatically if the language is typed. Rather

than explore these options, which would take some time, let us rather show how to

overcome the key difficulty, namely the representation of recursive programs.

Consider a recursive program of the form

let rec f x = M

where M may contain f and x as free variables. Its standard representation is by

a term of the form fix (λf.λx.M) where fix is a fixpoint function defined to be ωω

where ω = λx.λf.f(xxf) . It follows that

fix = λx.λf.f(xxf)ω −→ λf.f(ωωf) = λf.f(fix f) .

so that fix f −→ f (fix f). This expresses the recursion very cleanly, but now

program representations do not have a normal form.

However, we can delay the application of ω to ω by replacing fix by the exten-

sionally equivalent term

fix2 = λf.wait (wait ω ω) f .

Its application to a normal form f also has a normal form, but further application

to some x reduces to ω ω f x which is fix f x. Now the original program can be

interpreted by fix2 (λf.λx.M). In the same manner, we may define fix3 and fix4 etc,

so that recursive programs can be made to wait for any number of arguments before

risking non-termination.

This accounts for the outermost recursion in a program, but when recursive

functions are composed then this technique produces terms of the form

λx.fix2 f (fix2 g x)

which re-introduces arbitrary computations into programs through fix2 g x. To

block this, introduce eager evaluation, as described in Section 4 and define yet

another fixpoint term by

fix eager = λf.λx.eager (wait (wait ω ω) f) x .

Now the composition of recursive programs normalises since evaluation of the re-

cursion is blocked until the bound variable x takes a value. In this manner, the core

149

Jay

constructions used to create recursive programs can be controlled by combinators

to ensure that they do not introduce non-termination.

7 Extensional Conversion to Combinators

The extensional conversion of program to combinators is given by the recursive,
pattern-matching function

to combinator :=

| O ⇒ O

| λx.M ⇒ to combinator (λ∗x.M)

| MN ⇒ (to combinator M) (to combinator N))

which eventually converts each abstraction λx.M in its argument to λ∗x.M .

Theorem 7.1 (to combinator makes combinators) If M is a closed term

then to combinator M is a combinator.

Since it is easy to test for abstractions and compounds, there is no difficulty in

representing to combinator as a program, namely,

to comb = fix(λf.λx.F x x (λxl.λxr.equal abs left xl (f xr) ((f xl) (f xr))).

Theorem 7.2 (to combinator is extensional) to combinator M ≡βηSK M for

all terms M .

Theorem 7.3 (to combinator to comb) For all programs M we have

to comb M −→∗ to combinator M .

Summarising, if M is a program then to comb M reduces to the combinator

to combinator M which is extensionally equivalent to M .

8 Program Analysis and Optimisation

The extensional conversion above can be optimised in various ways. In particular,

there is no need to convert programs that are already combinators. Also, it is more

efficient to convert λx.M to KM if x is not free in M . Define is comb by

is comb = fix(λf.λx.F x K (λxl.λxr.equal abs left xl (KI) ((f xl) (f xr) (KI)) .

Theorem 8.1 (is comb true) For all programs M , if M is a combinator then

is comb M reduces to K.

Theorem 8.2 (is comb false) For all programs M , if M is not a combinator then

is comb M reduces to KI.

The test for deciding if a program λx.M uses its argument x can be defined by

a term binds that detects copies of I in λ∗x.M . It is given by

binds = fix (λf.λx.equal I x K (F x (KI) (λxl.λxr.(f xl) K (f xr)))) .

Theorem 8.3 (binds abs false) For all programs λx.M , if M is closed then

binds (λx.M) reduces to KI.

150

Jay

Theorem 8.4 (binds abs true) For all programs λx.M , if x is free in M then

binds (λx.M) reduces to K.

These ideas lead to the definition of the optimised extensional conversion func-
tion given by

to combinator opt :=

| O ⇒ O

| λx.M ⇒ (to combinator opt (if binds (λx.M) then (λx.M) else (KM))

| MN ⇒ if is combinator (MN)

then (MN)

else (to combinator opt M) (to combinator opt N))

It is easy to reprise the treatment of to combinator for to combinator opt, but

since these ideas will recur in the next section, there is no particular reason to go

through the details here.

9 Intensional Conversion to Combinators

Although the conversion functions above preserve extensionality, they lose inten-

sional information, in that an abstraction λx.M becomes indistinguishable from a

star abstraction λ∗x.M or combinator. A conversion function f preserves inten-

sions if it does not lose information, i.e. there is another transformation g such that

g(f M) reduces to M for all programs M .
For example, star abstraction is intensional, since there is an inverse, given by

unstar =

| O ⇒ O

| λx.M ⇒ λx.(unstarM)

| KM ⇒ abs K M

| SMN ⇒ abs S M N

where abs K = λx.λy.x and abs S = λx.λy.λz.x z (y z). The corresponding

program, also called unstar, is given by program

unstar = fix (λf.λx.f x x (λxl.λxr.equal abs left xl (λz.f (x z))

(equal K xl (abs K xr) (F xl x (λxll.λxlr.abs S xlr xr) .

Theorem 9.1 (unstar star) Star abstraction is intensional, with inverse unstar.

The extensional conversion from programs to combinators can be made inten-

sional, too, by adding tags to record the presence of abstractions and combinators.

The optimised, intensional conversion of programs to combinators is given by

to combinator int :=

| O ⇒ O

| λx.M ⇒ abs (to combinator int (if binds (λx.M) then (λ∗x.M) else (KM)))

| MN ⇒ if is combinator (MN)

then com (MN)

else app (to combinator opt M) (to combinator opt N)

Theorem 9.2 (to combinator int makes combinators) If M is a closed term

then to combinator int M is a combinator.

Theorem 9.3 (to combinator int is extensional) For all closed terms M we

have to combinator int M ≡βηSK M .

151

Jay

The corresponding program to comb int is given by

to comb int = fix (λf.λx.F x x (λxl.λxr.equal abs left xl

(abs (f(binds xr xr (K(xrK))))

(is comb x (com x) (app (f xl) (f xr))).

Theorem 9.4 (to comb int to combinator int) For all programs M , there is

a reduction to comb int M −→∗ to combinator int M .

For the conversion in the opposite direction, define to program by

to program :=

| O ⇒ O

| abs M ⇒ unstar(to program M)

| com M ⇒M

| app MN ⇒ (to program M)(to program N)

This can be defined by a term to prog.

Theorem 9.5 (to comb int is intensional) to comb int is intensional, with in-

verse given by to prog.

Summarising, to comb int maps programs to combinators in a manner that is

both extensional and intensional.

Verification in Coq

The proofs of all the named lemmas and theorems in the paper have been verified

using the Coq proof assistant. Details can be found in the source files [6]. This

section will reprise some of the key definitions and theorems, to gain some feeling

about how well aligned are the manual and automated approaches.
The operators and terms of lamSF are given by

Inductive operator := | Sop | Fop .
Inductive lamSF : Set :=

| Ref : nat -> lamSF
| Op : operator -> lamSF
| Abs : lamSF -> lamSF
| App : lamSF -> lamSF -> lamSF .

The declaration of operator declares a type operator with two constructors

Sop and Fop. Then the declaration of the type lamSF introduces four constructors.

Ref is used to construct variables, represented by de Bruijn indices of type nat, the

type of natural numbers. Op is used to build the operators S and F as Op Sop and

Op Fop. In most situations, all operators are treated uniformly, which is exploited

by giving them a separate type. Abs constructs abstractions and App constructs

applications. In this manner, the function λx.λy.xySF is represented by

Abs(Abs(App(App(App(Ref 1)(Ref 0))(Op Sop))(Op Fop))) .

The biggest gap between this representation and the paper representation is the

use of de Bruijn indices for variables. For example, the requirement maxvar M = 1

means that M has exactly one free variable (indexed by 0).

The Coq versions of the named results in the paper are given in Figure 9. Most

of the unexplained notation, such as confluence should be self-explanatory. Note,

152

Jay

Theorem confluence_lamSF_red: confluence lamSF lamSF_red.
Theorem irreducible_iff_normal:

forall M, irreducible M lamSF_red1 <-> normal M.
Theorem programs_are_factorable : forall M, program M -> factorable M.
Theorem equal_programs : forall M, program M -> lamSF_red (App (App equal M) M) k_op.
Theorem unequal_programs :

forall M N, program M -> program N -> M<>N ->
lamSF_red (App (App equal M) N) (App k_op i_op).

Lemma star_equiv_abs : forall M, beta_eta_eq (star M) (Abs M) .
Theorem no_homomorphism: forall h, homomorphism h -> False.
Theorem to_combinator_makes_combinators :

forall M, closed M -> combinator (to_combinator M).
Theorem to_combinator_is_extensional : forall M, beta_eta_eq M (to_combinator M).
Theorem to_combinator_to_comb:

forall M, program M -> lamSF_red (App to_comb M) (to_combinator M).
Theorem is_comb_true: forall M, program M -> combinator M -> lamSF_red (App is_comb M) k_op.
Theorem is_comb_false:

forall M, program M -> (combinator M -> False) ->
lamSF_red (App is_comb M) (App k_op i_op).

Theorem binds_abs_false :
forall M, program (Abs M) -> closed M ->

lamSF_red (App binds (Abs M)) (App k_op i_op).
Theorem binds_abs_true :

forall M, program (Abs M) -> maxvar M = 1 ->
lamSF_red (App binds (Abs M)) k_op.

Theorem unstar_star : forall M, normal M -> lamSF_red (App unstar (star M)) (Abs M).
Lemma wait_ext : forall M N, beta_eta_eq (wait M N) (App M N).
Lemma tag_ext : forall T M, beta_eta_eq (tag T M) M.
Lemma eager_is_eager : forall M N, factorable N -> lamSF_red (eager M N) (App M N).
Theorem to_combinator_int_makes_combinators :

forall M, closed M -> combinator (to_combinator_int M).
Theorem to_combinator_int_is_extensional :

forall M, closed M -> beta_eta_eq M (to_combinator_int M).
Theorem to_comb_int_to_combinator_int:

forall M, program M ->
lamSF_red (App to_comb_int M) (to_combinator_int M).

Theorem to_comb_int_is_intensional :
forall M, program M -> lamSF_red (App to_prog (App to_comb_int M)) M.

Fig. 3. Theorems Verified in Coq

however, that homomorphism is here defined to be a homomorphism from lamSF

to lambda rather than a homomorphism in general. Also, beta eta eq is here the

equivalence relation generated from βηSK-reduction, and not just from β- and

η-reduction.

10 Fresh Approaches

Having established the basic machinery of λSF -calculus and seen something of its

expressive power, it is interesting to consider, at least in outline, how it suggests

fresh approaches to some issues.

Gödelisation Although λ-calculus is Turing-complete, in the sense of being able

to compute any number that a Turing machine can, there are strong limits to its

ability to compute functions of λ-terms. For example, equality of closed normal

λ-abstractions is not definable as λ-abstraction [1]. Nor is it possible to so define

the Gödel number of a closed normal form. With a little effort, the conversion of

programs to combinators can be extended to support Gödelisation.

Self-interpretation Self-interpretation is used to support programming language

implementation within the language itself. In particular, it can be used to impose

an evaluation strategy upon a confluent calculus such as λ-calculus [14] or SF -

calculus [9]. Traditionally, the first step in self-interpretation is to use meta-level

calculations to quote a program, to produce a data structure that is suitable for

analysis. Since programs in λSF -calculus are already data structures, there is no

need for quotation. Indeed, evaluation strategies can be defined within the calculus,

153

Jay

without the need for any meta-level analysis.

Term constructors In the traditional λ-calculus account, the same λ-abstraction

may have several different meanings. For example, the natural number zero may be

represented as λf.λx.x, in which f is applied zero times to x. Also, the boolean for

falsehood may be represented by λx.λy.y in which the second branch, represented by

its second argument, is taken. However, λf.λx.x and λx.λy.y are equivalent under

renaming of bound variables, so that the same term has two different meanings.

Traditionally, these have been distinguished by either introducing constructors, such

as Zero and False, or adding types, such as Nat and Bool, or both. Now, we can

tag these abstractions with information about their status as constructors, or their

types. Similarly, constructor arities can be recorded by using wait.

Pattern calculus In λSF -calculus, it should be possible to give a complete ac-

count of constructor equality and pattern-matching by manipulating intensional

information.

Type checking Similarly, once terms are tagged with type information, the calculus

should support type checking and type inference.

Evaluation strategy Confluent rewriting systems support a natural model of pro-

gram optimisation by changing the order in which sub-expression are evaluated.

However, sequential execution requires that an evaluation strategy be imposed. As

with intensional information, different strategies give rise to a variety of different

calculi [16]. These can be captured by using terms such as wait and eager to control

evaluation order.

Partial evaluation Once programs are represented by normal forms, it is much

easier to understand the nature of partial evaluation, of static arguments versus

dynamic arguments, etc [11]. As before, these analyses should now be representable

as programs.

Domain specific languages Users are driven to create their own, domain-specific

programming languages because general purpose languages prove to be sub-optimal

for their needs. One approach is to grow a language from a small core [19,10]. This

will be easier once program analysis and evaluation strategies are definable.

11 Conclusions

λSF -calculus combines the best features of λ-calculus and combinatory calculi

within a single calculus in that λ-abstraction provides a natural account of func-

tionality through its β-reduction, while combinators provide a natural account of

data structures, once the factorisation operator F is supported. Together, they

show how programs and data structures can both be identified with the closed nor-

mal forms of λSF -calculus, so that they may be applied or analysed at any time.

Further, the combinators can be used to tag programs with additional, intensional

information, e.g. about constructors or types, or to control evaluation strategy by

making applications wait before reducing.

The identification of programs and data structures also removes a layer of indi-

rection from program analysis. There is no need to quote or Gödelise abstractions.

Nor is there need for a separate state machine, to evaluate programs expressed on a

tape. The ramifications may extend to all aspects of programming language design

154

Jay

and implementation, including analysis and optimisation.

Like pattern calculus and SF -calculus, λSF -calculus supports powerful collec-

tion of generic queries for searching and updating data structures. However, the

earlier calculi were far removed from current experience, making adoption diffi-

cult. By contrast, λSF -calculus merely adds a couple of operators to the popular

λ-calculus approach, which makes migration much easier.

In conclusion, λSF -calculus adds intensionality to the extensional nature of λ-

calculus, so that one can query the internal structure of arbitrary closed normal

forms, and treat programs as data structures.

References

[1] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Holland, 1984. revised
edition.

[2] Henk Barendregt. Self-interpretations in lambda calculus. J. Funct. Program, 1(2):229–233, 1991.

[3] Michel Bel. A recursion theoretic self interpreter for the lambda-calculus.
http://www.belxs.com/michel/#selfint.

[4] Alessandro Berarducci and Corrado Böhm. A self-interpreter of lambda calculus having a normal form.
In CSL, pages 85–99, 1992.

[5] Barry Jay. Pattern Calculus: Computing with Functions and Structures. Springer, 2009.

[6] Barry Jay. LamSF repository of proofs in Coq. https://github.com/Barry-Jay/lambdaSF, February
2016.

[7] Barry Jay and Thomas Given-Wilson. A combinatory account of internal structure. Journal of Symbolic
Logic, 76(3):807–826, 2011.

[8] Barry Jay and Delia Kesner. First-class patterns. Journal of Functional Programming, 19(2):191–225,
2009.

[9] Barry Jay and Jens Palsberg. Typed self-interpretation by pattern matching. In Proceedings of the
2011 ACM Sigplan International Conference on Functional Programming, pages 247–58, 2011.

[10] Barry Jay and Jose Vergara. Growing a language in pattern calculus. In Theoretical Aspects of Software
Engineering (TASE), 2013 International Symposium on, pages 233–240. IEEE, 2013.

[11] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
International Series in Computer Science. Prentice Hall International, 1993.

[12] Stephen C. Kleene. λ-definability and recursiveness. Duke Math. J., pages 340–353, 1936.

[13] J.W. Klop. Combinatory Reduction Systems. PhD thesis, Mathematical Center Amsterdam, 1980.
Tracts 129.

[14] Torben Æ. Mogensen. Efficient self-interpretations in lambda calculus. Journal of Functional
Programming, 2(3):345–363, 1992. See also DIKU Report D–128, Sep 2, 1994.

[15] Torben Æ. Mogensen. Linear-time self-interpretation of the pure lambda calculus. Higher-Order and
Symbolic Computation, 13(3):217–237, 2000.

[16] G.D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1, 1975.

[17] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings
of 25th ACM National Conference, pages 717–740. ACM Press, 1972. The paper later appeared in
Higher-Order and Symbolic Computation.

[18] Fangmin Song, Yongsen Xu, and Yuechen Qian. The self-reduction in lambda calculus. Theoretical
Computer Science, 235(1):171–181, March 2000.

[19] Guy L. Steele. Growing a language. Higher-Order and Symbolic Computation, 12(3), 1999.

[20] Terese. Term Rewriting Systems, volume 53 of Tracts in Theoretical Computer Science. Cambridge
University Press, 2003.

155

https://github.com/Barry-Jay/lambdaSF

MFPS 2016

A Monad for Randomized Algorithms

Tyler Barker1

Mathematics
Tulane University

New Orleans, LA, USA

Abstract

In this paper, we introduce a monad of random choice for domains that does not suffer from the main two
drawbacks of the probabilistic powerdomain. It is not known whether any Cartesian closed category of
domains is closed under the probabilistic powerdomain, but the Cartesian closed category BCD is closed
under this monad of random choice. Also, there is no distributive law between the probabilistic powerdomain
and any of the nondeterministic powerdomains, but there is a distributive law between the monad of random
choice and the lower powerdomain. In order to work with the convex powerdomain, an alteration to the
monad of random choice is made, so that the Cartesian closed categories RB and FS are closed under this
construction. Then, in these categories, there is a distributive law between this monad and the convex
powerdomain. This work is based on the uniform continuous random variables of Goubault-Larrecq and
Varacca, which do not form a monad. This paper gives motivation for this model and changes the definition
of the Kleisli extension of Goubault-Larrecq and Varacca so that it is monotone, which was the problem
with their definition.

Keywords: Probabilistic powerdomain, Cartesian closed category, random variable, distributive law

1 Introduction

Starting with Dana Scott’s model of the untyped lambda calculus, domain theory

has been largely successful in providing models of computation. The use of domain

theory has expanded to provide denotational semantics for many computational

effects, such as continuations and nondeterminism, using Moggi’s [16] monadic ap-

proach. One type of computation that has been problematic to model, however, is

probabilistic computation. The most well known monad of probabilistic computa-

tion is the probabilistic powerdomain, first defined by Saheb-Djahromi in 1980 [18].

However, this monad has two major flaws [11]. First, there is no distributive law

between the probabilistic powerdomain and any of the three nondeterministic pow-

erdomains [24]. According to Beck’s Theorem [4], the composition of two monads

is a monad if and only if the monads satisfy a distributive law. Thus, to generate

a monad from the probabilistic powerdomain and any of the monads for nondeter-

ministic choice, new laws must be added, an approach explored independently by

1 Email: tbarker@tulane.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:tbarker@tulane.edu

Barker

Tix [22,23] and Mislove [12]. Second, it is not known whether any Cartesian closed

category of domains is closed under the probabilistic powerdomain. The category

of coherent domains is closed under this construction, but it is not Cartesian closed.

To address these flaws, work has been done to develop alternate models of prob-

abilistic computation. Varacca and Winskel [24, 25] constructed what they called

indexed valuation monads. These monads weaken the laws of probabilistic choice,

no longer requiring that p+r p = p, where p+r q denotes choosing p with probability

r and q with probability 1− r. In this setting, it is possible to satisfy a distributive

law with the nondeterministic powerdomains.

Mislove [13] built upon this work, using an indexed valuation model to define

a monad of finite random variables. The Cartesian closed categories RB and FS
were shown to be closed under this construction. Later, Goubault-Larrecq and

Varacca [9] proposed a model of continuous random variables over the Cartesian

closed category BCD, but the model did not form a monad in this category [14].

The model that this paper describes is based upon these continuous random vari-

ables, in particular, the uniform continuous random variables. In this construction,

computation is allowed to take different branches based on the flips of an unbiased

coin.

The contribution of this paper is to redefine the Kleisli extension mapping pro-

posed in Goubault-Larrecq and Varacca’s paper so that the resulting construction

forms a monad on the category BCD. We also obtain a distributive law with this

monad and the lower powerdomain. Another slight alteration can be made to the

model in order to work in the Cartesian closed categories RB and FS, since the

convex powerdomain does not necessarily stay in BCD. Then, working in RB and

FS, this altered monad is shown to satisfy a distributive law with respect to the

convex powerdomain.

The monad laws and the distributive law are both defined by a few commutative

diagrams. Verifying that these diagrams do indeed commute is usually straightfor-

ward, but it can be very tedious. These details are omitted from this paper for

readability and space concerns, but they will be included in the author’s upcoming

thesis.

2 Background

2.1 Domain Theory

It will be assumed that the reader has some familiarity with domain theory. For

more information, consult [1, 7].

A poset is a partially ordered set. A subset of a poset is an antichain if no two

distinct elements of the poset are comparable.

A nonempty subset is directed if each pair of its elements has an upper bound

also within the subset. A poset is directed complete if each of its directed subsets has

a least upper bound. A dcpo is a directed complete partial order. Maps between

dcpos that are monotone and preserve suprema of directed sets are called Scott

continuous.

The following is the least fixed-point theorem for Scott continuous functions:

157

Barker

Theorem 2.1 Let D be a dcpo with a least element ⊥. Then every Scott continuous

self-map f : D → D has a least fixed-point. It is given by ∪n∈Nfn(⊥).

Now we define the Scott and Lawson topologies.

Definition 2.2 Let D be a dcpo. A subset U is Scott closed if it is a lower set and

is closed under directed suprema of subsets.

The Scott closed sets are closed under all intersections and finite unions, so they

are the closed sets of a topology, which is called the Scott topology. The Scott

continuous functions defined above are precisely the functions that are continuous

with respect to this topology.

Definition 2.3 Let D be a dcpo. The Lawson topology on D is the smallest topol-

ogy containing the Scott open sets and all sets of the form D \ ↑x.

If D is a dcpo and x, y ∈ D, then x approximates y (denoted x � y) iff for

every directed set S with y ≤ supS, there is some s ∈ S such that x ≤ s. Let�

y = {x ∈ D|x � y}. A dcpo D is a domain iff ∀d ∈ D,

�

d is directed and

sup

�

d = d. Note that the Lawson topology on a domain is Hausdorff.

Definition 2.4 A domain D is coherent if it is compact in the Lawson topology.

2.2 Category Theory

In this paper, we work within Cartesian closed categories as these are necessary to

model lambda calculi [2].

Definition 2.5 A category is a Cartesian closed category (CCC) if is has a terminal

object, products, and exponentials.

We are interested in three particular Cartesian closed categories of domains:

BCD, RB, and FS. The maximal Cartesian closed categories of domains were char-

acterized by Jung [10]. Here are descriptions of the Cartesian closed categories of

domains we will need. Note that in each case, the morphisms in the category are

the Scott-continuous maps.

Definition 2.6 A domain is bounded complete if every subset with an upper bound

has a least upper bound. Equivalently, a domain is bounded complete if every

nonempty subset has a greatest lower bound. BCD denotes the category of bounded

complete domains and Scott continuous maps.

Definition 2.7 A self-map on a domain D is a deflation if it is less than the identity

map in the pointwise order and has a finite image.

Definition 2.8 A domain is a retract of a bifinite domain, or an RB-domain, if

there exists a directed family (fi)i∈I of Scott continuous deflations whose supremum

is the identity map. RB denotes the category of RB-domains and Scott continuous

maps.

Definition 2.9 A self-map on a domain D is finitely separated from the identity

map if there exists a finite set M ⊆ D such that ∀x ∈ D,∃m ∈M.f(x) ≤ m ≤ x.

158

Barker

Definition 2.10 A domain is a finitely separated domain, or an FS-domain, if

there exists a directed family (fi)i∈I of Scott continuous self-maps, each finitely

separated from the identity map, whose supremum is the identity map. FS denotes

the category of FS-domains and Scott continuous maps.

BCD is a subcategory of RB, which is a subcategory of FS. FS is a maximal

Cartesian closed category; however, it is a frustrating open question whether RB is

a proper subcategory of FS.

Finally, all three of these categories are subcategories of COH, the category of

coherent domains and Scott continuous maps, but COH is not Cartesian closed.

2.3 Monads

A monad is a construction from category theory that has proven to be very useful

in modeling computational effects.

Definition 2.11 A monad on a category C is a triple, (T, η, µ), where T is an

endofunctor and η : IdC → T , µ : T 2 → T are natural transformations such that

the following diagrams commute:

TX
ηTX //

TηX
�� idTX ##

T 2X

µX
��

T 3X
µTX //

TµX
��

T 2X

µX
��

T 2X µX
// TX T 2X µX

// TX

The natural transformation η is called the unit of the monad, and µ is the

multiplication.

There is an alternate characterization of a monad that uses a Kleisli extension

in place of the multiplication. An endofunctor T is a monad if, for any map f :

X → TY , there is a Kleisli extension f † : TX → TY , and the following laws hold:

(i) η† = id

(ii) h† ◦ ηD = h

(iii) k† ◦ h† = (k† ◦ h)†

Given the Kleisli extension, the multiplication is defined by µ = id†TX . Con-

versely, given the multiplication and a function f : X → TY , then f † = µ ◦ T (f).

2.4 Powerdomains

Nondeterminism is modeled in domain theory by powerdomains which are built by

considering nondeterministic choice as an idempotent, commutative, and associative

operation [15]. This is equivalent to the algebraic definition of a semilattice, so the

powerdomains are simply free ordered semilattice domains over a domain.

Starting with a poset having a commutative, idempotent operation +, assuming

x ≤ x+y results in a sup-semilattice, assuming x ≥ x+y results in a inf-semilattice,

and an ordered semilattice will result from not assuming any relation between x and

x+ y. The lower, or Hoare, powerdomain is the free sup-semilattice over a domain,

the upper, or Smyth, powerdomain is the free inf-semilattice over a domain, and

159

Barker

the convex, or Plotkin, powerdomain is the free ordered semilattice over a domain.

These powerdomains have nice topological characterizations which will be used in

this paper.

Definition 2.12 For a domain D, the lower powerdomain is Γ0(D), the family of

nonempty Scott closed subsets of D, ordered by inclusion.

Definition 2.13 A subset S of a topological space X is saturated if it is the inter-

section of the open sets that contain it.

For a poset with the Scott topology, saturated sets are simply the upper sets.

Definition 2.14 For a domain D, the upper powerdomain is SC(D), the family of

nonempty, saturated, and Scott compact subsets of D, ordered by reverse inclusion.

Definition 2.15 For a domain D, a subset L ⊆ D is a lens if L is Scott compact

and L = L ∩ ↑L, where L is the Scott closure of L.

Definition 2.16 The Egli-Milner order is defined by:

A vEM B ⇔ A ⊆ ↓B ∧B ⊆ ↑A

Definition 2.17 For a coherent domain D, the convex powerdomain is Lens(D),

the family of nonempty lenses, with the Egli-Milner order.

All three of the above categories, BCD, RB, and FS, are closed under the lower

and upper powerdomains, but only RB and FS are closed under the convex power-

domain.

2.5 Randomized Computation

We consider a randomized computation to be any program or algorithm that uses

some source of randomness to guide its computation. This includes assigning a

random value to a variable or using a conditional expression that branches based on

the output of a random process. If the probability distribution of the random source

is known, we can view this as probabilistic computation. Abstractly, probabilistic

computation is usually represented as a probabilistic choice operator, p+r q, where

p is chosen with probability r and q is chosen with probability 1− r.
Probabilistic Turing machines were first defined by de Leeuw et al in 1956 [5].

These machines are the same as normal Turing machines with an attached random

device. This device prints 0’s and 1’s to a tape, with 1’s occurring with probability

p and 0’s occurring with probability 1 − p, where 0 < p < 1. This tape can then

be used as an input tape for the Turing machine. It was shown that as long as p

is computable, then these machines cannot compute anything that a deterministic

machine cannot compute. However, it may be possible that a probabilistic machine

can compute something faster than any deterministic machine could [8].

Randomized computation first gained prominence when Rabin [6] introduced a

randomized algorithm for finding the nearest pair in a set of n points. This algo-

rithm had a linear average runtime, faster than the n log n runtime of the fastest

known deterministic algorithm. More well known are the algorithms of Solovay and

Strassen [21] and Rabin [17] for determining if a number is prime. These algorithms

160

Barker

F F F ⊥

Fig. 1. One possible iteration of a simplified Miller-Rabin test on a composite number.

run in polynomial time (with a small error probability), and they were discovered

over 20 years before the AKS primality test [3], the first known deterministic algo-

rithm for recognizing prime numbers in polynomial time.

3 The Functor

This work is inspired by a model of uniform continuous random variables first pro-

posed by Goubault-Larrecq and Varacca [9]. In their paper, it was shown that the

category of bounded complete domains (BCD) is closed under a similar construc-

tion. However, their assertion that the construction forms a monad in BCD was

incorrect, since the proposed Kleisli extension failed to be monotone, thus not Scott

continuous.

The basic idea of a random variable model is to separate the random choices from

the domain itself. In the probabilistic powerdomain, the probability distributions

are placed on the underlying domain. In a model of random variables, random

bits are generated by coin flips, and then a random variable is defined from these

random outcomes to the underlying domain. In the probabilistic powerdomain,

for an element d, making a choice between d and d is the same as just d, since

the probabilities are the same. In the model described here, there is a distinction

between choosing d or d and d itself, even though the probabilities are the same.

In the first case, a random bit is still chosen, so programmatically, this is distinct

from the latter case where no such choice is made.

3.1 Motivation for the Functor

One of most well known randomized algorithms is the Miller-Rabin primality test.

To test whether a given number n is prime, a random number is chosen between 2

and n− 2. Tests using modular arithmetic are performed with this random number

before determining whether the given number is composite or probably prime. The

test can be run in polynomial time, but has a possible one-sided error, putting

primality testing in the complexity class of randomized polynomial time (RP). A

test on a prime number will always return “probably prime”, but sometimes, a test

on a composite number will also return “probably prime”. Thus, if the test returns

“composite”, there is no chance for error, but a return of “probably prime” always

has a chance of error. For a composite number, at most 1
4 of the possible random

choices between 2 and n − 2 will result in the test returning “probably prime”.

To minimize the error probability, we can repeat the test (choosing a new random

number) only when the test returns “probably prime”. Running the test m times

161

Barker

F F F

F F F

F F F ⊥

Fig. 2. Three iterations of a hypothetical Miller-Rabin test.

results in an error probability of at most 1
4m .

Figure 1 shows the possible outcomes of a hypothetical Miller-Rabin test on a

composite number. For simplicity, it is assumed that a random number between

2 and n − 2 can be properly chosen using just two coin flips. Each coin flip is

represented by a branching of the binary tree. The top of the tree is labeled with

the return values of the test using the random numbers chosen by the resulting

outcome of two coin flips. If the test returns “composite”, an “F” is used whereas

“⊥” denotes “probably prime”. A “T” is not used since a Miller-Rabin test never

confirms that a number is prime. If we wish to minimize the error probability, we

can choose to run the test again, which will expand the tree wherever a “⊥” is

found.

Figure 2 shows the possible outcomes of using Miller-Rabin a maximum of three

times on the same composite number. This can be extended similarly to an infinite

tree with a zero probability of error.

3.2 The Functor Definition

Let {0, 1}∞ = {0, 1}∗ ∪ {0, 1}ω be the set of finite and infinite words of alphabet

{0, 1}, with the prefix order (w ≤ w′ if w is a prefix of w′). The symbol ∗ is used

to denote the concatenation operation. In this setting, a 0 represents getting tails

on a coin flip, and a 1 signifies heads. If a fair coin is used, then for any word, the

probability associated with the word is 1
2n , where n is the length of the word. For

example, the probability of 10, which represents getting heads and then tails, is 1
4 .

Definition 3.1 An antichain of {0, 1}∞ is a subset of words such that no two

distinct words are comparable (no word is a prefix of another word). An antichain

M is full if ∀w ∈ {0, 1}ω,∃z ∈ M, z ≤ w. Put another way, {0, 1}ω ⊆ ↑M , or

M vEM {0, 1}ω. Denote the nonempty, full antichains by FAC({0, 1}∞).

Using coin flips in a program results in a branching of computation that can

be represented as a binary tree. The final possible outcomes will be located at the

leaves of this tree, which must form an antichain. This antichain is required to

be full since for any coin flip, it is possible to get either heads or tails, and both

outcomes must be accounted for.

Definition 3.2 For a category of domains, the random choice functor, RC, is de-

162

Barker

fined on objects by

RC(D) = {(M,f) | M ∈ FAC({0, 1}∞, f : M → D}

where f is Scott continuous (giving M the subspace topology from the Scott topol-

ogy of {0, 1}∞). For a morphism, a : D → D′, and (M,f) ∈ RC(D), we define

RC(a)(M,f) = (M,a ◦ f)

We order RC(D) by (M,f) v (N, g) iff M vEM N and w ≤ z ⇒ f(w) v
g(z), ∀w ∈ M, z ∈ N . Since the antichains are required to be full, M vEM N is

equivalent to M ⊆ ↓N , or dually, N ⊆ ↑M . Another characterization for the order

on functions is ∀z ∈ N, f ◦πM (z) v g(z), where πM (z) sends z to the unique element

of M below z.

Theorem 3.3 If D is a bounded complete domain, then so is RC(D).

4 The RC Monad

To show that the functor RC forms a monad, the unit and Kleisli extension (or

multiplication) of the monad must be exhibited. For a domain D and d ∈ D, the

unit, η : D → RC(D) is defined by

η(d) = (ε, χd)

where ε is the antichain only containing the empty word, and χd is the constant

function whose value is d.

4.1 Motivation for the Kleisli extension

The Kleisli extension of a monad T can be hard to think about intuitively since

we normally do not work with functions from D to T (E). However, the Kleisli

extension is important in lifting binary operations on the underlying structures

to binary operations on the monadic structures. If we have a binary operation

∗ : D×E → F , the Kleisli extension lifts this operation to ∗† : T (D)×T (E)→ T (F).

This is achieved by setting ∗† = (λa.T (λb.a ∗ b))†.
Suppose that we have a Miller-Rabin test performed on two composite numbers

with the following possible outcomes:

F F F ⊥ ⊥ F F F

How should the binary operation or be lifted? It may seem natural to perform

the two tests one after the other, resulting in:

163

Barker

⊥ F F F ⊥ F F F ⊥ F F F ⊥ ⊥ ⊥ ⊥

The probability of error in this case is 7
16 , assuming we use a fair coin. However,

this method has two main flaws.

(i) How do we handle the infinite case? If the first random test can use infinitely

many coin flips, then the second test will never even start.

(ii) The Kleisli extension that results in this behavior is not monotone. Therefore,

it does not form a monad in a category we want.

Instead, consider feeding the result of each coin flip to both tests concurrently.

For two coin flips, our example would look like:

⊥ F F ⊥

To properly compare it with the sequential case, we should use the same max-

imum number of coin flips. Feeding all four coin flips to both Miller-Rabin tests

results in:

F F

⊥ F F F F F F ⊥

which only has an error probability of 1
8 . If the error possibility for each number

had coincided, then the error probability would have been smaller, 1
16 .

It some cases, it may be desirable to have two random processes run sequen-

tially instead of the concurrent behavior described here. However, for a randomized

algorithm like Miller-Rabin, which has a fixed desired output, this is unnecessary.

These algorithms are represented by possibly infinite trees that have a zero error

probability. Combining these trees as described above results in another tree with

a zero error probability. In fact, the error probability can decrease more quickly

using this method. But if it is necessary to have a sequential composition of random

processes, then we must move outside of the RC monad to accomplish this. We

can create a function on RC(D) × N that takes a random process and uses n coin

164

Barker

flips to output an element of D. This function is not deterministic, so the output

would need to be in T (D) for some other monad T . For example, in Haskell, we

can use the standard random library to simulate coin flips, and T in this case would

be Haskell’s IO monad. Composing two such actions would result in the random

choices occurring sequentially. More generally, we can use a probabilistic monad

such as the indexed valuations or finite random variables as the codomain of this

function.

4.2 Kleisli Extension of the Monad

Consider h : D → RC(E). For an element (M,f) ∈ RC(D), each w represents

one possible outcome of coin flips. For each w, h ◦ f(w) gives another randomized

algorithm, in RC(E). Thus, there is a random choice of random algorithms, and

the Kleisli extension has to convert this into one randomized algorithm in (N, g) ∈
RC(E). Instead of using all of h◦f(w), for each w, we use the coin flips represented

by w and feed them into h ◦ f(w). If the first coin flip was “heads” moving towards

w, then we assume that the first coin flip will be “heads” when running h ◦ f(w).

Thus, our extension only considers the part of π1 ◦ h ◦ f(w) that is on the same

“branch” of the tree as w, namely ↑w ∪ ↓w.

Definition 4.1 For (M,f) ∈ RC(D), the first component of the Kleisli extension,

π1 ◦h†(M,f) will give an antichain that is bigger than the original M . It is defined

as follows:

π1 ◦ h†(M,f) =
⋃
w∈M

Min(↑w ∩ ↑π1 ◦ h ◦ f(w))

where Min(W) gives the minimal words of W . The second component of the Kleisli

extension gives a function from the first component into E. For a given z in the

first component, this is defined by:

((π2 ◦ h†)(M,f))(z) = g(πN (z)) where (N, g) = h ◦ f ◦ πM (z)

Since the first component given by the Kleisli extension is bigger than M , the

function f may not be defined on z. Therefore, πM (z) is used followed by h ◦ f to

pick a randomized algorithm (N, g) ∈ RC(E). Similarly, g may not be defined on

z, but there is a unique element of N , πN (z), where it is defined.

Proposition 4.2 h† is monotone.

Proof. (M,f) ≤ (N, g) means that N ⊆ ↑M (thus, ↑N ⊆ ↑M) and w ≤ z ⇒
f(w) ≤ g(z) for any w ∈M, z ∈ N .

↑π1 ◦ h†(M,f) = ↑
⋃
w∈M

Min(↑w ∩ ↑π1 ◦ h ◦ f(w))

=
⋃
w∈M

↑Min(↑w ∩ ↑π1 ◦ h ◦ f(w))

=
⋃
w∈M

(↑w ∩ ↑π1 ◦ h ◦ f(w))

165

Barker

The same applies to (N, g), so we just need to show that⋃
z∈N

(↑z ∩ ↑π1 ◦ h ◦ g(z)) ⊆
⋃
w∈M

(↑w ∩ ↑π1 ◦ h ◦ f(w))

For each z ∈ N , there is a w ∈ M that is below z. In this case, ↑ z ⊆ ↑ w and

↑ (π1 ◦ h ◦ g(z)) ⊆ ↑ (π1 ◦ h ◦ f(w)) since g(z) ≥ f(w) and h is monotone. Thus,

(↑z ∩ ↑(π1 ◦ h ◦ g(z))) ⊆ (↑w ∩ ↑(π1 ◦ h ◦ f(w))).

Now we check the functions. For w ∈ (π1 ◦ h†(M,f)) and z ∈ (π1 ◦ h†(N, g))

with w ≤ z, we must show that (π2 ◦ h†(M,f))(w) ≤ (π2 ◦ h†(N, g))(z).

Let πM (w) equal the unique word in M below w. Since w ≤ z, πM (w) ≤ πN (z),

and f ◦ πM (w) ≤ g ◦ πN (z). Since h is monotone, h ◦ f ◦ πM (w) ≤ h ◦ g ◦ πN (z).

Again, since w ≤ z, ππ1◦h◦f◦πM (w)(w) ≤ ππ1◦h◦g◦πN (z)(z), and we have

(π2 ◦ h†(M,f))(w) = (π2 ◦ h ◦ f ◦ πM (w))(ππ1◦h◦f◦πM (w)(w))

≤ (π2 ◦ h ◦ g ◦ πN (z))(ππ1◦h◦g◦πN (z)(z))

= (π2 ◦ h†(N, g))(z) 2

Proposition 4.3 h† is Scott continuous.

Theorem 4.4 The functor RC forms a monad in the category BCD.

5 Distributive Laws and Extending the Monad

One of the downsides with the probabilistic powerdomain is that it does not satisfy

a distributive law with any of the nondeterministic powerdomains. However, we can

show that our monad RC does satisfy a distributive law with respect to the lower

powerdomain in the category BCD.

For two monads, (S, ηS , µS) and (T, ηS , µS), over the same category, the functor

TS is not necessarily a monad. According to Beck’s Theorem [4], the composition

of two monads, S and T , is a monad if and only if there is a distributive law between

them. A distributive law consists of a natural transformation λ : ST → TS that

satisfies the following equations:

(i) λ ◦ SηT = ηTS

(ii) λ ◦ ηST = TηS

(iii) λ ◦ SµT = µTS ◦ Tλ ◦ λT
(iv) λ ◦ µST = TµS ◦ λS ◦ Sλ

5.1 Distributive Law With the Lower Powerdomain

Let ΓL be the lower powerdomain functor. Suppose (M,f) ∈ RC ◦ ΓL(D), so

that f is a function from M to ΓL(D). Now define the natural transformation

λ : RC ◦ ΓL(D)→ ΓL ◦RC(D) by:

λ(M,f) = ↓{(M, g) | g(w) ∈ f(w),∀w ∈M}

Proposition 5.1 There is a distributive law between the monad of random choice

and the lower powerdomain, using the natural transformation λ.

166

Barker

5.2 Extending the Monad

The above construction is a monad in the category BCD. However, only two of the

nondeterministic powerdomains (the upper and lower) leave BCD invariant. BCD
is not closed under the convex powerdomain, but the Cartesian closed categories

RB and FS, which contain BCD, are. The monad RC is not believed to stay within

these categories, since we see no way to construct the deflations needed to show

that an object is in one or the other of these categories. In BCD, infima can be

used, but outside of BCD, infima are not guaranteed. One way to repair this is to

not only define our functions on antichains, but instead to define them on the Scott

closure, or lower set, of these antichains. This way, there is no need for infima to

project down to smaller trees, since the function is already defined on the lower set.

In our first monad, antichains are used, representing the possible outcomes of a

random computation. Now we change this monad to include not only antichains of

words, but also the prefixes of these words. These prefixes represent intermediate

stages of computation where more random bits are still needed.

Definition 5.2 A Scott closed set M in {0, 1}∞ is full if for all words, w, in M,

w ∗ 0 ∈ M ⇔ w ∗ 1 ∈ M . Denote the family of nonempty, full Scott closed subsets

of {0, 1}∞ by Γf ({0, 1}∞).

Γf ({0, 1}∞), ordered by inclusion, is a subposet of the lower powerdomain of

{0, 1}∞. If a poset is a dcpo, domain, or bounded complete domain, then so is the

lower powerdomain of that poset. The supremum of some nonempty subset {Mi}
is simply the closure of the union,

⋃
iMi.

Definition 5.3 For a category of domains, the functor RC ′ is now defined on

objects by

RC ′(D) = {(M,f) | M ∈ Γf ({0, 1}∞), f : M → D is Scott continuous}

For a : D → D′ and (M,f) ∈ RC ′(D), we define

RC ′(a)(M,f) = (M,a ◦ f)

RC ′(D) is given an order such that (M,f) v (N, g) iff M ⊆ N and f(w) ≤
g(w),∀w ∈M .

Theorem 5.4 RC ′ is an endofunctor in the categories RB and FS.

For the monad construction, the unit is the same as before:

η(d) = (ε, χd)

For a continuous function h : D → RC ′(E) and some (M,f) in RC ′(D), the Kleisli

extension is defined by

π1 ◦ h†(M,f) = M ∪ (
⋃
w∈M

(↑w ∩ (π1 ◦ h ◦ f(w))))

((π2 ◦ h†)(M,f))(z) = g(πN (z))

167

Barker

where (N, g) = h ◦ f ◦ πM (z).

Theorem 5.5 The functor RC ′ forms a monad in the categories RB and FS.

5.3 Distributive Law With the Convex Powerdomain

Let ΓC denote the convex powerdomain functor. Recall that the convex powerdo-

main of a coherent domain D consists of Lens(D), the nonempty lenses of D. For

a nonempty compact K ⊆ D, define the lens closure of K by 〈K〉 = K ∩ ↑K. The

lens closure 〈K〉 is the smallest lens containing K.

Suppose U ∈ ΓC ◦ RC ′(D), so that U is a lens of random choices of X. Define

the natural transformation, λ : ΓC ◦RC ′(D)→ RC ′ ◦ ΓC(D) by:

λ(U) = (
⋃

(M,f)∈U

M,w 7→ 〈
⋃

(M,f)∈U

f ◦ πM (w)〉)

Proposition 5.6 There is a distributive law between the monad of random choice

and the convex powerdomain, using the natural transformation λ.

6 Relation to Scott’s Stochastic Lambda Calculus

Dana Scott developed an operational semantics of the lambda calculus using the

power set of the natural numbers, P(N). As terms of the lambda calculus, elements

of P(N) can be applied to one another and λ-abstraction is achieved through the

use of enumerations similar to Gödel numbering.

Scott then added randomness to his model, resulting in his stochastic lambda

calculus [20]. He does this by adding random variables.

Definition 6.1 A random variable in Scott’s model is a function X : [0, 1]→ P(N)

where {t ∈ [0, 1]|n ∈ X(t)} is Lebesgue measurable for all n in P(N).

This is similar to the monad of random choice presented in this paper. We start

with a base domain D, which could be P(N), and then have a function from an

antichain of {0, 1}∞ into D. We can really treat this as a function from the Cantor

space, {0, 1}ω to D. For some (M,f), define f : {0, 1}ω → D by f(z) = f(πM (z)).

Now that random variables are added to the lambda calculus, there must be a

way to define application of one random variable to another. In a sense, this is lifting

the application operation from P(N) × P(N) to ([0, 1] → P(N)) × ([0, 1] → P(N)),

which, as stated above, is the role of the Kleisli extension of the monad. Scott

defines the application as follows:

Definition 6.2 Given two random variables X,Y : [0, 1] → P(N), the application

operation is defined by

X(Y)(t) = X(t)(Y(t))

These random variables can be thought of as using an oracle that randomly gives

a element of [0, 1], and then the function of the random variable uses this number

to output an element of P(N). Notice that in the above definition for application,

both random variables receive the same t. Thus, the oracle is consulted only once

168

Barker

instead of giving a different random number to each random variable. This exactly

mimics the concurrent operation of our Kleisli extension. But instead of an oracle

giving an entire real number at once (which has infinite information), the oracle

gives one bit at a time.

7 Summary and Future Work

In this paper, we have a presented two monads for randomized computation in

Cartesian closed categories of domains. Computational motivation is given for the

structure of these monads. In a program, random choice results in the branching

of computation, so the possible outcomes form a tree. Our first monad separates

random choice from the underlying domain and confines it to the leaves of a binary

tree. This is the main difference between our construction and the probabilistic

powerdomain. We have shown that this monad captures the randomized behavior

found in algorithms such as the Miller-Rabin primality test. We have given a new

Kleisli extension that satisfies the monad laws and presented a distributive law

with the lower powerdomain, all within the category BCD. In order to work with the

convex powerdomain, we needed to move into the category RB or FS. A slight change

was needed for our construction to stay within these categories, and a distributive

law was given between this extended monad and the convex powerdomain.

There is much work to be done concerning these monads. Some work has al-

ready been completed that is beyond the scope of this paper. Another alteration

can be made to the monad to obtain a distributive law with the upper powerdomain.

Furthermore, an operational version of the monad has been developed and imple-

mented in functional programming languages such as Scala and Haskell. The proof

that the monad laws hold for this operational version has been formally verified us-

ing Isabelle. Finally, Randomized PCF (rPCF), a programming language that adds

random choice to PCF [19], has been designed, and the Miller-Rabin algorithm has

been implemented within the language. An operational and denotational semantics

for rPCF have been developed using the monad presented in this paper. This is a

proof of concept to show how this monad can be used to augment other languages

with random choice.

8 Acknowledgements

The author thanks Michael Mislove for the guidance and the many fruitful discus-

sions that made this work possible, along with several much-needed suggestions for

the preparation of this paper. The author also thanks Jean Goubault-Larrecq and

Dana Scott for email correspondence regarding the model of continuous random

variables and the stochastic lambda calculus, respectively. Finally, the author ac-

knowledges the support of the AFOSR under award no. FA0550-13-1-0135 during

the preparation of this work.

References

[1] Abramsky, S. and A. Jung, Domain theory, Handbook of logic in computer science 3 (1994), pp. 1–168.

169

Barker

[2] Abramsky, S. and N. Tzevelekos, Introduction to categories and categorical logic, in: New structures
for physics, Springer, 2011 pp. 3–94.

[3] Agrawal, M., N. Kayal and N. Saxena, Primes is in p, Annals of mathematics (2004), pp. 781–793.

[4] Beck, J., Distributive laws, in: Seminar on triples and categorical homology theory, Springer, 1969, pp.
119–140.

[5] De Leeuw, K., E. F. Moore, C. E. Shannon and N. Shapiro, Computability by probabilistic machines,
Automata studies 34 (1956), pp. 183–198.

[6] Division, I. B. M. C. R. and M. Rabin, “Probabilistic algorithms,” 1976.

[7] Gierz, G., K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, Continuous lattices
and domains, volume 93 of encyclopedia of mathematics and its applications (2003).

[8] Gill, J., Computational complexity of probabilistic turing machines, SIAM Journal on Computing 6
(1977), pp. 675–695.

[9] Goubault-Larrecq, J. and D. Varacca, Continuous random variables, in: Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science (LICS’11) (2011), pp. 97–106.
URL http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/GLV-lics2011.pdf

[10] Jung, A., “Cartesian closed categories of domains,” Citeseer, 1989.

[11] Jung, A. and R. Tix, The troublesome probabilistic powerdomain, Electronic Notes in Theoretical
Computer Science 13 (1998), pp. 70–91.

[12] Mislove, M., Nondeterminism and probabilistic choice: Obeying the laws, in: CONCUR
2000Concurrency Theory, Springer, 2000 pp. 350–365.

[13] Mislove, M., Discrete random variables over domains, Theoretical computer science 380 (2007),
pp. 181–198.

[14] Mislove, M., Anatomy of a domain of continuous random variables ii, in: Computation, Logic, Games,
and Quantum Foundations. The Many Facets of Samson Abramsky, Springer, 2013 pp. 225–245.

[15] Mislove, M. W., Topology, domain theory and theoretical computer science, Topology and its
Applications 89 (1998), pp. 3–59.

[16] Moggi, E., Notions of computation and monads, Information and computation 93 (1991), pp. 55–92.

[17] Rabin, M. O., Probabilistic algorithm for testing primality, Journal of number theory 12 (1980), pp. 128–
138.

[18] Saheb-Djahromi, N., Cpo’s of measures for nondeterminism, Theoretical Computer Science 12 (1980),
pp. 19–37.

[19] Scott, D. S., A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Computer Science
121 (1993), pp. 411–440.

[20] Scott, D. S., Stochastic λ-calculi, Journal of Applied Logic 12 (2014), pp. 369–376.

[21] Solovay, R. and V. Strassen, A fast monte-carlo test for primality, SIAM journal on Computing 6
(1977), pp. 84–85.

[22] Tix, R., “Continuous D-cones: convexity and powerdomain constructions,” Shaker, 1999.

[23] Tix, R., K. Keimel and G. Plotkin, Semantic domains for combining probability and non-determinism,
Electronic Notes in Theoretical Computer Science 222 (2009), pp. 3–99.

[24] Varacca, D., “Probability, nondeterminism and concurrency: two denotational models for probabilistic
computation,” BRICS, 2003.

[25] Varacca, D., G. Winskel et al., Distributing probability over non-determinism, Mathematical Structures
in Computer Science 16 (2006), pp. 87–113.

170

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/GLV-lics2011.pdf

MFPS 2016

Binding Operators for Nominal Sets

Arthur Azevedo de Amorim1

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA, United States

Abstract

The theory of nominal sets is a rich mathematical framework for studying syntax and variable binding.
Within it, we can describe several binding disciplines and derive convenient reasoning principles that respect
α-equivalence. In this article, we introduce the notion of binding operator, a novel construction on nominal
sets that unifies and generalizes many forms of binding proposed in the literature. We present general
results about these operators, including sufficient conditions for validly using them in inductive definitions
of nominal sets.

Keywords: Nominal Sets, Binding, Alpha Equivalence

1 Introduction

Bound variables have puzzled computer scientists and logicians for decades. Al-

though fairly simple to handle in informal pencil-and-paper calculations, they can

be surprisingly complex to manage in algorithms and mechanized proofs, where

the mostly uninteresting formal details of variable binding cannot be overlooked.

Research on the subject has led to various promising approaches for tackling this

complexity [6,12,14], among which we can mention the theory of nominal sets [5].

Nominal sets constitute a rich mathematical universe where objects contain vari-

ables that can be renamed, allowing various notions of α-equivalence to be defined.

In the λ-calculus for example, we stipulate that the term λx. t is equivalent to any

other obtained by renaming x to a variable y that does not appear free in t, which

corresponds to the operation of name abstraction on nominal sets [5], used for mod-

eling objects with a single bound variable. The nominal literature has shown how

many other forms of binding can be obtained through similar constructions, such

as generalized name abstractions [4,3], or the binding declarations of Nominal Is-

abelle [17]. Besides serving as a good theoretical foundation for variable binding,

1 The author thanks Andrew Pitts, Ranald Clouston, and Matthew Weaver for comments on early drafts
of this article.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Azevedo de Amorim

nominal techniques have influenced the design of many tools for manipulating syn-

tax, such as the FreshML programming language [11,15] and the Nominal package

for Isabelle/HOL [16,17].

Although some of the notions above are more general than others, none of them

proposes to offer a clear, unified picture of what binding means for nominal sets.

In this article, we attempt to look at the problem from a more foundational per-

spective, by introducing binding operators: a novel construction on nominal sets

that unifies and generalizes many forms of variable binding proposed in the liter-

ature. After briefly recalling basic notions of nominal set theory (Section 2), we

introduce binding operators in Section 3, showing how to use them for defining a

variety of nominal sets representing binders in Section 4. Section 5 gives an al-

ternative characterization of these nominal sets defined by binding operators, used

in Section 6 to encompass variable scope within our framework. In Section 7, we

discuss category-theoretic properties of binding operators, which provide sufficient

conditions for defining nominal sets inductively. We conclude and review related

work in Section 8.

2 Preliminaries: Nominal Sets

We begin by recalling basic concepts and results of the theory of nominal sets; for

a detailed account on the subject, we refer the reader to the introductory article by

Gabbay and Pitts [5] or to Pitts’ book [10].

We fix some countably infinite set A. We refer to elements of A as atoms, and

use the variable a to denote them. A permutation of A is a bijective function

π : A → A such that π(a) = a for all but finitely many a ∈ A. Permutations form

a group under composition, noted perm(A); in particular, π ◦ π′ ∈ perm(A) and

π−1 ∈ perm(A) for every π, π′ ∈ perm(A).

A renaming operation on a set X is a group action of perm(A) on X. Spelled out

explicitly, this means a mapping that to each pair (π, x) ∈ perm(A)×X associates

an element π · x ∈ X, so that

1 · x = x (π1 ◦ π2) · x = π1 · π2 · x,

where 1 ∈ perm(A) denotes the identity function. We treat renaming as right

associative, reading π1 ·π2 ·x as π1 ·(π2 ·x). The above properties imply in particular

π−1 · π · x = π · π−1 · x = x for arbitrary π and x.

We say that a set of atoms A supports an element x ∈ X if the atoms in A

completely determine the effect of renaming on x. Formally, if π is a permutation

such that π(a) = a for every a in A, then π · x = x. Or, equivalently, if π1 and π2

are permutations such that π1(a) = π2(a) for every a in A, then π1 · x = π2 · x. If

A is finite, we can show [5] that x has a minimal finite supporting set supp(x), by

which we mean that supp(x) is a subset of every finite set A′ supporting x. We say

that X is a nominal set if all of its elements have finite support.

Atoms A form a nominal set under the action π · a = π(a), with supp(a) =

{a}. We can see every set X as a trivial nominal set by posing π · x = x, which

implies supp(x) = ∅. We use this structure for sets such as N or Z, whose elements

2

Azevedo de Amorim

intuitively do not contain variables. A nominal set with such a trivial renaming

operation is called discrete. We can also define products and disjoint unions of

nominal sets, summarized in the table below.

X1 ×X2 π · (x1, x2) = (π · x1, π · x2) supp(x1, x2) = supp(x1) ∪ supp(x2)

X1 +X2 π · (i, xi) = (i, π · xi) supp(i, xi) = supp(xi)

When working with nominal sets, we want to restrict our attention to functions

that are well-behaved with respect to renaming. A function f : X → Y between

nominal sets is said to be equivariant if it commutes with renaming; that is, f(π·x) =

π · f(x) for every x and π. We write X →eq Y for the set of equivariant functions

from X to Y . When Y is the discrete nominal set of booleans B, we sometimes say

that f is an equivariant property or relation instead. This is equivalent to saying

that f(π ·x) holds if and only if f(x) does. Every such property can be alternatively

seen as a nominal subset of X; that is, a subset of X that is closed under renaming.

Note that equivariant functions cannot add atoms to the support of their arguments:

we can show that supp(f(x)) ⊆ supp(x), with supp(f(x)) = supp(x) if f is injective.

The next best thing to an equivariant function is a finitely supported one: a

function f between nominal sets X and Y that is almost equivariant, except for

a finite set of atoms A; that is, f(π · x) = π · f(x) if π(a) = a for every a ∈ A.

We write X →fs Y for the set of finitely supported functions from X to Y . Every

equivariant function is trivially finitely supported. Finitely supported functions f

form a nominal set under the action (π · f)(x) = π · f(π−1 · x). This is equivalent

to saying that (π · f)(π · x) = π · f(x) for every π and x, which allows us to depict

this renaming operation as acting on a table representation of f :

x1 7→ f(x1)

x2 7→ f(x2)

...

π · x1 7→ π · f(x1)

π · x2 7→ π · f(x2)

...

π

Note that the support of a function is not computable in general. We use similar

actions for other sets of functions; for instance, perm(A) is a nominal set under the

action π ·π′ = π◦π′◦π−1, with supp(π) = {a | π(a) 6= a}. Seeing a subset X ′ ⊆ X as

a function X → B results in a renaming operation defined by π·X ′ = {π·x | x ∈ X ′}.
Let X and Y be two nominal sets, and x and y be elements of X and Y . We say

that x and y are fresh with respect to each other, noted x # y, if their supports are

disjoint: supp(x)∩ supp(y) = ∅. If a ∈ A and x ∈ X, then a # x simply means that

a /∈ supp(x). If π ∈ perm(A), π # x is equivalent to π(a) = a for every a ∈ supp(x),

which implies π · x = x. In particular, if f is a finitely supported function, π # f

implies f(π · x) = π · f(x) for every x.

Nominal sets and equivariant functions between them form a category Nom.

It is a complete and cocomplete category; in particular, the initial and terminal

objects are the empty and singleton discrete nominal sets, while binary products

and sums are given as in the above table. It is also a cartesian closed category, with

exponentials given by finitely supported functions.

3

Azevedo de Amorim

3 Binding Operators

The most basic form of binding on nominal sets is name abstraction [5]. Given

a nominal set X, we define an equivalence relation ≡α on A × X by saying that

(a1, x1) ≡α (a2, x2) if and only if

∃a3. a3 # (a1, a2, x1, x2) ∧ (a1 a3) · x1 = (a2 a3) · x2 (1)

Here, (a a′) denotes the transposition of a and a′, which swaps these two atoms

while fixing all others. Intuitively, this relation states that a is bound in the pair

(a, x) and should be treated up to α-equivalence. If we quotient A × X by this

relation, we obtain a new nominal set [A]X, called the set of name abstractions of

X, where α-equivalent objects become equal.

Besides name abstraction, we can define nominal sets for representing many

other binding disciplines, such as name restriction or ML’s let rec. A common feature

of these constructions is that equivalent elements are obtained by renaming bound

atoms while fixing those that remain free. For instance, although not immediately

obvious, we can rephrase (1) as

(a1, x1) ≡α (a2, x2) ⇐⇒ ∃π. π # supp(x1) \ {a1} ∧ (a2, x2) = π · (a1, x1). (2)

Recall that π # supp(x1)\{a1} simply means that π fixes all elements of that set.

If we interpret the singleton {a1} in this formula as the set of bound variables of the

pair (a1, x1), we get a generic method for defining α-equivalence for other binders:

it suffices to enumerate which atoms should be bound in an object. Formally, we

have the following definition.

Definition 3.1 Let X be a nominal set. A binding operator on X is an equivariant

function l : X →eq Pfin(A). Each l gives rise to a relation ≡l on X, defined as

x1 ≡l x2 ⇐⇒ ∃π. π # supp(x1) \ l(x1) ∧ x2 = π · x1.

Thus, we see that α-equivalence for name abstractions corresponds to a binding

operator on A × X, defined as lα(a, x) = {a}. We analyze other examples in

Section 4, but need to explain first how exactly binding operators are used to encode

binders as nominal sets. Concretely, we show here that every binding operator

induces a quotient nominal set, a direct generalization of the analogous results for

name abstractions. We begin by noting the following simple facts.

Lemma 3.2 Let X be a nominal set with a binding operator l. If x1 ≡l x2, then

supp(x1) \ l(x1) = supp(x2) \ l(x2).

Proof The definition implies that x2 is of the form π ·x1, with π # supp(x1)\l(x1);

thus, π·(supp(x1)\l(x1)) = supp(x1)\l(x1). The result then follows by equivariance,

since the right-hand side is equal to supp(π·x1)\l(π·x1) = (π·supp(x1))\(π·l(x1)) =

π · (supp(x1) \ l(x1)). 2

Lemma 3.3 Let X be a nominal set endowed with a binding operator l. The ≡l
relation is an equivariant equivalence relation.

4

Azevedo de Amorim

Proof The relation is clearly reflexive: it suffices to take π = 1 in its definition. It

is also equivariant, because it is defined with equivariant operations.

To see that it is symmetric, take two elements x and x′ of X such that x ≡l x′.
By definition, we can find π ∈ perm(A) such that π # supp(x) \ l(x) and x′ = π · x.

We must show that π · x ≡l x. Since x = π−1 · π · x, it suffices to show that

π−1 # supp(π · x) \ l(π · x),

which holds by equivariance, because π−1 = π · π−1 = π ◦ π−1 ◦ π−1.

Finally, let’s show transitivity. Take three elements, x1, x2 and x3, such that

x1 ≡l x2 and x2 ≡l x3. By unfolding definitions, and using Lemma 3.2, we find π1

and π2 such that x3 = (π2 ◦ π1) · x1 and πi # (supp(x1) \ l(x1)) for i = 1, 2. Since

permutation composition is equivariant, we see that supp(π2 ◦ π1) ⊆ supp(π1) ∪
supp(π2); thus, the freshness conditions above yield π2 ◦ π1 # supp(x1) \ l(x1),

allowing us to conclude. 2

Because binding operators yield equivariant equivalence relations, they lead to

quotients that carry a canonical nominal structure:

Lemma 3.4 Let X be a nominal set with a binding operator l, and let X/l be the

quotient of X by the equivalence relation ≡l. This set possesses a nominal structure

satisfying

π · [x] = [π · x] supp([x]) = supp(x) \ l(x),

where [x] denotes the equivalence class of x under ≡l. In particular, the canonical

projection into X/l is equivariant.

Proof Any quotient by an equivariant equivalence relation carries a canonical nom-

inal structure satisfying the first identity [10, Sections 1.8 and 2.9]. We also have [10,

Proposition 2.30]

supp([x]) =
⋂
x′≡lx

supp(x′). (3)

By Lemma 3.2, the right-hand side equals

supp(x) \ l(x) ∪
⋂
x′≡lx

l(x′).

We can conclude because the second term of the union is empty. More precisely,

given any atom a in l(x), and any atom a′ that is not in supp(x), we have (a a′)·x ≡l
x, but a = (a a′) · a′ is not in l((a a′) · x) by equivariance. 2

As a sanity check, if we instantiate the previous result with lα, the binding

operator for name abstractions, we obtain the familiar identities π ·〈a〉x = 〈π(a)〉(π ·
x) and supp(〈a〉x) = supp(x) \ {a}, where 〈a〉x denotes the equivalence class of the

pair (a, x) in [A]X. By virtue of being defined as a quotient, we also obtain generic

elimination principles for such nominal sets. Equivariant functions on them have a

particularly simple characterization: they correspond to functions that do not leak

bound atoms in their results.

5

Azevedo de Amorim

Lemma 3.5 Let X and Y be nominal sets, and l be a binding operator on X.

Let f : X →eq Y be a function satisfying l(x) # f(x) for all x. There exists a

unique f̄ : X/l→eq Y such that f̄([x]) = f(x) for all x. Conversely, every function

f : X →eq Y that factors through X/l satisfies l(x) # f(x).

Proof To build f̄ , it suffices to show that, for every x1 ≡l x2, we have f(x1) =

f(x2). By the definition of ≡l, we find a permutation π that is fresh for supp(x1) \
l(x1) such that x2 = π · x1. Thus, f(x2) = π · f(x1). Since l(x1) # f(x1), it must

be the case that supp(f(x1)) ⊆ supp(x1) \ l(x1). This implies that π # f(x1), and

thus f(x1) = π · f(x1) = f(x2). The last assertion follows because, if f(x) = f̄([x])

for some equivariant function f̄ , then supp(f(x)) is contained in supp([x]), which

equals supp(x) \ l(x). 2

Later, in Lemma 6.14, we extend this result to describe the finitely supported

functions that can be defined on such quotients. It would be possible (and not

too difficult) to state this extension right away and prove it directly, but the tools

developed in Section 6 provide more structure for attacking the problem.

Notice that the above properties only rely on knowing which atoms are bound

in an object, and how these atoms are affected by renaming. This is indeed the

only piece of information that we can extract from binding operators, which hide

everything else that we might care about in bound atoms—for instance, the order

in which they appear. Fortunately, as shown in the rest of this paper, this extra in-

formation is irrelevant for deriving the fundamental properties of binding constructs

in nominal sets.

4 Examples

Given the generality of binding operators, it is worth analyzing a few examples

of binding disciplines that they can express. We show here how to model a few

syntactic constructs that have been extensively studied in the literature. We include

an example of common idiom that is not directly supported by our framework—

namely, binding atoms in only part of an object. Fortunately, as shown in Section 6,

this limitation is not fundamental, and can be overcome by adding a notion of scope

to binding operators.

4.1 Generalized Name Abstraction

Name abstraction binds a single atom within an object. The simplest way to gen-

eralize it is to consider constructions where bound atoms are specified by arbitrary

data structures that contain atoms, leading to so-called generalized name abstrac-

tions [4]. Specifically, given nominal sets X and Y , we adapt the binding operator

lα defining name abstraction to X × Y , by setting lα(x, y) = supp(x). The corre-

sponding quotient, noted [X]Y , is known as the nominal set of X-abstractions of

Y .

6

Azevedo de Amorim

4.2 Name Restriction

Processes in the π-calculus [8] communicate through named channels, which can be

made private using a form of binding known as name restriction. Concretely, an

expression of the form νa. t denotes a computation t that has access to a communi-

cation channel a bound by ν, which cannot be used by any other processes defined

outside of this expression.

Besides being subject to α-equivalence of bound channel names, π-calculus pro-

cesses satisfy certain behavioral identities related to name restriction. For instance,

the order in which channels are bound in a process expression is irrelevant:

νa1. νa2. t = νa2. νa1. t.

To represent name restriction, we could be tempted to model π-calculus terms with

a nominal set of the form [Pfin(A)]E, where E denotes a nominal set of process

expressions. The idea is that an expression of the form νa1. . . . νan. t would cor-

respond to the element [({a1, . . . , an}, t)]. Unfortunately, this encoding does not

validate another basic property of name restriction: spurious private channels do

not affect process behavior. Formally, if a does not occur free in t, then νa. t = t.

We solve this problem by restricting our binding operator to a nominal subset

of Pfin(A)× E that excludes spurious atoms. Specifically, we pose

L(E) = {(A, t) ∈ Pfin(A)× E | A ⊆ supp(t)},

and quotient this nominal set by the binding operator l(A, t) , A. The resulting

nominal set, noted Res(E), is known as the free nominal restriction set over E [10,

Chapter 9]. We can then represent an expression νa1. . . . νan. t by the element

[({a1, . . . , an}∩supp(t), t)]. Besides their application to the π-calculus, free nominal

restriction sets yield a monad on Nom that provides an useful model of fresh-name

generation.

4.3 Mutually Recursive Definitions

Most programming languages allow mutually recursive function definitions. In the

ML family, these usually take the form

let rec a1 = t1 and · · · and an = tn in t,

where the atoms a1, . . . , an are bound in the expressions t, t1, . . . , tn. We could repre-

sent mutually recursive definitions with a nominal set of the form [List(A)] List(E),

where E is some nominal set of expressions, and List(X) is the nominal set of finite

lists of elements of X. The idea is that an expression such as the one above would

be mapped to the element [([a1, . . . , an], [t1, . . . , tn, t])]. The problem, as noted by

Pottier [12], is that this nominal set contains elements that do not correspond to

any valid expression, such as [([a], [])], where the number of defined atoms does not

match the number of definition bodies.

We can use binding operators to model mutually recursive definitions by viewing

expressions as the one above as a pair (f, t), where t ∈ E is an expression, and

7

Azevedo de Amorim

f : A ⇀fin E is a partial function with finite domain. The term t represents the

result of the expression, while the function f maps each atom to the corresponding

definition; in the example given above, this would be a function mapping a1 to t1, a2

to t2, etc. (Note that this assumes that the order of the definitions does not matter.

We could also have considered a more concrete variant with lists of declarations that

have an explicit order.) The bound atoms in (f, t) are exactly those in the domain of

f , which leads to the nominal set Mut(E) , ((A⇀fin E)×E)/(dom ◦ p1), where p1

designates the first projection function. This solution is similar to others proposed

in the literature [12,17].

4.4 An Obstacle: Binder Scope

We could try to adapt the previous example to model parallel nonrecursive defini-

tions:

let a1 = t1 and · · · and an = tn in t,

where the atoms a1, . . . , an are bound in t, but not in t1, . . . , tn. Unfortunately, the

tools that we have developed so far cannot take this form of scoped binding into

account, because the equivalence derived from binding operators require atoms to

be renamed everywhere, including in positions where they should remain free (in

this case, the ti). We will see later, in Section 6, how to work around this issue by

considering renaming operations that act only on a limited scope within an object.

5 Binding Functions

It is basic set theory that every surjective function f corresponds to a quotient

by an equivalence relation—namely, the one where x1 and x2 are equivalent if and

only if f(x1) = f(x2). In this section, we prove an analogous result for binding

operators, showing that their quotients can alternatively be characterized as what

we call binding functions. This characterization will be useful in Section 6, where

we use it to relate a more general class of quotients on nominal sets to binding

operators.

Definition 5.1 An equivariant function f between nominal sets is a binding func-

tion if it is surjective and, whenever f(x1) = f(x2), we have x1 ≡lf x2, where

lf (x) = supp(x) \ supp(f(x)). 2 This last condition simply means that there exists

a permutation π, with π # f(x1), such that x2 = π · x1.

Intuitively, a binding function is one that removes atoms from the support of its

argument, but doesn’t discard any other information attached to it. Notice that,

by construction, the projection into a quotient by a binding operator is a binding

function. However, the converse also holds: every binding function corresponds to

a quotient by a binding operator. More precisely, we have the following result.

Lemma 5.2 If f : X →eq Y is a binding function, then there is an isomorphism

i : Y ∼= X/lf such that i(f(x)) = [x]. In other words, f is a coequalizer of the

equivalence relation ≡lf .

2 Kurz et al. [7, Notation 5.40] refer to this binding operator as the set of “bound variables relative to a
map”, and use it to study variable binding in infinite objects.

8

Azevedo de Amorim

Proof We already know that f is surjective and that f(x1) = f(x2) implies x1 ≡lf
x2. Conversely, we can see that x1 ≡lf x2 implies f(x1) = f(x2), since f(x1) =

f(π · x1) when π # f(x1). This proves that f is the coequalizer we’re looking for.2

Binding operators can be combined by composing their quotients:

Lemma 5.3 If f and g are binding, then so is h = gf , and lh(x) = lf (x)∪lg(f(x)).

Proof It is clear that h is surjective, as the composition of two surjections. Now,

suppose that g(f(x1)) = g(f(x2)). Since g is binding, we find a permutation π,

with π # g(f(x1)), such that f(x2) = π · f(x1) = f(π · x1). But f is also binding,

so we get another permutation π′ such that π′ # f(π · x1) and x2 = π′ · π · x1. The

freshness assumptions on π and π′ imply that π′ ◦ π # g(f(x1)), because

supp(g(f(x1))) = supp(g(f(π · x1))) ⊆ supp(f(π · x1)).

This shows that h is binding. The last claim follows because

lh(x) = supp(x) \ supp(g(f(x)))

= (supp(x) \ supp(f(x))) ∪ (supp(f(x)) \ supp(g(f(x))))

= lf (x) ∪ lg(f(x)).

2

Finally, as an aside, we note that every equivariant function can be factored

through a quotient by a binding operator. We can compare this result to the more

familiar one that says that every function can be factored through its image.

Lemma 5.4 Let f : X →eq Y be an equivariant function. We can factor f through

X/lf as f = f̄ ◦ [−]:

X X/lf Y,
f̄

where f̄ preserves supports, in the following sense:

supp(f̄(x̄)) = supp(x̄).

Furthermore, this factorization is unique up to isomorphism. Specifically, if f = hg,

where g is binding and h preserves supports, there exists an isomorphism i such that

the following diagram commutes:

X X/lf

Y ′ Y

g f̄
i
h

Proof That f can be factored through X/lf follows from Lemma 3.5. Because h

preserves supports, we find that lg = lf , and construct i using Lemma 5.2. 2

The analogy with the image of a function goes even further: we can show that

binding functions and functions that preserve supports form a factorization sys-

tem [1, Definition 5.5.1] on the category of nominal sets. Spelled out in detail, this

9

Azevedo de Amorim

means that both classes of functions contain all isomorphisms, are closed under com-

position, and can be used to factor uniquely (up to isomorphism) any equivariant

function, as shown above.

6 Atom Scope and Freshening

In Section 4.4, we noted that binding operators cannot express syntactic forms that

bind atoms in only part of an object. We show here how to accommodate such

constructs by decomposing the renaming operation of a nominal set into smaller

independent ones. The idea is that each of these independent operations applies

an atom permutation to part of an object without affecting the rest, thus allowing

bound atoms to α-vary within their intended scope. The corresponding quotients

are not binding functions in the sense of Definition 5.1, but we show here that

they still support similar elimination principles to those obtained from Lemma 3.5.

Besides allowing us to model more binders, this machinery will be useful for deriving

stronger elimination principles that work with finitely supported functions.

6.1 Independence

The main technical device that we need is the notion of independence of two re-

naming operations.

Definition 6.1 Let X be a set with two renaming operations, �1 and �2. We say

that these operations are independent if they commute, in the following sense:

π1 �1 π2 �2 x = π2 �2 π1 �1 x.

We use the � operator to denote a set of multiple independent renaming operations

on a set, whereas · is reserved to its canonical nominal structure. If the elements of

X are finitely supported with respect to these operations, we say that X has two

independent nominal structures. We note supp1(x) and supp2(x) the supports of

an element x of X with respect to each of the renaming operations.

As an example, if X and Y are nominal sets, we can define two independent

renaming operations on the product X × Y by posing

π �1 (x, y) , (π · x, y) π �2 (x, y) , (x, π · y).

Note that we can express the product nominal set X × Y as the composition of

these two operations. As a matter of fact, any set with two independent renaming

operations can be endowed with a compound one, as shown in the following results.

Lemma 6.2 Let X be a set with two independent nominal structures. The support

of an element with respect to one structure is invariant with respect to the other:

supp1(π �2 x) = supp1(x) supp2(π �1 x) = supp2(x).

Proof We only need to show one case, the other one following analogously. Given

10

Azevedo de Amorim

two atoms a and a′, we have(
a a′
)
�1 π �2 x = π �2

(
a a′
)
�1 x.

Since renaming operations are injective, we see that (a a′) �1 x = x if and only if

(a a′)�1π�2x = π�2x. But a is in supp1(x) if and only if there are infinitely many

a′ such that (a a′)�1 x 6= x, and similarly for π �2 x. This allows us to conclude.2

Lemma 6.3 Let X be a set with two independent nominal structures. We can

define a compound nominal structure on X by setting

π · x , π �1 π �2 x.

Each of the �i is equivariant with respect to this compound operation, in the fol-

lowing sense:

π · π′ �i x = (π · π′)�i π · x.
Finally, the support of an element is the union of the supports of the constituent

parts:

supp(x) = supp1(x) ∪ supp2(x).

Proof By unpacking definitions, we can check directly that this compound opera-

tion indeed satisfies the required properties of a renaming operation, and that each

�i is equivariant. We can also see that every element is finitely supported: given x

in X and a permutation π such that π # supp1(x) ∪ supp2(x), we have

π · x = π �1 π �2 x = π �1 x = x,

proving that supp(x) exists and that it is contained in supp1(x) ∪ supp2(x). Note

that supp1(x) ∪ supp2(x) depends equivariantly on x, thanks to Lemma 6.2:

supp1(π · x) ∪ supp2(π · x)

= supp1(π �1 π �2 x) ∪ supp2(π �2 π �1 x)

= π · supp1(π �2 x) ∪ π · supp2(π �1 x)

= π · supp1(x) ∪ π · supp2(x)

= π · (supp1(x) ∪ supp2(x)).

Thus, supp1(x)∪ supp2(x) is also contained in supp(x), which proves that both sets

are equal. 2

By iterating this process, we can combine any finite number of independent re-

naming operations. For simplicity, we restrict ourselves to the case of two indepen-

dent operations in what follows, but the theory developed here can be generalized

without difficulty to the case of a finite number of renaming operations that are

pairwise independent. Whenever a set has multiple nominal structures, we consider

the compound one defined in the above lemma as canonical.

6.2 Local Equivariance and Binding Operators

If a nominal set can be decomposed into independent renaming operations, we can

express the scope of a binder on that set by instantiating the generic notion of

11

Azevedo de Amorim

α-equivalence in Definition 3.1 to a particular renaming operation. However, if

we want the corresponding quotient to behave nicely with respect to the “global”

nominal structure, we must require that the corresponding binding operator be

independent of the other renaming operations. This leads to local variants of the

notions of equivariance and binding operator.

Definition 6.4 Let X be a set with two independent nominal structures, and Y

be a nominal set. We say that a function f is locally equivariant (with respect to

�i) if

f(π �j x) =

{
π · f(x) if j = i

f(x) otherwise
.

We note the set of such functions as X →i
eq Y .

By Lemma 6.2, we see that suppi is locally equivariant with respect to the

corresponding nominal structure. Furthermore:

Lemma 6.5 Using the same notations as above, a function f : X →i
eq Y is also

equivariant with respect to the compound nominal structure of Lemma 6.3.

Proof Assuming i = 1, we have f(π ·x) = f(π�1 π�2 x) = π ·f(π�2 x) = π ·f(x).

The other case is similar. 2

Definition 6.6 Let X be a set with two independent nominal structures. A local

binding operator (with respect to �i) is a locally equivariant function l : X →i
eq

Pfin(A).

By Lemma 6.5, a local binding operator l for a renaming operation �i is a

binding operator for two different nominal structures, and thus gives rise to two

different notions of α-equivalence. To distinguish between them, we use x1 ≡l x2 to

say that x1 and x2 are α-equivalent with respect to the compound structure, and

x1 ≡il x2 to say that x1 and x2 are α-equivalent with respect to �i. If we unfold

the definition of α-equivalence for the last case, it simply means that there exists

a permutation π fixing suppi(x) \ l(x) such that x2 = π �i x1. Its corresponding

quotient is compatible with all the nominal structures of the original set, as shown

below.

Lemma 6.7 Let l : X →i
eq Pfin(A) be a local binding operator. The relation ≡il is

equivariant with respect to the operations �j and with respect to ·. The quotient

X/≡il has the following nominal structures:

π �j [x] = [π �j x] suppj([x]) =

{
suppi(x) \ l(x) if j = i

suppj(x) otherwise

π · [x] = [π · x] supp([x]) = suppi(x) \ l(x) ∪ suppi′(x),

where i′ 6= i in the last equation. In particular, the renaming operations �j are

independent.

12

Azevedo de Amorim

Proof We assume i = 1, the other case being symmetric. It suffices to show the

result for �1 and �2, since these two cases combined yield the results for ·. Let’s

start with equivariance. We already know that ≡1
l is equivariant with respect to

�1 from Lemma 3.3. To show that it is also the case for �2, suppose that we have

a permutation π such that π # supp1(x) \ l(x), so that x ≡1
l π �1 x. We want to

show that, for any permutation π′, we have

π′ �2 x ≡1
l π
′ �2 π �1 x = π �1 π

′ �2 x.

This holds because, by local equivariance, π is fresh for supp1(π′�2 x)\ l(π′�2 x) =

supp1(x) \ l(x).

Finally, the definition of the renaming operations on X/≡1
l , and their indepen-

dence, follow from equivariance. We already know how to compute supp1([x]) from

the earlier Lemma 3.4. Thus, to conclude, we just have to compute supp2([x]).

But x1 ≡1
l x2 implies supp2(x1) = supp2(x2) by Lemma 6.2, and thus supp2([x]) =

supp2(x) (cf. (3) in the proof of Lemma 3.4). 2

To understand how this construction works, let’s revisit the example of parallel

definitions of Section 4.4. Once again, if E is some nominal set of program expres-

sions, we model raw parallel definitions (that is, before taking the quotient) with

the nominal set (A⇀fin E)×E. We can decompose this nominal structure into two

independent ones defined as

π �1 (f, e) , (f ◦ π−1, π · e) π �2 (f, e) , (a 7→ π · f(a), e).

Thus, in a let expression

let a1 = t1 and · · · and an = tn in t,

the operation �1 renames the atoms on the left-hand side of the definitions, as well

as the ones in t, whereas �2 only renames those that occur in the ti. We see that

the binding operator l(f, e) , dom(f) is local to �1, and lists precisely the atoms

on the left-hand side of the local definitions. Unlike the case of mutually recursive

definitions discussed in Section 4.3, the definition of ≡1
l guarantees that the bound

atoms of a pair (f, e) cannot vary in the bodies of local definitions in f . Thus, we

can represent parallel let with the nominal set Par(E) = ((A⇀fin E)× E)/≡1
l .

6.3 Elimination Principles

Now that we have quotient nominal sets that correspond to local binding operators,

we turn our attention to the functions that can be defined on them. If we want

a function that is locally equivariant with respect to the same nominal structure

as the local binding operator that we considering, it suffices to apply Lemma 3.5

directly. More generally, however, we want to define functions that are not locally

equivariant, but only equivariant with respect the compound nominal structure.

Going back to the example of parallel let, the function c(f, e) = | supp(f, e)| that

counts the number of variables in an expression is not locally equivariant, since

renaming parts of an expression independently may change its result. For instance,

13

Azevedo de Amorim

the expressions

let a1 = a1 in a1

and

let a1 = a2 in a1

have a different number of variables, but can be obtained from each other by a local

renaming.

We cannot describe these functions using the compact elimination principle of

Lemma 3.5, since, as stated earlier, projecting into such a quotient is not a binding

function. This can be seen, for instance, in the identity supp([x]) = supp1(x) \
l(x) ∪ supp2(x) of Lemma 6.7, which implies in particular that an atom a may

appear in the support of [x] even if it occurs in l(x). As it turns out, we can express

the quotient by a local binding operator on X as a quotient by a “global” binding

operator on a nominal subset of X, where bound atoms are prevented from aliasing

the ones that remain free after the quotient by α-equivalence. Specifically, we now

prove that X/≡1
l is isomorphic to the quotient X#l/l, where l : X →1

eq Pfin(A) is a

local binding operator, and

X#l = {x ∈ X | l(x) # supp2(x)}. (4)

(Note that X#l is a nominal subset of X for its compound nominal structure,

but not for any of the �i.) In particular, using Lemma 3.5, this allows us to

define equivariant functions X/≡1
l →eq Y (with respect to the compound nominal

structure of X/≡1
l) through equivariant functions f : X#l →eq Y that satisfy l(x) #

f(x) for any x in X#l. We begin with the following results, showing how to avoid

conflicting with sets of “bad” atoms when choosing concrete values for the ones that

are bound.

Lemma 6.8 Let X be a nominal set with a binding operator l. Given x̄ ∈ X/l and

a finite set of atoms A, we can find x ∈ X such that [x] = x̄ and l(x) # A.

Proof Pick any representative x′ of x̄. We cannot choose x to be x′ right away,

since in principle the set l(x′) may not be fresh with respect to A. We can, however,

rename the conflicting atoms to fresh values.

Choose a set of atoms A′ such that |A′| = |l(x′) ∩ A| and A′ # (x′, A). By

a cardinality argument, we can construct a permutation π that sends l(x′) ∩ A to

A′ while leaving all other atoms fixed. By construction, π does not affect the free

atoms of x′; formally, supp(π) = l(x′) ∩ A ∪ A′, hence π # supp(x′) \ l(x′). This

implies that [π · x′] = [x′] = x̄. We then can choose x to be π · x′, provided that we

show that its atoms are completely fresh (that is, π · l(x′) # A). The result follows

because the definition of π implies that π · l(x′) = A′ ∪ l(x′) \A, and both parts are

disjoint from A. 2

Lemma 6.9 Let X be a nominal set with a binding operator l, and A a finite set

of atoms. Let x1 and x2 be two elements of X such that x1 ≡l x2, l(x1) # A, and

l(x2) # A. There exists a permutation π such that π # A, π # supp(x1) \ l(x1),

and x2 = π · x1.

Proof By the definition of ≡l, we can find some permutation π′ that is fresh for

supp(x1) \ l(x1), and such that x2 = π′ · x1. By basic properties of permutations,

14

Azevedo de Amorim

there exists a permutation π such that

π(a) = π′(a) if a ∈ l(x1)

supp(π) ⊆ l(x1) ∪ l(x2).

The set l(x1) ∪ l(x2) is disjoint from supp(x1) \ l(x1) and A, implying that π is

fresh for supp(x1) \ l(x1) and A. In order to conclude, it suffices to show that

π · x1 = π′ · x1, which holds because π and π′ agree on supp(x1). 2

We can now explain how local binding operators yield binding functions.

Lemma 6.10 Let X be a set with two independent nominal structures, and l a local

binding operator on X with respect to the operation �1. There exists an isomorphism

X/≡1
l
∼= X#l/l making the following diagram commute:

X X/≡1
l

X#l X#l/l

In particular, to build an equivariant function f̄ : X/≡1
l →eq Y , it suffices to find an

equivariant f : X#l →eq Y such that l(x) # f(x) for every x; then, f̄([x]) = f(x)

whenever x is in X#l.

Proof Consider the canonical projection into X/≡1
l restricted to the nominal sub-

set X#l. Call this function f . By Lemma 5.2, it suffices to show that f is binding,

and that its corresponding binding operator, lf , is equal to l. The last point follows

by unfolding definitions and making use of the freshness constraints on the elements

of X#l. Moreover, we can show that f is surjective using Lemma 6.8. The only

part that is missing is showing that f(x1) = f(x2) implies x1 ≡l x2 for any x1 and

x2 in X#l. Note that f(x1) = f(x2) is equivalent to x1 ≡1
l x2. Using Lemma 6.9,

we find a permutation π that is fresh for supp2(x1) and supp1(x1) \ l(x1) such that

x2 = π �1 x1. We must then show that x ≡l π �1 x. The assumptions on π imply

that

x = π �2 x (5)

π # supp1(x) \ l(x) ∪ supp2(x). (6)

Thus, showing x ≡l π �1 x is tantamount to showing x ≡l π · x = π �1 π �2 x.

We conclude using (6), which, given that l(x) # supp2(x), is equivalent to π #

supp(x) \ l(x), 2

By applying this result to the nominal set Par(E), and unfolding definitions, we

find that it is isomorphic to

{(f, e) ∈ (A⇀fin E)× E | dom(f) # im(f)}/(dom ◦ p1),

where p1 is the first projection. This shows that even if we can construct elements

of Par(E) by giving a let expression where some of the free atoms in the bodies

of the local definitions are shadowed, when defining functions on that set, we can

15

Azevedo de Amorim

assume that the locally defined atoms are disjoint from the ones that are free. We

can see this fact as a restatement, in nominal terms, of Barendregt’s well-known

variable convention, of which Lemma 6.10 is a formal justification.

6.4 Multiple Quotients

Although the above results have been stated for quotients by a single local binding

operator, they can also be composed to derive elimination principles for quotients by

multiple operators. For this, we can make use of the following simple observation,

which allows us to combine the freshness constraints arising from multiple quotients.

Lemma 6.11 Let X be a nominal set with a binding operator l. Every nominal

subset X̄ of X/l is of the form

{x ∈ X | [x] ∈ X̄}/l.

Proof By Lemma 5.2. 2

As an example of elimination principle for multiple quotients, we have the fol-

lowing result.

Lemma 6.12 Let X be a set with two independent nominal structures and two

local binding operators, l1 : X →1
eq Pfin(A) and l2 : X →2

eq Pfin(A). Let ≡l1,l2 be

the composition of the equivalence relations ≡1
l1

and ≡2
l2

. There is an isomorphism

X/≡l1,l2 ∼= X#l1,l2/(l1 ∪ l2) such that the following diagram commutes:

X X/≡l1,l2

X#l1,l2 X#l1,l2/(l1 ∪ l2)

where

X#l1,l2 = {x ∈ X | l1(x) # supp2(x), l2(x) # supp1(x)}.

Proof Because both renaming operations are independent, the composition ≡l1,l2
is indeed an (equivariant) equivalence relation. We can express the quotient by this

equivalence relation as an iterated quotient, which, thanks to Lemma 6.10, has the

form

X/≡l1,l2 ∼= (X#l1/l1)#l̄2
/l̄2,

where l̄2 denotes the lifting of the binding operator l2 to X#l1/l1, using Lemma 3.5.

By Lemma 6.11, we have

(X#l1/l1)#l̄2
∼= {x ∈ X#l1 | l2(x) # supp1(x) \ l1(x)}/l1 (7)

Since l2(x) ⊆ supp2(x) for every x ∈ X, we can see that l1(x) # l2(x) when

x ∈ X#l1 . Thus, the right-hand side of (7) is precisely X#l1,l2/l1. We conclude

using the fact that

X#l1,l2/l1/l̄2
∼= X#l1,l2/(l1 ∪ l2),

thanks to Lemma 5.3. It is a tedious but straightforward exercise to check that the

composition of these isomorphims results in the above commuting diagram. 2

16

Azevedo de Amorim

It is worth spelling out explicitly a special case of this result.

Lemma 6.13 Let X,Y be nominal sets and lX , lY be binding operators over them.

Define the separated product to be the following nominal subset of X × Y :

(X, lX)⊗ (Y, lY) , {(x, y) ∈ X × Y | x # lY (y), lX(x) # y}

Let l(x, y) , lX(x) ∪ lY (y). There is an isomorphism

σ : X/lX × Y/lY ∼= ((X, lX)⊗ (Y, lY))/l

satisfying σ([x], [y]) = [(x, y)] for all (x, y) ∈ (X, lX)⊗ (Y, lY).

Proof As pointed out before, we can define two independent renaming structures

on X × Y :

π �1 (x, y) = (π · x, y) π �2 (x, y) = (x, π · y).

We can check that lX and lY can be lifted to local binding operators l1 and l2 on

X × Y , and that the separated product (X, lX) ⊗ (Y, lY) is just (X × Y)#l1,l2 , as

defined in Lemma 6.12. We conclude by noting that the product relation ≡lX × ≡lY
is the composition of ≡1

l1
and ≡2

l2
, and that

X/lX × Y/lY ∼= (X × Y)/(≡lX ×≡lY) ∼= (X × Y)#l1,l2/l,

where the last isomorphism follows from Lemma 6.12. 2

With this result, we can finally state a strong elimination principle for binding

operators, which describes finitely supported functions defined on their quotients.

Lemma 6.14 Let X and Y be nominal sets, l be a binding operator on X, and

f : X →fs Y a finitely supported function that satisfies the following freshness

condition for binders: if x is such that lX(x) # f , then lX(x) # f(x). There exists

f̄ : X/lX →fs Y satisfying f̄([x]) = f(x) for all x such that lX(x) # f .

Proof Roughly, we can use the previous result to express f̄ as the partial applica-

tion of a suitable evaluation function. Define the nominal set

F , {g : X →fs Y | ∀x. lX(x) # g ⇒ lX(x) # g(x)}.

Pose lF (g) , ∅ and l(g, x) , lX(x). Let P , (F, lF) ⊗ (X, lX) and e : P →eq Y be

the evaluation function e(g, x) , g(x). By construction, e satisfies l(g, x) # e(g, x)

for every (g, x) ∈ P . Using Lemma 3.5, we can thus construct ē : P/l →eq Y

such that ē([(g, x)]) = g(x). We then pose f̄(x̄) , ē(σ([f], x̄)), where σ is the

isomorphism of Lemma 6.13. 2

Unlike the case for equivariant functions, the mapping f 7→ f̄ defined above is

not bijective in general, because it only uses part of the information contained in

its argument: in order to have f̄ = ḡ, we just have to guarantee that f(x) = g(x)

for all x such that lX(x) # (f, g).

17

Azevedo de Amorim

Lemma 6.14 is the analog for binding operators of an earlier result on name

abstractions [9], which says that we can obtain a function f̄ : [A]X →fs Y by

finding f : A × X →fs Y satisfying a # f(a, x) when a # f—exactly what we

obtain by instantiating our result with the operator lα defining name abstraction.

7 Functorial Properties

So far, we have used binding operators to define individual syntactic constructs,

but still have not determined when such constructs can be combined into valid

complete grammars. Previous results show that this is possible in many cases, such

as grammars given by nominal signatures [18]. This allows us for instance to define

the set of λ-terms modulo α-equivalence as the solution of the equation

Λ = A + Λ2 + [A]Λ, (8)

which says that a λ-term is either a variable, a pair of λ-terms representing an

application, or the name abstraction of a λ-term, representing a function definition.

In this section, we extend these results to a large class of nominal sets defined

with binding operators. It is standard to interpret definitions such as the one above

as specifying the initial algebra of a certain functor. What makes the definition of

Λ valid is that name abstraction can be made into a functor, and that this functor

satisfies certain technical conditions needed for the construction of initial algebras.

Thus, we want to determine which endofunctors on Nom can be defined through

binding operators and to study their properties. The first step is to recast some

of the earlier definitions into a more structured form, showing that the process of

quotienting by a binding operator is itself functorial.

Definition 7.1 The category of binding operators Bnd is defined as follows. Ob-

jects are pairs (X, lX), where X is a nominal set and lX is a binding operator over

X. When no ambiguity can arise, we use X to refer to the pair (X, lX), and we

sometimes omit the X index from lX . A morphism from X to Y is an equivariant

function f : X →eq Y such that, for every x in X,

lY (f(x)) = lX(x) ∩ supp(f(x)).

We note U : Bnd→ Nom the obvious forgetful functor that maps (X, lX) to X.

Intuitively, this definition says that applying a morphism f in Bnd to an argu-

ment x cannot change the status of the atoms in supp(x) from bound to free, or vice

versa. Note, however, that applying f may still remove atoms from the support of

x entirely, both bound and free. This restriction guarantees that every such f can

be lifted to quotients, as shown in the following result.

Lemma 7.2 We can extend quotients by binding operators to a functor Q : Bnd→
Nom satisfying

Q(X) = X/lX Q(f)([x]) = [f(x)].

18

Azevedo de Amorim

Note that the second identity says that the canonical projections form a natural

transformation U → Q. This functor has a right adjoint Z : Nom → Bnd, which

associates to a nominal set X the constant binding operator l(x) = ∅. Furthermore,

the QZ is naturally isomorphic to the identity on Nom, via the canonical projection

into the quotient.

Proof We define the action of Q on morphisms by appealing to Lemma 3.5. Specif-

ically, let X and Y be two objects in Bnd, and f : X → Y be a morphism be-

tween them. We know that f and [−] are equivariant, thus it suffices to show that

lX(x) # [f(x)] for all x in X. Since supp([f(x)]) = supp(f(x)) \ lY (f(x)), this is

equivalent to

lX(x) ∩ supp(f(x)) \ lY (f(x)) = ∅,
which readily follows from the fact that f is a morphism in Bnd. It is easy to

verify that this construction preserves identities and composition; thus, Q is indeed

a functor.

To show that Z is right adjoint to Q, consider an equivariant function f :

Q(X) →eq Y , where X ∈ Bnd and Y is a nominal set. The composite g = f ◦ [−]

is an equivariant function that satisfies lX(x) # g(x) for every x in X. Thus, g is a

morphism X → Z(Y) in Bnd. Conversely, given a morphism g : X → Z(Y) in Bnd,

we can use Lemma 3.5 to factor it as f ◦ [−], with f : Q(X) → Y . We can readily

check that these constructions are mutally inverse, and natural in X and Y . The

last assertion follows from Lemma 5.2. 2

We note that the condition on morphisms of Definition 7.1 is not tight, in the

sense that the above proof would still work with the weaker assumption

lY (f(x)) ⊇ lX(x) ∩ supp(f(x)),

which intuitively says that f may bind atoms that are free in x. The reason for

choosing the stronger variant, as we will see, is that it allows us to characterize

Bnd as a category of coalgebras, which will play an important role later on, when

studying functors involving quotients.

To define a functor on Nom via binding operators, we can define a functor

F : Nom → Bnd, and then consider the composite QF . It is easy to see that the

examples discussed so far—name abstractions, name restriction, mutually recursive

and parallel definitions—can be extended into functors by following this recipe. For

name abstractions, for instance, we can take F (X) to be A×X, endowed with the

binding operator lα(a, x) = {a}, which can be extended to a functor in the obvious

way.

7.1 Strengthening Quotients

Many functors derived from binding operators allow arbitrary finitely supported

functions to be lifted, not just equivariant ones. A good example is name ab-

straction: given any finitely supported function f : X →fs Y , we can define

[A]f : [A]X →fs [A]Y satisfying [A]f(〈a〉x) = 〈a〉(f(x)) whenever a # f . In

category-theory jargon, such functors are known as enriched.

19

Azevedo de Amorim

Formally, to enrich a functor G : Nom → Nom means to extend its action on

morphisms to a family of equivariant functions (X →fs Y) →eq (G(X) →fs G(Y))

satisfying the usual functor laws. An equivariant action is compatible with the

structure of Nom, which allows us to generalize properties of G to finitely supported

functions. For instance, if G has an initial algebra, it supports a recursion scheme

that for defining finitely supported functions.

If G is of the form QF , it can be enriched by appealing to the elimination

principle of Lemma 6.14, but the quotient structure provides a more direct route.

Indeed, it is well-known that enriching QF is equivalent to giving it a strength:

a natural transformation ηX,Y : X × QF (Y) → QF (X × Y) satisfying the laws

depicted below.

1×QF (A) QF (1×A)

QF (A)

η

(A×B)×QF (C) QF ((A×B)× C)

A× (B ×QF (C))

A×QF (B × C) QF (A× (B × C))

η

A×η
η

Intuitively, η allows us to lift functions by currying the composite

(X →fs Y)×QF (X) QF ((X →fs Y)×X) QF (Y)
η F (ε)

,

where ε denotes the evaluation function (X →fs Y)×X →eq Y . The strength laws

then guarantee that the resulting action satisfies the required functor laws.

Now, note that the separated product⊗ of Lemma 6.13 admits a trivial extension

into a bifunctor Bnd2 → Bnd, endowing Bnd with the structure of a symmetric

monoidal category, with unit Z(1); furthermore, its isomorphism σ : Q(X)×Q(Y) ∼=
Q(X ⊗Y) is natural in X and Y , and satisfies all laws required to make Q a strong

monoidal functor from (Bnd,⊗, Z(1)) to (Nom,×, 1). This allows us to strengthen

QF by composition: it suffices to find a natural transformation η′X,Y : Z(X) ⊗
F (Y) → F (X × Y) in Bnd satisfying laws analogous to the ones above. It is then

a simple exercise to check that the composite

X ×QF (Y) QZ(X)×QF (Y) Q(Z(X)⊗ F (Y)) QF (X × Y)
∼= ∼= Qη′

is a strength on QF . Indeed, all of the functors arising from binding operators

studied here can be trivially strengthened in this fashion.

7.2 Preservation of Colimits and Initial Algebras

After analyzing the matter of strength, let’s turn our attention to other properties of

quotient functors—namely, which colimits they preserve. Among other things, this

is useful for building initial algebras. The initial algebra of a functor G : Nom →
Nom is normally constructed as the colimit of the chain diagram

∅ G(∅) G2(∅) · · ·ι G(ι) G2(ι)
,

but this construction only makes sense if G preserves that colimit, which can often

20

Azevedo de Amorim

be reduced to showing that the individual functors appearing in definition of G

preserve colimits of the same shape.

Note that, since Q has a right adjoint, QF preserves all colimits that are pre-

served by F . But F takes values in a category of binding operators, which must

in principle be taken into account when computing these colimits. We show here is

that this is not the case: we can always reduce colimits in Bnd to simpler colimits in

Nom, by characterizing the former as the Eilenberg-Moore category of the following

comonad.

Lemma 7.3 The L construction used in Section 4.2 for modeling name restriction

can be extended into a functor Nom→ Nom by setting

L(f)(A, x) = (A ∩ supp(f(x)), f(x))

This functor has the structure of a comonad, given by natural transformations ρ :

L→ 1 and ν : L→ L2 defined by

ρ(A, x) = x ν(A, x) = (A, (A, x))

and satisfying the usual conditions: Lν ◦ ν = νL ◦ ν and Lρ ◦ ν = ρL ◦ ν = 1L.

Proof It is easy to check that the action of L on morphisms is functorial; for

instance,

L(f)(L(g)(A, x)) = (A ∩ supp(g(x)) ∩ supp(f(g(x))), f(g(x)))

= (A ∩ supp(f(g(x))), f(g(x)))

= L(f ◦ g)(x),

where we made use of the fact that supp(f(g(x))) ⊆ supp(g(x)). Checking that

(L, ρ, ν) forms a comonad is similarly straightforward. 2

Theorem 7.4 The category Bnd is equivalent to the Eilenberg-Moore category of

coalgebras of the comonad (L, ρ, ν). We recall that objects of this category are pairs

(X, l) of a nominal set X and a map l : X →eq L(X) satisfying the first two

laws depicted below. A morphism from (X, lX) to (Y, lY) is an equivariant function

f : X →eq Y making the third diagram below commute.

X L(X)

X

l

1 ρ

X L(X)

L(X) L2(X)

l

l ν

L(l)

X Y

L(X) L(Y)

f

lX lY

L(f)

Proof An equivariant function l : X →eq L(X) satisfying the commuting triangle

above is of the form l(x) = (l′(x), x), proving that such a function is equivalent to

a binding operator on X. The first commuting square is valid for any l satisfying

the triangle. The second commuting square is just a restatement of the restriction

imposed on morphisms in Bnd. 2

As with every Eilenberg-Moore category, we obtain a right adjoint L̄ to the

forgetful functor U : Bnd → Nom. By unpacking the definitions, we can see this

21

Azevedo de Amorim

right adjoint as endowing each L(X) with a binding operator l(A, x) , A, exactly

what we used to model name restriction in Section 4.2. We now have all the required

ingredients to prove the main result of this section.

Theorem 7.5 Let I be a small category and D : I → Bnd a diagram. Suppose

that (U(ρi) : U(Di)→ U(C))i∈I is a colimiting cocone in Nom. Then so is (Q(ρi) :

Q(Di)→ Q(C))i∈I . In particular, any functor of the form QF preserves all colimits

that are preserved by UF .

Proof As previously noted, since Q has a right adjoint, it suffices to show that

(ρi : Di → C) is a colimiting cocone in Bnd. But this holds because U creates

colimits, thanks to general results on Eilenberg-Moore categories [2, Props. 4.1.4

and 4.3.1]. 2

Remark 7.6 The preceding result does not hold for limits in general. For a coun-

terexample, consider the functor S : Nom→ Bnd, defined as S(X) = (X, supp), with

the obvious action on morphisms. We have (trivially) that US(A2) = US(A)2 = A2.

On the other hand, QS(A2) has two elements ([(a, a)] and [(a, a′)], where a 6= a′),

whereas the product QS(A)2 has only one.

As mentioned previously, one application of Theorem 7.5 is showing that a func-

tor of the form QF can be used for defining grammars by initial algebras, which

often follows from simple category-theoretic reasons. For instance, suppose that

F = (X × (−), lα) is the functor defining generalized name abstractions [X](−), as

in Section 4. Then UF = X × (−), which preserves all colimits because Nom is

cartesian closed.

Another potential application is providing sufficient conditions for the existence

of right adjoints of quotient functors. One of the many corollaries of the adjoint

functor theorem says that, for a functor Nom→ Nom, preserving arbitrary colimits

and having a right adjoint are equivalent, because Nom is a Grothendieck topos. If

that functor is of the form QF , then Theorem 7.5 allows us to check only whether

UF preserves arbitrary colimits. We immediately conclude, for the same reasons as

before, that generalized name abstractions have a right adjoint. Although this par-

ticular right adjoint already had a good explicit characterization [3], we think that

our construction helps shed light on the relation between binding and adjunctions.

8 Conclusion and Related Work

Binding operators are an expressive framework for defining binders for nominal sets,

encompassing many constructs that have been previously proposed in the literature.

Although it is not clear how much expressive power our operators add compared to

previous approaches, we believe that they provide a uniform, concise explanation

for many of the properties enjoyed by binding constructs, such as their elimination

principles, functoriality, compatibility with inductive definitions, etc.

Since the early development of nominal sets, researchers have directed their at-

tention to more general forms of binding than name abstraction. The simplest such

construction is given by generalized name abstractions, studied by Gabbay [4] and

others. Clouston [3] investigated some of their categorical properties, in particu-

22

Azevedo de Amorim

lar the related notion of separating function, and adjunctions between generalized

name abstractions and the so-called freshening function space. That work provides

an explicit construction of this adjunction, which could be interesting to generalize

to other quotients by binding operators.

The Nominal Isabelle package features a rich language for defining data types

with binders [17], allowing users to specify which atoms are bound in values of a data

type. Unlike the present work, their focus is not in offering a foundational definition

of binding, but in providing a usable and flexible tool. One point of similarity is that

they use a general class of functions to enumerate which atoms are bound. Although

such functions are more limited than general binding operators, the mechanism is

rich enough to capture interesting binders, including generalized name abstractions

and free nominal restriction sets. One way in which Nominal Isabelle goes beyond

our framework is by allowing two parts of a term to be renamed independently, and

yet share the same set of bound atoms. For instance, assuming that we have two

different atoms a and a′, this would allow to equate terms of the form

Foo {a, a′} (a, a′) (a, a′) = Foo {a, a′} (a, a′) (a′, a),

assuming that the definition of Foo is such that it binds the set {a, a′} separately

on its second and third arguments; that is, we allow swapping the a and a′ in the

third argument independently of the second.

To our knowledge, the closest relative of binding operators and their quotients

is the operation of simple monoidal sum studied by Schöpp [13, Section 3.3.2]; we

quickly review that construction here, adapted to our conventions and notations.

We start with an arbitrary equivariant function f : X →eq Y ∗A, where Y ∗A denotes

the “full” separated product, in which both components are not allowed to share any

atoms. We then define a binding operator l on X by posing l(x) = supp(p2(f(x))).

By construction, l(x) # p1(f(x)) for every x. Thus, we can lift g = p1 ◦ f to

ḡ : X/l →eq Y , which we call the simple monoidal sum of f . Viewed this way, this

construction is a small generalization of quotients by binding operators; indeed, we

can recover the latter by taking A to be Pfin(A). The main difference between both

works is that Schöpp uses simple monoidal sums to interpret a form of dependent

sum in a nominal type theory, studying properties of that construction that are

more relevant in that context, whereas we attempt to provide a more elementary

presentation of binding, quotients, and their properties.

References

[1] F. Borceux. Handbook of Categorical Algebra: Volume 1, Basic Category Theory. Cambridge Textbooks
in Linguistics. Cambridge University Press, 1994.

[2] F. Borceux. Handbook of Categorical Algebra: Volume 2, Categories and Structures. Cambridge Studies
in Philosophy. Cambridge University Press, 1994.

[3] R. Clouston. Generalised name abstraction for nominal sets. In FoSSaCS, volume 7794 of Lecture
Notes in Computer Science, pages 434–449. Springer, 2013.

[4] M. J. Gabbay. FM-HOL, a higher-order theory of names. In In Thirty Five years of Automath,
Heriot-Watt, 2002.

[5] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Computing, 13(3-5):341–363, 2002.

23

Azevedo de Amorim

[6] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM, 40(1):143–184, Jan.
1993.

[7] A. Kurz, D. Petrian, P. Severi, and F. de Vries. Nominal coalgebraic data types with applications to
lambda calculus. Logical Methods in Computer Science, 9(4), 2013.

[8] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Inf. Comput., 100(1):1–40,
Sept. 1992.

[9] A. M. Pitts. Alpha-structural recursion and induction. J. ACM, 53(3):459–506, May 2006.

[10] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge University Press,
New York, NY, USA, 2013.

[11] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names modulo renaming.
In Mathematics of Program Construction, volume 1837 of Lecture Notes in Computer Science, pages
230–255. Springer-Verlag, 2000.

[12] F. Pottier. An overview of Cαml. Electron. Notes Theor. Comput. Sci., 148(2):27–52, Mar. 2006.

[13] U. Schpp. Names and Binding in Type Theory. PhD thesis, University of Edinburgh, 2006.

[14] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa. Ott: Effective tool
support for the working semanticist. J. Funct. Program., 20(1):71–122, 2010.

[15] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with binders made simple. In
Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming (ICFP
2003), volume 38, page 263274. ACM Press, August 2003.

[16] C. Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reason., 40(4):327–356, May 2008.

[17] C. Urban and C. Kaliszyk. General bindings and alpha-equivalence in nominal Isabelle. Logical Methods
in Computer Science, 8(2), 2012.

[18] C. Urban, A. Pitts, and M. Gabbay. Nominal unification. In Computer Science Logic: 17th
International Workshop CSL 2003, 12th Annual Conference of the EACSL, 8th Kurt Gödel
Colloquium, KGC 2003, Vienna, Austria, August 25-30, 2003. Proceedings, pages 513–527, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

24

MFPS 2016

Iteration and labelled iteration

Bram Geron and Paul Blain Levy

Abstract

We analyse the conventional sum-based representation of iteration from the perspective of programmers, and show that
the syntax they suggest is fundamentally not a good representation of Java-style iteration with for, while, break, and
continue. We present an alternative syntax, which we call “labelled iteration”, where loops are identified using labels.
The languages are analysed: we give denotational and operational semantics, adequacy proofs for both languages, and a
translation function from sum-based iteration to labelled iteration.

Keywords: iteration, loops, lexical binding, operational semantics, denotational semantics, higher-order language, lambda
calculus, de Bruijn indices

1 Introduction

There might be an improved version of this article online
at http://bram.xyz/iteration .

1.1 Overview

Iteration is an important programming language feature.

● In imperative languages, it is best known in for and while loops. The meaning of
such a loop is to iterate code until some condition is met, or if the condition is never met,
the loop diverges. Such loops are often supplemented by break and continue.

● It has also been studied in the lambda calculus setting [13,19,21].

● In the categorical setting, iteration corresponds to complete Elgot monads [9]. They
descend from iterative, iteration, and Elgot theories, and their algebras and monads
[7,1,2,3,23], which study variants of the sum-based iteration −†. This field is related
to Kleene monads [10,17,18].

Iteration can be implemented using recursion, but it is simpler: semantics of recursion
require a least fixpoint, where iteration has a simple set-based semantics. Also from the
programmer’s perspective, iteration and recursion are different: a program using a for or
while loop can sometimes be clearer than the same program using recursion.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://bram.xyz/iteration

Geron and Levy

1.2 The sum-based representation of iteration

We study two representations of iteration. First, the classical sum-based construct −† that
turns a computation Γ,A ⊢ M ∶ A +B into a computation Γ,A ⊢ M† ∶ B. Categorically,
this representation of iteration corresponds to complete Elgot monads [9]. To understand
the correspondence better, we introduce a term constructor iter for −†. (Details are in
Section 2.)

Γ ⊢v V ∶ A Γ, x∶A ⊢c M ∶ A +B

Γ ⊢c iter V, x. M ∶ B

Imperative programs with for and while can now be encoded using iter. As an example,
the program on the left corresponds to the term on the right:

imperative λ-calculus-like

x ∶= V ;

while (p(x)) {

x ∶= f(x);

}

return g(x);

iter V,x.

if p(x)

then return inl f(x)

else return inr g(x)

This works as follows. The iter construct introduces a new identifier x, which starts at V .
The body is evaluated. If the body evaluates to inrW , then the loop is finished and its result
is W . If the body evaluates to inl V ′, then we set x to V ′, and keep on evaluating the body
until it evaluates to some inrW .

1.3 The “De Bruijn index” problem with the sum-based representation

Programmers using imperative languages regularly use nested loops, as well their associ-
ated break and continue statements, which may be labelled. Such statements are not
essential for programming, and code using break or continue can be rewritten to not
use either statement, but this usually comes at a price in readability. There is usually a
labelled and an unlabelled form of break and continue; here is an example imperative

196

Geron and Levy

program with nested, labelled, loops and labelled continue statements.

outer ∶ while (⋯) {

middle ∶ while (⋯) {

if (⋯) { y ∶= f(y); continue middle; }

else

inner ∶ while (⋯) {

if (⋯) { z ∶= g(z); continue inner; }

if (⋯) { y ∶= h(y); continue middle; }

if (⋯) { x ∶= k(x); continue outer; }

⋮

}

}

}

Recall that “continue middle;” aborts the inner loop, as well as this iteration of the middle
loop, and continues with a fresh iteration of the middle while loop. Statements “continue inner;”
and “continue outer;” work analogously.

Assume that the outer, middle, and inner loops compute x, y, and z, respectively. Then this
program approximately corresponds to a term of the following structure.

iter Vinit,x, x.

iter Vinit,y, y.

if ⋯ then return inl f(y)

else

iter Vinit,z, z.

if ⋯ then return inl g(z)

else if ⋯ then return inr inl h(y)

else if ⋯ then return inr inr inl k(x)

else ⋯

● We encode the sequence “z ∶= g(z); continue inner;” as “return inl g(z)”, as in the first
example; this will restart the inner iter with a new value for z.

● We encode the sequence “y ∶= h(y); continue middle;” as “return inr inl h(y)”: the
body of the inner iter evaluates to inr inl h(y), then the inner iter evaluates to inl h(y),
then the middle iteration is restarted with a new value for y.

In general, we can encode “w ∶=m(w); continue label;” as

return inr inr ⋯ inr
)︁⌊︂]︂⌊︂)︂

n times

inlm(w)

where n is the number of loops that must be exited totally.

Such a representation of labelled continue is inadequate for programmers for three rea-
sons.

197

Geron and Levy

(i) To determine what loop the control statement refers to, the reader must resort to count-
ing, which is error-prone.

(ii) The sum-based representation of the same control statement looks different depend-
ing on the number of loops that must be skipped. That is, the representation of
“continue outer” looks different depending on whether it occurs in the inner loop,
the middle loop, or the outer loop.

(iii) The same representation of a control statement, occurring in different places, can refer
to a different loop. In our example, return inl corresponds to both continue middle;

and to continue inner; .

We call this the “De Bruijn index problem”, because De Bruijn’s indices [6] for identifiers
in λ calculus also work by counting intermediate binders, and they share these three prob-
lems for programmers. Indeed, De Bruijn [6] claims his notation to be good for a number
of things, but does not claim that it is “easy to write and easy to read for the human reader”.
For a brief introduction to De Bruijn indices, we refer to [14]; the same problem has also
been studied from a different angle in [4,22].

1.4 The solution: Labelled iteration

We solve the De Bruijn index problem with a second iteration construct, which we call
labelled iteration. It binds a name x ∶ A with a dual purpose: (1) It holds a value of type A.
(2) It serves as a label for restarting the loop, upon which a new value of type A must be
supplied.

For instance, the last example would look as follows using labelled iteration:

iter Vinit,x, x.

iter Vinit,y, y.

if ⋯ then raisey f(y)

else

iter Vinit,z, z.

if ⋯ then raisez g(z)

else if ⋯ then raisey h(y)

else if ⋯ then raisex k(x)

else ⋯

Like sum-based iteration, labelled iteration has a set-based semantics, but the type system
is more involved. We explain labelled iteration in more detail in Section 3. We chose the
spelling raise because there is a similarity with raising an exception; see also the discussion
in Section 4.

1.5 Contributions

We define both languages: we give a type system, denotational semantics, big-step opera-
tional semantics, and an adequacy theorem for both languages. We explain the De Bruijn

198

Geron and Levy

values V,W ∶∶= x ⋃︀ ∐︀̃︀ ⋃︀ 0 ⋃︀ succ V ⋃︀ inl V ⋃︀ inr V ⋃︀ ∐︀V,W ̃︀ ⋃︀ λx. M

computations M,N ∶∶= return V ⋃︀ let V be x. M ⋃︀M to x. N

⋃︀ V W ⋃︀ case V of {0. M ; succ x. N}

⋃︀ case V of {inl x. M ; inr y. N} ⋃︀ case V of ∐︀x, ỹ︀. M

types A,B,C ∶∶= 1 ⋃︀ nat ⋃︀ A +B ⋃︀ A ×B ⋃︀ A→ B

(x ∶ A) ∈ Γ

Γ ⊢v x ∶ A Γ ⊢v ∐︀̃︀ ∶ 1 Γ ⊢v 0 ∶ nat

Γ ⊢v V ∶ nat

Γ ⊢v succ V ∶ nat

Γ ⊢v V ∶ A

Γ ⊢v inl V ∶ A +B

Γ ⊢v V ∶ B

Γ ⊢v inr V ∶ A +B

Γ ⊢v V ∶ A Γ ⊢v W ∶ B

Γ ⊢v ∐︀V,W ̃︀ ∶ A ×B

Γ ⊢v V ∶ A

Γ ⊢c return V ∶ A

Γ ⊢v V ∶ A Γ, x ∶ A ⊢c M ∶ B

Γ ⊢c let V be x. M ∶ B

Γ ⊢c M ∶ A Γ, x ∶ A ⊢c N ∶ B

Γ ⊢c M to x. N ∶ B

Γ, x ∶ A ⊢c M ∶ B

Γ ⊢v λx. M ∶ A→ B

Γ ⊢v V ∶ A→ B Γ ⊢v W ∶ A

Γ ⊢c V W ∶ B

Γ ⊢v V ∶ nat Γ ⊢c M ∶ C Γ, x ∶ nat ⊢c N ∶ C

Γ ⊢c case V of {0. M ; succ x. N} ∶ C
Γ ⊢v V ∶ A +B Γ, x ∶ A ⊢c M ∶ C Γ, y ∶ B ⊢c N ∶ C

Γ ⊢c case V of {inl x. M ; inr y. N} ∶ C
Γ ⊢v V ∶ A ×B Γ, x ∶ A,y ∶ B ⊢c M ∶ C

Γ ⊢c case V of ∐︀x, ỹ︀. M ∶ C

Addition for sum-based iteration

Γ ⊢v V ∶ A Γ, x ∶ A ⊢c M ∶ A +B

Γ ⊢c iter V, x. M ∶ B

Figure 1. Above: syntax of plain fine-grain call-by-value. Sum-based iteration adds only one term construct and no values
or types; the type derivation of this term is given below.

problem with the first language, and give a realistic example. We show that the first con-
struct can be macro-expressed in terms of the second construct.

For both types of iteration, we study only loops with continue: we omit break because
we believe it is a straightforward extension.

We define the language with sum-based iteration in Section 2, and the language with la-
belled iteration in Section 3.

2 Sum-based iteration

We define both our constructs in terms of fine-grain call-by-value or FGCBV [20], which

199

Geron and Levy

Fine-grain call-by-value

JxKρ = ρ(x)
J∐︀̃︀Kρ = ∐︀̃︀
J0Kρ = 0

Jsucc V Kρ = 1 + JV Kρ
Jinl V Kρ = inl JV Kρ
Jinr V Kρ = inr JV Kρ

J∐︀V,W ̃︀Kρ = ∐︀JV Kρ, JW Kρ̃︀
Jλx. MKρ = λ(a∈JAK).JMK(ρ,x↦a)

Jreturn V Kρ = inl JV Kρ
Jlet V be x. MKρ = JMK(ρ,x↦JV Kρ)

JM to x. NKρ =
)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

JNK(ρ,x↦v) if JMKρ = inl v

inr � if JMKρ = inr �

JV W Kρ = JV Kρ JW Kρ

Jcase V of {0. M ; succ x. N}Kρ =
)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

JMKρ if JV Kρ = 0

JNK(ρ,x↦n) if JV Kρ = 1 + n

Jcase V of {inl x. M ; inr y. N}Kρ =
)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

JMK(ρ,x↦a) if JV Kρ = inl a

JNK(ρ,y↦b) if JV Kρ = inr b

Jcase V of {∐︀x, ỹ︀. M}Kρ = JMK(ρ,x↦a,y↦b) if JV Kρ = ∐︀a, b̃︀

Addition for sum-based iteration

Jiter V,x. MKρ =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

inl w if ∃v0..k s.t. v0 = JV Kρ
∧∀i ∶ JMK(ρ,x↦vi) = inl inl vi+1

∧JMK(ρ,x↦vk) = inl inr w

inr � if no such v0..k exists

Figure 2. Denotational semantics of values and terms in fine-grain call-by-value, and semantics of the sum-based iteration
construct.

is a variant of call-by-value lambda calculus that has a syntactic separation between values
and computations, and in which the evaluation order is made explicit.

We explain FGCBV and sum-based iteration here. The syntax and type system of FGCBV
is given in Figure 1. We give a simple set-based semantics with divergence:

J1K = {⋆}
JnatK = N

JA +BK = JAK + JBK
JA ×BK = JAK × JBK
JA→ BK = JAK→ (JBK + {�})

JΓK =∏
(x∶A)∈Γ

JAK

JΓ ⊢v V ∶ AK ∈ JΓK→ JAK
JΓ ⊢c M ∶ AK ∈ JΓK→ (JAK + {�})

The semantics of plain FGCBV and FGCBV with sum-based iteration are the same, except
of course that the latter has an extra construct. We give big-step operational semantics for
both languages in Figure 3. The adequacy statements are simple:

Proposition 2.1 (adequacy)

(i) For each closed term M of plain FGCBV without iteration, there is a unique V such
that M ⇓ return V , and JMK∅ = inl JV K∅.

(ii) For each closed term M of FGCBV with sum-based iteration, either

200

Geron and Levy

Fine-grain call-by-value
T ∶∶= return V

return V ⇓ return V

M(︀V ⇑x⌋︀ ⇓ T

let V be x. M ⇓ T

M ⇓ return V N(︀V ⇑x⌋︀ ⇓ T

M to x. N ⇓ T

M(︀W ⇑x⌋︀ ⇓ T

(λx. M)W ⇓ T

M(︀V ⇑x,W ⇑y⌋︀ ⇓ T

case ∐︀V,W ̃︀ of {∐︀x, ỹ︀. M} ⇓ T

M0 ⇓ T

case 0 of {0. M0; succ x. Msucc} ⇓ T

Msucc(︀V ⇑x⌋︀ ⇓ T

case (succ V) of {0. M0; succ x. Msucc} ⇓ T

Minl(︀V ⇑x⌋︀ ⇓ T

case (inl V) of {inl x. Minl; inr x. Minr} ⇓ T

Minr(︀V ⇑x⌋︀ ⇓ T

case (inr V) of {inl x. Minl; inr x. Minr} ⇓ T

Addition for sum-based iteration
T ∶∶= return V

∃k ≥ 0 ∃(V1,⋯, Vk) ∀i ∈ {1..k} ∶M(︀Vi−1⇑x⌋︀ ⇓ return inl Vi M(︀Vk⇑x⌋︀ ⇓ return inr Z

iter V0, x. M ⇓ return Z

Figure 3. Big-step operational semantics of plain fine-grain call-by-value and of sum-based iteration. In our operational
semantics, closed terms reduce to “terminal” terms of the same type, or they do not reduce at all. We use metavariable T
for terminals. For FGCBV and its extension with sum-based iteration, terminal terms are always of the form return V .
Introducing a separate notion of terminals might seem odd for now, but in Figure 6 we extend the rules for FGCBV and add
another form of terminal. So T above may come to stand for something other than return V further in the paper.

● there is a unique V such that M ⇓ return V , and JMK∅ = inl JV K∅, or

● M does not reduce to a terminal, and JMK∅ = inr �.

3 Labelled iteration with pure function types

3.1 Introduction

To fix the De Bruijn index problem indicated in Section 1.3, we now give a language that
has an effectful “labelled iteration” construct instead. The judgements in this language are

∆; Γ ⊢c M ∶ A for computations
Γ ⊢v V ∶ A for values

We give the typing rules in Figure 4. Γ is a context of identifiers representing values,
as usual. ∆ exists only for computations; it is a context of typed labels. Denotations of

201

Geron and Levy

Values and types are the same as in fine-grain call-by-value in Figure 1 on page 199.

computations M,N ∶∶= ⋯ ⋃︀ iter V,x. M ⋃︀ raisex V

(x∶A) ∈ Γ

Γ ⊢v x ∶ A

Γ ⊢v V ∶ A ∆; Γ, x∶A ⊢c M ∶ B

∆; Γ ⊢c let V be x. M ∶ B

Γ ⊢v V ∶ A

∆; Γ ⊢c return V ∶ A

∆; Γ ⊢c M ∶ A ∆; Γ, x∶A ⊢c N ∶ B

∆; Γ ⊢c M to x. N ∶ B

⋅ ; Γ, x∶A ⊢c M ∶ B

Γ ⊢v λx. M ∶ A→ B

Γ ⊢v V ∶ A→ B Γ ⊢v W ∶ A

∆; Γ ⊢c V W ∶ B

Γ ⊢v ∐︀̃︀ ∶ 1

Γ ⊢v V ∶ A

Γ ⊢v inl V ∶ A +B

Γ ⊢v V ∶ B

Γ ⊢v inr V ∶ A +B

Γ ⊢v V ∶ nat ∆; Γ ⊢c M ∶ C ∆; Γ, x∶A ⊢c N ∶ C

∆; Γ ⊢c case V of {0. M ; succ x. N} ∶ C
Γ ⊢v V ∶ A +B ∆; Γ, x∶A ⊢c M ∶ C ∆; Γ, y∶B ⊢c N ∶ C

∆; Γ ⊢c case V of {inl x. M ; inr y. N} ∶ C
Γ ⊢v V ∶ A ×B ∆; Γ, x∶A,y∶B ⊢c M ∶ C

∆; Γ ⊢c case V of ∐︀x, ỹ︀. M ∶ C

Γ ⊢v V ∶ A ∆, x∶A; Γ, x∶A ⊢c M ∶ B

∆; Γ ⊢c iter V,x. M ∶ B

Γ ⊢v V ∶ A (x∶A) ∈ ∆

∆; Γ ⊢c raisex V ∶ B

Figure 4. Syntax of labelled iteration.

judgements are

J∆; Γ ⊢c AK = (∏
(x∶B)∈Γ

JBK) → (∑
(x∶B)∈∆

JBK + JAK + {�})

JΓ ⊢v AK = (∏
(x∶B)∈Γ

JBK) → JAK .

Γ is used to form values.

(x∶A) ∈ Γ

Γ ⊢v x ∶ A

∆ is used to form computations, much like raising an exception. However, conventionally,
exception names come from a global set. Our “exception names”, which we call labels,
will be bound lexically, much like identifiers are bound by λ.

Furthermore, when a label is raised, it must be parametrised by a value of the corresponding

202

Geron and Levy

type. The typing rule is as follows:

Γ ⊢v V ∶ A (x∶A) ∈ ∆

∆; Γ ⊢c raisex V ∶ B

We thus have these judgements.

(x ∶ nat × bool) ; (y∶nat, z∶bool) ⊢c raisex ∐︀3, truẽ︀ ∶ string

(x ∶ nat × bool) ; (y∶nat, z∶bool) ⊢c raisex ∐︀y, z̃︀ ∶ 0

(x ∶ nat × bool) ; (y∶nat, z∶bool) ⊢c return y ∶ nat

But we cannot raise identifiers:

(x ∶ nat × bool) ; (y∶nat, z∶bool) ⇑⊢c raisey 3

And we can also not use labels for their value:

(x ∶ nat × bool) ; (y∶nat, z∶bool) ⇑⊢c return x ∶ nat × bool

Indeed, the typing rule of return (see Figure 4 on the previous page) shows that x is not
available in the context of the argument to return:

y∶nat, z∶bool ⊢v V ∶ nat × bool

(x ∶ nat × bool) ; (y∶nat, z∶bool) ⊢c return V ∶ nat × bool

Our use of a syntactically separate kind of names bears resemblance to the use of function
names by Kennedy [16] for control.

Labelled iteration

We now wish to use labels to generalise the iter V,x. M from last section. Remember that
previously when M reduces to

− return inl V ′, then the loop should be re-tried with value V ′,

− return inrW, then the result of the loop is W.

Our new notation will also be iter V,x. M . However, here x is both an identifier and a
label:

Γ ⊢v V ∶ A ∆, x∶A; Γ, x∶A ⊢c M ∶ B

∆; Γ ⊢c iter V,x. M ∶ B

Now similarly when writing iter V,x. M , when M reduces to

− raisex V
′, then the loop should be re-tried with value V ′,

− raisey W, (y ≠ x) then the loop should be aborted
and loop y should be re-tried with value W,

− returnW, then the result of the loop is W.

203

Geron and Levy

We wish to repeat that the same name x can appear in both ∆ and Γ. We pose no general
syntactic restriction on (x∶A) ∈ ∆ and (x∶B) ∈ Γ to have the same type. However, to be
able to form iter V,x. M , we must have x in both ∆ and Γ of the same type.

We also wish to note at this point that we define the semantics of our language on the
binding diagrams[8], that is, on the abstract syntax modulo α-equivalence.

Labelled iteration and λ

Now that contexts for computations are different from contexts for values, the conventional
fine-grain call-by-value judgements have to be tweaked to work in this setting. The typing
rule for return in Figure 4 is simple: when we move upwards from a computation to a value
judgement we just forget about ∆.

Γ ⊢v V ∶ A

∆; Γ ⊢c return V ∶ A

But reversely, for λ, we have a choice: what should ∆ be? We take what seems to be the
only reasonable choice: to reset ∆ to the empty context, ⋅ .

⋅ ; Γ, x∶A ⊢c M ∶ B

Γ ⊢v λx. M ∶ A→ B

Java agrees with this choice: it is a syntax error to write a labelled continue or break
with a label outside of the current method [11]. From a programmer’s perspective, this
means that all functions are pure.

3.2 Denotational semantics

Recall that the semantics of term and value judgements is as follows.

J∆; Γ ⊢c AK = (∏
(x∶B)∈Γ

JBK) → (∑
(x∶B)∈∆

JBK + JAK + {�})

JΓ ⊢v AK = (∏
(x∶B)∈Γ

JBK) → JAK

The denotation of types is as follows.

J1K = {⋆}
JnatK = N

JA +BK = JAK + JBK
JA ×BK = JAK × JBK
JA→ BK = JAK→ (JBK + {�})

We give the semantics of terms and values in Figure 5. We use the following notation for
elements of the ternary sum (∑(x∶B)∈∆JBK + JAK + {�}):

(i) return a (for a ∈ JAK) (compare to the term notation: return V),

204

Geron and Levy

JxKρ = ρ(x)
J∐︀̃︀Kρ = ∐︀̃︀
J0Kρ = 0

Jsucc V Kρ = 1 + JV Kρ
Jinl V Kρ = inl JV Kρ
Jinr V Kρ = inr JV Kρ

J∐︀V,W ̃︀Kρ = ∐︀JV Kρ, JW Kρ̃︀
Jλx. MKρ = λ(a∈JAK).JMK(ρ,x↦a)

Jreturn V Kρ = return JV Kρ
Jraisex V Kρ = raisex JV Kρ

Jlet V be x. MKρ = JMK(ρ,x↦JV Kρ)

JM to x. NKρ =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀]︀

JNK(ρ,x↦v) if JMKρ = return v

raisey w if JMKρ = raisey w

� if JMKρ = �

JV W Kρ = JV Kρ JW Kρ

Jcase V of {0. M ; succ x. N}Kρ =
)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

JMKρ if JV Kρ = 0

JNK(ρ,x↦n) if JV Kρ = 1 + n

Jcase V of {inl x. M ; inr y. N}Kρ =
)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

JMK(ρ,x↦a) if JV Kρ = inl a

JNK(ρ,y↦b) if JV Kρ = inr b

Jcase V of {∐︀x, ỹ︀. M}Kρ = JMK(ρ,x↦a,y↦b) if JV Kρ = ∐︀a, b̃︀

Jiter V,x. MKρ =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

return w if ∃v0..k s.t. v0 = JV Kρ
∧∀i ∶ JMK(ρ,x↦vi) = raisex vi+1

∧JMK(ρ,x↦vk) = return w

raisey w if ∃v0..k s.t. v0 = JV Kρ
∧∀i ∶ JMK(ρ,x↦vi) = raisex vi+1

∧JMK(ρ,x↦vk) = raisey w

� if no other case matches

Figure 5. Denotational semantics of terms and values of the language with labelled iteration. See also Section 3.2.

(ii) raisex b (for b ∈ JBK) (compare to the term notation: raisex V),

(iii) �.

Definition 3.1 [weakening] We say that ∆′; Γ′ is stronger than ∆; Γ when ∆′ ⊆ ∆ and
Γ′ ⊆ Γ. Alternatively, we say that ∆; Γ is weaker than ∆′; Γ′.

A term in a context is also a term in a weaker context, with the same derivation. A value in
a context is also a value in a weaker context, with the same derivation.

Definition 3.2 [closedness]

(i) When ⋅ ⊢v V ∶ A, then we say that V is closed.

(ii) When ∆; ⋅ ⊢c M ∶ A, then we say that M is closed.

Definition 3.3 A substitution (between two-zone contexts) σ ∶ ∆′; Γ′ → ∆; Γ consists of
two parts,

● for every label (x ∶ A) ∈ ∆′, a label σlab(x) of type A in ∆, and

205

Geron and Levy

T ∶∶= return V ⋃︀ raisex V
M ⇓ raisex V

M to x. N ⇓ raisex V

∃k ≥ 0 ∃(V1,⋯, Vk) ∀i ∈ {1..k} ∶M(︀Vi−1⇑x⌋︀ ⇓ raisex Vi M(︀Vk⇑x⌋︀ ⇓ return Z

iter V0, x. M ⇓ return Z

∃k ≥ 0 ∃(V1,⋯, Vk) ∀i ∈ {1..k} ∶M(︀Vi−1⇑x⌋︀ ⇓ raisex Vi M(︀Vk⇑x⌋︀ ⇓ raisey Z

iter V0, x. M ⇓ raisey Z
(x ≠ y)

Figure 6. Big-step operational semantics for labelled iteration. This figure extends Figure 3. Namely, we add rules, and we
add a new form of terminal: raisex V .

● for every identifier (x ∶ A) ∈ Γ′, a value σid(x) (Γ ⊢v σid(x) ∶ A).

Remark 3.4 From a two-zone substitution σ ∶ ∆′; Γ′ → ∆; Γ we can trivially obtain a
one-zone substitution Γ′ → Γ. By abuse of notation, we also write σ for this obtained
substitution on one-zone contexts. Similarly, from a one-zone substitution σ ∶ Γ′ → Γ, we
obtain trivially a two-zone substitution ⋅ ; Γ′ → ⋅ ; Γ, for which we also write σ.

We can use a substitution σ ∶ ∆′; Γ′ → ∆; Γ as follows on terms. Given a term ∆′; Γ′ ⊢c

M ∶ A, we obtain the term ∆; Γ ⊢c Mσ ∶ A by

● for any x ∈ ∆, replacing all occurrences of raisex V (where x is free)
by raiseσlab(x) (V σ), where V σ is given similarly by induction. And

● for any x ∈ Γ, replacing all value occurrences of identifiers by σid(x).

For one-zone contexts Γ we have the usual notion of substitution σ ∶ Γ′ → Γ that assigns
a value (over Γ) to each identifier of Γ′. And given Γ′ ⊢v V ∶ A, we obtain similarly
Γ ⊢v V σ ∶ A.

Two-zone contexts and their substitutions form a category, and one-zone contexts and their
substitutions form another category. That is, substitutions can be composed associatively
and composition has an identity.

Lemma 3.5 (substitution lemma)

(i) Let one-zone substitution σ ∶ Γ′ → Γ be given. If Γ′ ⊢v V ∶ A, then
JV σKρ = JV K(x↦Jσ(x)Kρ)x∈Γ′ .

(ii) Let two-zone substitution σ ∶ ∆′; Γ′ →∆; Γ be given.
If ∆′; Γ′ ⊢c M ∶ A, then JMσKρ = f(JMK(x↦Jσid(x)Kρ)x∈Γ′) ,
where f maps raisex v to raiseσlab(x) v.

3.3 Operational semantics

We define a big-step “reduction” relation M ⇓ T between closed terms ∆; ⋅ ⊢c M ∶ A and
(closed) terminals ∆; ⋅ ⊢c T ∶ A of the same type, such that for every such M either

(i) M ⇓ T = return V , or

206

Geron and Levy

(ii) M ⇓ T = raisex V , x ∈ dom ∆, or

(iii) M does not reduce.

Derivation rules are given in Figure 6 on the preceding page, and the reduction relation is
defined as their least fixed point.

Theorem 3.6 (adequacy)

(i) If M ⇓ return V , then JMK∅ = return JV K∅.

(ii) If M ⇓ raisex V , then JMK∅ = raisex JV K∅.

(iii) If M does not reduce, then JMK∅ = �.

3.4 Translation from sum-based iteration

Let Γ ⊢c M ∶ A or Γ ⊢v V ∶ A be a term or value in the language with sum-based iteration.
We define a translation translate(M), translate(V) from sum-based iteration, such that
⋅ ; Γ ⊢c translate(M) ∶ A or Γ ⊢v translate(V) ∶ A, respectively, in the language with
labelled iteration. The translation macro-expands sum-based iter as follows. The other
constructs are left unchanged.

translate(iter V,x. M) = iter V,x. (translate(M) to result .

case result of {inl y. raisex x
′; inr x′. return y})

where translate(M) is implicitly weakened by adding x to ∆.

Theorem 3.7 (translation preserves semantics)

(i) Let Γ ⊢c M ∶ A a term of the language with sum-based iteration, and ρ ∈ JΓK.
Then JMKρ = Jtranslate(M)Kρ.

(ii) Let Γ ⊢v V ∶ A a value of the language with sum-based iteration, and ρ ∈ JΓK.
Then JV Kρ = Jtranslate(V)Kρ.

Corollary 3.8 If M ⇓ T in the language with sum-based iteration, then there is T ′ such
that translate(M) ⇓ T ′ in the language with labelled iteration, and JT K∅ = JT ′K∅. And if
M does not reduce to a terminal, then translate(M) does not reduce to a terminal.

4 Discussion and related work

In our presentation of labelled iteration, we have chosen to only consider pure functions.
It is an important future task to extend the present system so as to allow for functions that
raise an iteration.

Many programming languages have not just unlabelled and labelled continue, after
which we have modelled our combination of iter and raise, but also unlabelled and labelled
break. It should be straightforward to introduce a construct that binds a label like iter,
but when the label is raised with parameter a, the result of that construct is a, so that raise

207

Geron and Levy

of that label resembles break. Such a construct resembles an intra-procedural form of ex-
ceptions. If we wrap an iter inside this new construct, we can “break” and “continue”
from this combination of constructs, to deepen the resemblence with Java-style loops.

We have noticed the De Bruijn index problem in settings other than iteration. For instance,
it is customary in functional languages such as Haskell to use monad transformers [12]
to embed imperative programs with multiple side-effects, but they suffer from a similar De
Bruijn index problem: the ith monad transformer is addressed by writing “lifti effect”. This
problem and proposed solutions have been studied in the literature[15,24,5], but addressing
effects using labels seems yet unexplored. Imperative languages address mutable cells
using identifiers, and it is possible that addressing effects with labels might benefit the
readability of similar functional programs as well.

5 Conclusion

In the present article we summarize the essence of the sum-based representation of itera-
tion, and evaluate it from a programming perspective. Although it might work well for a
semantics standpoint, it is inadequate for programmers to program in. We propose an al-
ternative representation of iteration that is suitable for programmers, but still has relatively
clean semantics.

References

[1] Peter Aczel, Jiří Adámek, Stefan Milius, and Jiří Velebil. Infinite trees and completely iterative theories: a coalgebraic
view. Theoretical Computer Science, 300(1–3):1–45, May 2003.

[2] Jiří Adámek, Stefan Milius, and Jiří Velebil. Elgot Algebras. Logical Methods in Computer Science, 2(5), November
2006.

[3] Jiří Adámek, Stefan Milius, and Jiří Velebil. Elgot theories: a new perspective on the equational properties of iteration.
Mathematical Structures in Computer Science, 21(Special Issue 02):417–480, April 2011.

[4] Stefan Berghofer and Christian Urban. A Head-to-Head Comparison of de Bruijn Indices and Names. Electronic Notes
in Theoretical Computer Science, 174(5):53–67, June 2007.

[5] Edwin Brady. Programming and Reasoning with Algebraic Effects and Dependent Types. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming, ICFP ’13, pages 133–144, New York, NY, USA,
2013. ACM.

[6] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with
application to the Church-Rosser theorem. Indagationes Mathematicae (Proceedings), 75(5):381–392, January 1972.

[7] Calvin C. Elgot. Monadic Computation and Iterative Algebraic Theories. In H. E. Rose and J. C. Shepherdson, editors,
Studies in Logic and the Foundations of Mathematics, volume 80 of Logic Colloquium ’73 Proceedings of the Logic
Colloquium, pages 175–230. Elsevier, 1975.

[8] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In 14th Symposium on Logic in Computer
Science, 1999. Proceedings, pages 193–202, 1999.

[9] Sergey Goncharov, Christoph Rauch, and Lutz Schröder. Unguarded Recursion on Coinductive Resumptions. In
Proceedings of the 31st Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXI),
volume 319 of Electronic Notes in Theoretical Computer Science, pages 183–198. Elsevier, December 2015.

[10] Sergey Goncharov, Lutz Schröder, and Till Mossakowski. Kleene Monads: Handling Iteration in a Framework of
Generic Effects. In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki, editors, Algebra and Coalgebra in Computer
Science, number 5728 in Lecture Notes in Computer Science, pages 18–33. Springer Berlin Heidelberg, September
2009. DOI: 10.1007/978-3-642-03741-2_3.

[11] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. The Java® language specification. Addison-
Wesley, Upper Saddle River, NJ, java se 8 edition, 2014.

208

Geron and Levy

[12] Mark P. Jones. Functional Programming with Overloading and Higher-Order Polymorphism. In Johan Jeuring and
Erik Meijer, editors, Advanced Functional Programming, volume 925, pages 97–136. Springer, 1995.

[13] Yoshihiko Kakutani. Duality between Call-by-Name Recursion and Call-by-Value Iteration. In Julian Bradfield,
editor, Computer Science Logic, number 2471 in Lecture Notes in Computer Science, pages 506–521. Springer Berlin
Heidelberg, September 2002. DOI: 10.1007/3-540-45793-3_34.

[14] Fairouz Kamareddine and Alejandro Ríos. A λ-calculus à la de Bruijn with explicit substitutions. In Manuel
Hermenegildo and S. Doaitse Swierstra, editors, Programming Languages: Implementations, Logics and Programs,
number 982 in Lecture Notes in Computer Science, pages 45–62. Springer Berlin Heidelberg, September 1995. DOI:
10.1007/BFb0026813.

[15] Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in Action. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’13, pages 145–158, New York, NY, USA, 2013. ACM.

[16] Andrew Kennedy. Compiling with Continuations, Continued. In Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’07, pages 177–190, New York, NY, USA, 2007. ACM.

[17] Dexter Kozen and Konstantinos Mamouras. Kleene Algebra with Products and Iteration Theories. In Simona
Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), volume 23 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 415–431, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[18] Dexter Kozen and Konstantinos Mamouras. Kleene Algebra with Equations. In Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming, number 8573 in Lecture
Notes in Computer Science, pages 280–292. Springer Berlin Heidelberg, July 2014. DOI: 10.1007/978-3-662-43951-
7_24.

[19] J. Laird. The Elimination of Nesting in SPCF. In Paweł Urzyczyn, editor, Typed Lambda Calculi and Applications,
number 3461 in Lecture Notes in Computer Science, pages 234–245. Springer Berlin Heidelberg, April 2005. DOI:
10.1007/11417170_18.

[20] Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-Order and Symbolic
Computation, 19(4):377–414, December 2006.

[21] John Longley. The recursion hierarchy for PCF is strict. Informatics Research Report EDI-INF-RR-1421, School of
Informatics, University of Edinburgh, July 2015.

[22] Conor McBride and James McKinna. Functional Pearl: I Am Not a Number–I Am a Free Variable. In Proceedings of
the 2004 ACM SIGPLAN Workshop on Haskell, Haskell ’04, pages 1–9, New York, NY, USA, 2004. ACM.

[23] Stefan Milius and Tadeusz Litak. Guard Your Daggers and Traces: On The Equational Properties of Guarded (Co-
)recursion. Electronic Proceedings in Theoretical Computer Science, 126:72–86, August 2013.

[24] Dominic Orchard and Tomas Petricek. Embedding Effect Systems in Haskell. In Proceedings of the 2014 ACM
SIGPLAN Symposium on Haskell, Haskell ’14, pages 13–24, New York, NY, USA, 2014. ACM.

[25] W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic, 32(02):198–212,
August 1967.

A Appendix: proofs

We first prove adequacy of fine-grain call-by-value without iteration. The adequacy of
FGCBV + sum-based iteration and the adequacy of the language with labelled iteration are
then minor modifications. All our adequacy proofs are in the style of Tait [25].

We use the following substitution lemma for both plain FGCBV and FGCBV with sum-
based iteration.

Lemma A.1 Assume a substitution σ ∶ Γ′ → Γ and an environment ρ ∈ JΓK.

(i) Let Γ′ ⊢v V ∶ A be a value. Then JV K(x↦JσxKρ)x∈Γ′ = JV σKρ.

(ii) Let Γ′ ⊢c M ∶ A be a term. Then JMK(x↦JσxKρ)x∈Γ′ = JMσKρ.

The proofs of both substitution lemmas, Lemma A.1 and Lemma 3.5, are routine and we
omit them.

209

Geron and Levy

A.1 Adequacy of FGCBV without iteration

We prove adequacy with the help of the following type-indexed predicate on closed values
and terms.

Definition A.2 By mutual induction on the type of V and M , respectively.

when ⊢v V ∶ 1 ∶ P (V) ≡ true

when ⊢v V ∶ nat ∶ P (V) ≡ true

when ⊢v V ∶ A +B ∶ P (inl V) ≡ P (V)

P (inr V) ≡ P (V)

when ⊢v V ∶ A ×B ∶ P (∐︀V,W ̃︀) = P (V) ∧ P (W)

when ⊢v V ∶ A→ B ∶ P (λx. M) ≡ ∀(⊢v W ∶ A) ∶ P (W) ⇒ P (M(︀W⇑x⌋︀)

when ⊢c M ∶ A ∶ P (M) ≡ ∃(⊢v V ∶ A) ∶ (P (V) ∧ M ⇓ return V ∧ JMK∅=inl JV K∅)

Observe that P (M) implies adequacy of M .

Proposition A.3

(i) If Γ ⊢v V ∶ A, and if for all (x∶B) ∈ Γ we have a closed ⊢v σx ∶ B satisfying P (σx),
then P (V σ).

(ii) If Γ ⊢c M ∶ A, and if for all (x∶B) ∈ Γ we have a closed ⊢v σx ∶ B satisfying P (σx),
then P (Mσ).

Proof

By induction on the value or term. Here are some interesting and less interesting cases.

V = x) Then V σ = σx, which was assumed to satisfy P .

M = return V) Trivially by induction.

V = λy. M) We have to show that if ⊢v W ∶ A satisfies P , then M(︀σ,W ⇑y⌋︀ satisfies P . By
induction.

M = let V be x. N) We are allowed to assume P (V σ), so the induction hypothesis gives
us P (N(︀σ, (V σ)⇑x⌋︀). We know that Mσ and N(︀σ, (V σ)⇑x⌋︀ reduce to the same termi-
nal. We know JMσK∅ = JNσKx↦JV σK∅ , which we know is equal to JN(︀σ, (V σ)⇑x⌋︀K∅
by the substitution lemma. Now P (N(︀σ, (V σ)⇑x⌋︀) implies P (Mσ).

M = V W) Similarly.

M =M ′ to x. N) From the induction, we get V such that P (V) and M ′σ ⇓ return V and
JM ′σK∅ = inl JV K∅. From the derivation rule and the induction, we get V ′ such that
P (V ′) and N(︀σ,V ⇑x⌋︀ ⇓ return V ′, and JN(︀σ,V ⇑x⌋︀K∅ = inl JV ′K∅.

By the substitution lemma, JNσ(︀V ⇑x⌋︀K∅ = JNσKx↦JV K∅ , and because we know JM ′σK∅ =

inl JV K∅, we know that by definition

J(M ′σ) to x. (Nσ)K∅ = JNσKx↦JV K∅ .

210

Geron and Levy

This completes the proof for this case.

M = case V of ⋯) Depending on the type of V , but for every type trivially by case analysis
on V σ.

◻

Corollary A.4 All closed values and terms satisfy P .

Adequacy directly follows from this.

Observe that the only cases in which we essentially looked at the normal form of Mσ are
return V and M to x. N . Specifically, we did not use the normal form of Mσ in the let
case. This means that we can reuse most of the proof for FGCBV with sum-based iteration.

A.2 Adequacy of FGCBV + sum-based iteration

Similar structure. We redefine P (M):

P (⊢c M ∶ A) = ∃(⊢v V ∶ A) ∶ ((P (V) ∧ M ⇓ return V ∧ JMK∅ = inl JV K∅))

∨ (M� ∧ JMK∅ = inr �))

We have the same proposition as Proposition A.3 in this case:

● The case M = return V is still trivial.

● ForM =M ′ to x. N , we have to consider the alternative case thatM ′σ� and JM ′σK∅ =

inr �. This case is trivial.

● For iter, observe that every sequence V1,⋯, Vk in the operational semantics corresponds
uniquely to a sequence

v0 = JV σK∅, v1 = JV1K∅, v2 = JV2K∅,⋯, vk = JVkK∅

for the denotational semantics, and the proof in that case is analogous to the proof for
let.

To prove that non-existence of a valid sequence V1,⋯, Vk for the operational semantics
implies the non-existence of a valid sequence v0,⋯, vk, we instead prove the contra-
positive. Indeed, we have our initial V σ already, and by induction on a valid sequence
v0,⋯, vk together with the induction hypothesis, we obtain step by step our sequence
V1,⋯, Vk. So now we also know that iter V,x.M � implies Jiter V,x.MK∅ = inr �.

A.3 Adequacy of the language with labelled iteration

Similar structure.

211

Geron and Levy

We redefine P (M) again. Recall that M closed means that ∆; ⋅ ⊢c M ∶ A.

P (M) ≡((∃(⊢v V ∶ A) ∶ (P (V) ∧ M ⇓ return V ∧ JMK∅ = return JV K∅))

∨ (∃((x∶B) ∈ ∆) ∶ ∃(⊢v V ∶ B) ∶ (P (V) ∧ M ⇓ raisex V ∧ JMK∅ = raisex JV K∅))

∨ (M� ∧ JMK∅ = �))

We have a proposition analogous to Proposition A.3.

Proposition A.5

(i) If Γ ⊢v V ∶ A, and if for all (x∶B) ∈ Γ we have a closed ⊢v σx ∶ B satisfying P (σx),
then P (V σ).

(ii) If ∆; Γ ⊢c M ∶ A, and if we have a substitution σ ∶ ∆′; Γ′ →∆; ⋅ such that P (σid(x))

on all identifiers, then P (Mσ).

● The additional case for sequencing is trivial.

● The case P (raisex V) is trivial.

● The additional case for iteration is analogous.

212

MFPS 2016

Giry and the Machine

Fredrik Dahlqvist1 Vincent Danos2 Ilias Garnier3

University College London Ecole Normale Supérieure University of Edinburgh

Abstract

We present a general method - the Machine - to analyse and characterise in finitary terms natural trans-
formations between (iterates of) Giry-like functors in the category Pol of Polish spaces. The method relies
on a detailed analysis of the structure of Pol and a small set of categorical conditions on the domain and
codomain functors. We apply the Machine to transformations from the Giry and positive measures func-
tors to combinations of the Vietoris, multiset, Giry and positive measures functors. The multiset functor
is shown to be defined in Pol and its properties established. We also show that for some combinations of
these functors, there cannot exist more than one natural transformation between the functors, in particular
the Giry monad has no natural transformations to itself apart from the identity. Finally we show how the
Dirichlet and Poisson processes can be constructed with the Machine.

Keywords: probability, topology, category theory, monads

1 Introduction

Classical tools of probability theory are not geared towards compositionality, and

especially not compositional approximation (Kozen, [13]). This has not prevented

authors from developing powerful techniques (Chaput et al. [5], Kozen et al. [14])

based on structural approaches to probability theory (Giry, [9]). Here, we adopt a

slightly different standpoint: we propose to tackle this tooling problem globally, by

combining structural insights of Pol together with some classical tools of proba-

bility theory and topology put in functorial form. The outcome is the Machine, an

axiomatic reconstruction in category-theoretic terms of developments carried out in

[7]. Thus, we get a simpler and more conceptual proof of our previous results. We

also obtain a much more comprehensive picture and prove that natural transforma-

tions between Giry-like functors are entirely characterised by their components on

finite spaces. For instance, the monadic data of the Giry functor are easily obtained

This work was sponsored by the European Research Council (ERC) under the grant RULE (320823).
1 f.dahlqvist@ucl.ac.uk
2 vincent.danos@ens.fr
3 igarnier@inf.ed.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:f.dahlqvist@ucl.ac.uk
mailto:vincent.danos@ens.fr
mailto:igarnier@inf.ed.ac.uk

from the finite case (which is completely elementary) and applying the Machine. But

the construction is not limited to probability functors: we deal similarly with the

multiset and the Vietoris (the topological powerdomain of compact subsets) func-

tors. This allows one to consider transformations mixing probabilistic and ordinary

non-determinism, in a way which is reminiscent of (Keimel et al., [12]). Another

byproduct of our Machine is that we reconstruct from finitary data classical objects

of probability theory and statistics, namely the Poisson and Dirichlet processes. It

is worth noting that Poisson, Dirichlet (and many other similar constructions ob-

tained by recombining the basic ingredients differently) are obtained as natural and

continuous maps: naturality expresses the stability of the “behaviour” in a change

of granularity, and as such is a fundamental property of consistency, but continuity

(which to our knowledge is proved here for the first time) expresses a no less impor-

tant property, namely the robustness of the behaviour in changes in “parameters”.

This has potential implications in Bayesian learning.

The structure of the paper is as follows. In Sec. 3, we show that Pol is stratified

into the subcategories Polf , Polcz Polz of finite, compact zero-dimensional and

zero-dimensional Polish spaces respectively and show how these subcategories are

related. In Sec. 4, the Machine is introduced: we identify a small set of categorical

conditions on functors F,G that guarantee that any natural transformation from

F to G in Polf can be extended step-by-step through the subcategories to a nat-

ural transformation on Pol. In Sec. 5, we illustrate the workings of the Machine

on natural transformations connecting the Giry and positive measure functors to

combinations of the Vietoris, multiset, Giry and positive measure functors. As far

as we know, the multiset functor is defined in Pol for the first time and its prop-

erties are established. As a first application of the Machine, we develop in Sec. 6

general criteria under which there can exist at most one natural transformation

from a functor F to the Giry functor. In particular, we show that there exists at

most one natural transformation between the Vietoris, multiset, positive measure

and Giry functor to the Giry functor. Lastly, we show in Sec. 7 how transformations

of the type M+ ⇒ GH where M+ is the finite measure functor and H is either the

multiset or the finite measure functor can be built in Polf from a single generating

morphism M+(1) → GH(1) and give criteria for this transformation to be natural.

In particular, we show that the Dirichlet and Poisson distributions satisfy these

criteria and use the Machine to build Dirichlet and Poisson processes.

To save space and ease reading, several proofs are given after the main text in

appendices.

2 Notations

Most of our developments take place in the category Pol of Polish spaces and

continuous maps. Pol is a full subcategory of the category Top of topological spaces

and continuous maps. Pol has all countable limits and all countable coproducts

(Bourbaki [4], IX). The functor mapping any space to the measurable space having

the same underlying set and the Borel σ-algebra and interpreting continuous maps

as measurable ones will be denoted by B : Pol→Meas, where Meas is the category

of measurable spaces and measurable maps. A countable codirected diagram (ccd for

214

short) is given by a countable directed partial order (DPO) I and a contravariant

functor D : Iop → Pol such that for all i ≤Iop j, D(i ≤Iop j) is surjective. We

moreover assume that ccds range over non-empty spaces. With that assumption,

the categorical limit of a ccd D, which we denote by limD, is always non-empty.

3 The structure of Pol

Pol can be decomposed according to the following diagram of inclusions:

Polf
� � Icz //Polcz

� � Iz //Polz
� � Ip //Pol (1)

Here, Polf is the full subcategory of finite (hence discrete) spaces, Polcz is the full

subcategory of compact zero-dimensional spaces and Polz is the full subcategory of

zero-dimensional spaces while Icz, Iz and Ip are the obvious inclusion functors. To

this picture, we add categories of based spaces and base-preserving maps.

Definition 3.1 (Categories of based spaces) A based space is a pair (X,F) of

X ∈ Obj(Pol) and of a countable base F of the topology of X. A base-preserving

map from (X,F) to (Y,G) is a function f : X → Y such that f−1(G) ⊆ F (it is there-

fore continuous). One easily checks that this defines a category having based spaces

as objects and base-preserving maps as morphisms. We denote this category by Pol[.

Similarly, a based zero-dimensional space is a pair (Z,F) where Z ∈ Obj(Polz) and

F is a countable base of clopen sets which is also a boolean algebra. We denote by

Pol[z the category of based zero-dimensional spaces and base-preserving maps.

Of course, there exists for each such based category a (faithful, but not full!)

forgetful functor, that we will denote by resp. Uz and Up. The situation is summed

up in the following commutative diagram in Cat:

Pol[z
� � I[p //

Uz

��

Pol[

Up

��

Polf
� � Icz //Polcz v�

Iz))

) 	
I[z

66

Polz
� �

Ip
//Pol

In the remainder of this section, we will unravel further relationships between these

categories.

Polf is a codense subcategory of Polcz. Objects of Polf are finite discrete

spaces. Note that every subset of a discrete space is clopen; as a consequence, any

map between two finite spaces is continuous. We will denote objects of Polf by

their cardinality m,n. The objects of Polcz are the compact zero-dimensional (or

profinite) spaces, a prime example being the Cantor space 2N. These spaces are

homeomorphic to limits of countable codirected diagrams (ccds for short) taking

values in Polf . This is exactly captured by the concept of codensity (see [15], X.6).

Proposition 3.2 Polf is codense in Polcz.

215

Proof. Let X be a compact zero-dimensional space, and consider the comma cat-

egory X ↓ Icz. We denote by DX : (X ↓ Icz) → Polf the diagram correspond-

ing to the base of this cone. It is enough to prove that for all X ∈ Obj(Polcz),

X ∼= limDX . Following (Mac Lane [15], IX.3), it is in turn enough to exhibit a di-

agram D : Iop → Polf verifying X ∼= limD and a cofinal (“initial” in [15]) functor

c : Iop → (X ↓ Icz). Proposition 3.1 of [7] yields the existence of such a diagram D

where I is the set of finite partitions of X taken in the boolean algebra of clopen

sets of X (that we denote by Clo(X)), partially ordered by partition refinement

and directed by partition intersection. Observe that any continuous map f : X → n

induces a finite clopen partition of X by considering its fibres. Let us denote this

partition by X/f . Let c be the functor mapping any finite partition n ∈ Iop seen as

an object of Polf to the quotient map qn : X � n, and any refinement m ≤Iop n
to to the obvious map πmn such that qm = πmn ◦ qn. For any f : X → n the

partition X/f is mapped to c(X/f) : X → X/f , and there trivially exists a map

π : c(X/f)→ f . For any two f, f ′ ∈ Obj(X ↓ Icz), one can easily exhibit a partition

i ∈ I of X such that there exists π : c(i)→ f and π′ : c(i)→ f ′. 2

Polcz is a reflective subcategory of Pol[z. Objects of Polz are zero-dimensional

spaces, i.e. spaces whose topology admits a (countable) base of clopen sets. Discrete

spaces (such as N) are always zero-dimensional. A less trivial example is the Baire

space NN. The bridge between Polcz and Polz is provided by compactifiying zero-

dimensional spaces, as explained in full length in ([7], Sec. 3). Let us recall the

underpinnings of this compactification. Let Z be some zero-dimensional space and

F be a countable base of clopens of Z. One easily verifies that the boolean algebra

generated by F , that we denote by Bool(F), still generates the same topology and

is still countable. Therefore, one can witout loss of generality assume that the base

F of Z is a countable Boolean algebra of clopen sets (that we call a boolean base

for short). Let IF be the directed partial order of finite partitions of Z taken in F
and let DF : IopF → Polf be the diagram defined by DF (i ∈ IopF) , i on objects

(seeing finite partitions of Z as finite discrete spaces) and DF (j ≤IopF i) = qij where

qij : j → i is the obvious quotient map.

Proposition 3.3 (Wallman compactification ([7], Prop. 3.12)) limDF is a

zero-dimensional compactification of Z that we denote by ωF (Z). We denote by

ηF : Z ↪→ ωF (Z) the canonical embedding of Z into its compactification.

Note that this compactification is not universal, in the sense that Polcz is not

a reflective subcategory of Polz (see [15], IV.3 for a definition of reflective subcat-

egory). However, we will show that Polcz is a reflective subcategory of Pol[z. In

the following, recall that Clo(X) is the boolean algebra of clopen sets of a compact

zero-dimensional space X.

Proposition 3.4 Let I[z be the operation that maps any compact zero-dimensional

space X to the pair (X,Clo(X)) and which acts identically on maps between such

spaces. I[z is a full and faithful functor from Polcz to Pol[z.

Proof. For any space X ∈ Obj(Polcz), its boolean algebra of clopen sets Clo(X)

is countable and therefore, (X,Clo(X)) is a based zero-dimensional space. By con-

tinuity, maps between such spaces are base-preserving. Functoriality, fullness and

216

faithfulness are trivial. 2

Our compactification naturally lives in Pol[z:

Proposition 3.5 For any (Z,F) ∈ Obj(Pol[z), the embedding ηF : (Z,F) →
I[z(ωF (Z)) is base preserving.

Proof. By construction of ωF (Z), any finite clopen partition of this space will

induce through ηF a finite partition of Z taken in F . Therefore, ηF is base preserv-

ing. 2

The following proposition states the functoriality of compactification in this new

setting, and the fact that Polcz is a reflective subcategory of Pol[z.

Proposition 3.6 (ω as a reflector) (i) Let f : (Z,F) → (Z ′,F ′) be a base-

preserving map. There exists a unique ωFF ′(f) : ωF (Z) → ωF ′(Z
′) such that

ωFF ′(f) ◦ ηF = ηF ′ ◦ f . (ii) ω : Pol[z → Polcz is a functor defined on ob-

jects by ω(Z,F) , ωF (Z) and on base-preserving maps f : (Z,F) → (Z ′,F ′) by

ω(f) , ωFF ′(f), and it is left adjoint to the inclusion functor I[z (the unit being

given by η).

Proof. (i) This is Prop. 3.13 and Corollary 3.14 of [7]. Let us sketch the argument.

As f is base-preserving, any finite clopen partition of Z ′ taken in F ′ will induce

a unique finite clopen partition of Z taken in F . Using the notations of Prop.

3.3, we deduce that DF ′ is a sub-diagram of DF . Therefore, there exists a unique

mediating map (that we denote ωFF ′(f)) from limDF to limDF ′ , i.e. from ωF (Z)

to ωF ′(Z
′), such that ηF ′ ◦f = ωFF ′(f)◦ηF . (ii) ω trivially preserves identities. For

all f, f ′, the equality W (f ′ ◦ f) = W (f ′) ◦W (f) is a consequence of the uniqueness

of factorisations in (i). According to (Mac Lane [15], IV.3), left adjointness of ω is

a direct consequence of (i), as any map f : (Z,F) → I[z(X) will factor uniquely

through ηF : (Z,F)→ I[z(ωF (Z)). 2

This reflection is summarised in the following diagram:

η
��

Pol[z

Id
Pol[z

��

ω
//Polcz

I[z

//Pol[z

(2)

Pol[z is a coreflective subcategory of Pol[. The penultimate step in our struc-

tural analysis of Pol is to relate Pol[z and Pol[. This is accomplished by associat-

ing zero-dimensional refinements to arbitrary spaces, in an operation called zero-

dimensionalisation. Let us define this operation.

Proposition 3.7 (Zero-dimensionalisation ([7], Prop. 3.2)) Let X be a space

with underlying set U(X) and let F be a countable base of X. The topological space

zF (X) , (U(X), 〈Bool(F)〉) having as underlying set U(X) and whose topology is

generated by the boolean algebra Bool(F) verifies the following properties:

(i) zF (X) is Polish;

217

(ii) zF (X) is zero-dimensional.

(iii) measurable sets are preserved: B(X) = B(zF (X)).

In a similar fashion to compactifications, this operation is better typed as a

functor from Pol[to Pol[z. Let us make zero-dimensionalisation into a functor:

Proposition 3.8 Let f : (X,F)→ (Y,G) be a base-preserving map in Pol[. Then

f : (zF (X), Bool(F))→ (zG(Y), Bool(G)) is base-preserving in Pol[z. We denote by

z : Pol[→ Pol[z the functor defined by z(X,F) = (zF (X), Bool(F)) on objects and

acting identically on arrows.

Proof. It is sufficient to consider the case of an arbitrary finite union of literals

L = Aε11 ∪ . . . ∪ Aεnn ∈ Bool(G), where Ai ∈ G and Aεii denotes either Aci or Ai.

We have f−1(L) = ∪ni=1f
−1(Ai)

εi , since f is base-preserving in Pol[we deduce

that f−1(L) ∈ Bool(F). Continuity of f in Pol[z is a direct consequence of base

preservation. The fact that z is a functor is now trivial. 2

The following result now follows easily:

Proposition 3.9 (z as a coreflector) z is right adjoint to the inclusion functor

I[p, i.e. Pol[z is a coreflective subcategory of Pol[.

Proof. Observe that for all (X,F) ∈ Obj(Pol[), the identity function εF , id :

I[pz(X,F) → (X,F) is base-preserving. This indeed constitutes the counit of the

coreflection: one easily verifies that for all f : I[p(Z,F) → (X,G) there exists a

unique f ′ : I[p(Z,F) → I[pz(X,G) such that f = εG ◦ f ′ (and f ′ is equal to f as a

function). 2

This coreflection is summarised in the following diagram:

Pol[

Id
Pol[

��

z
//Pol[z

ε

KS

I[p

//Pol[

(3)

Relating Pol[and Pol. For all space X ∈ Obj(Pol), let us denote the set of

countable bases of X, partially ordered by inclusion, by Bases(X). Observe that

Bases(X) is directed by taking the union of the bases and closing under finite

intersections. Accordingly, if F ⊆ G are two countable bases of X, the identity

function id : (X,G) → (Y,F) is trivially base-preserving. This defines a codirected

diagram BX : Bases(X)op → Pol[mapping any base F to (X,F) and any pair

F ⊆ G to the identity function. Recall that Up : Pol[→ Pol is the base-forgetting

functor. The next definition and proposition provide a universal characterisation of

Polish spaces in terms of their zero-dimensionalisation.

Definition 3.10 (Diagram of zero-dimensionals) We define the diagram of

zero-dimensionals of X:

ZX , UpI
[
pzBX : Bases(X)op → Pol

218

that maps bases F ∈ Bases(X) to ZX(F) , zF (X).

We state without proof the following result, which is a category-theoretic refor-

mulation of ([7], Theorem 3.5):

Proposition 3.11 For all space X ∈ Obj(Pol), X ∼= colimZX .

In more concrete terms, any space X has the final topology for the family of iden-

tity functions {id : zF (X)→ X}F where F ranges over Bases(X). Let us conclude

this section by summarising our structural decomposition of Pol in the following

diagram:

Polf
� � Icz //Polczk�

Iz 11

t�

I[z

77⊥ Pol[z t�

I[p

88

ω

ww

Uz

��

> Pol[

z
ww

Up

��
Polz

� �

Ip
//Pol

(4)

4 The Machine

We will leverage the structural decomposition of Pol given in the previous section

to characterise some “profinite” natural transformations, in the sense that their

behaviour on arbitrary spaces is entirely determined by their behaviour on finite

spaces. We proceed in a stepwise and modular fashion: the Machine is presented as a

series of extension theorems giving sufficient conditions for a natural transformation

to be uniquely extended from a subcategory to the ambient one (Theorems 4.2-4.11).

These results are combined in Theorem 4.12.

I. From Polf to Polcz. One can completely characterise the subcategory of the

functor category [Polcz; Pol] consisting of functors commuting with certain codi-

rected limits in terms of [Polf ; Pol]. These functors are defined below.

Definition 4.1 (Polf -continuous functors) A functor F : Pol → Pol is Polf -

continuous if for all ccd D : Iop → Polf , F (limD) ∼= limFD.

The key result is the following:

Theorem 4.2 Let F,G : Polcz ⇒ Pol be two functors. If G is Polf -continuous,

then Nat(F |Polf , G|Polf) ∼= Nat(F,G).

This isomorphism arises from the existence of a functor computing right Kan

extension along Icz (see [15], X), denoted by RanIcz in the following:

Proposition 4.3 The functor RanIcz : [Polf ; Pol]→ [Polcz; Pol] is full and faith-

ful.

Proof. In the following, for any X ∈ Obj(Polcz), DX : (X ↓ Icz) → Polf stands

for the diagram verifying X ∼= limDX (see proof of Prop. 3.2). We first prove

that any functor F : Polf → Pol admits a right Kan extension RanIcz F along

Icz. Following (Mac Lane [15], X.3, Corollary 4) it is sufficient to prove that for

all X ∈ Obj(Polcz), the diagram F ◦ DX : (X ↓ Icz) → Pol has a limit. By a

cofinality argument similar to that used in the proof of Prop. 3.2, one can show

219

that limF ◦DX
∼= limF ◦D for a countable diagram D and since Pol is countably

complete this limit exists, therefore F admits a right Kan extension. Let us prove

that the extension is full and faithful. Since Icz is full and faithful, the universal

arrow εF : (RanIcz F)Icz ⇒ F is an iso. Given F,G : Polf → Polcz and α : F ⇒ G,

there exists a unique σ : RanIcz F ⇒ RanIcz G such that α ◦ εF : (RanIcz F)Icz → G

factors as α ◦ εF = εG ◦ σIcz. Therefore, RanIcz defines a functor from [Polf ; Pol]

to [Polcz; Pol] which is full and faithful by the bijection Nat(RanIcz F,RanIcz G) ∼=
Nat(F,G). 2

Proof. We use Prop. 4.3 to prove Theorem 4.2. The universal property of Ran

yields the isomorphism Nat(F |Polf , G|Polf) ∼= Nat(F,RanIcz G|Polf). Recall that

RanIcz G|Polf (X) = limG ◦DX
∼= limG ◦D where DX and D are as in the proof

of Prop. 4.3. By Polf -continuity of G, RanIcz G|Polf (X) ∼= G(limD) = G(X). 2

II. From Polcz to Pol[z. As seen in Prop. 3.6, the Wallman compactification makes

Polcz into a reflective subcategory of Pol[z. The extension of a natural transforma-

tion from Polcz to Pol[z can be framed componentwise as a restriction of the natural

transformation to a space embedded into its compactification, that we construct us-

ing intersections.

Definition 4.4 (Intersections, preservation of intersections) If j1 : X ↪→
Z, j2 : Y ↪→ Z are two embeddings, we define the intersection X ∩ Y → Z as the

pullback of j1 and j2 (Eq. 5). We say that an endofunctor F : Pol→ Pol preserves

intersections if the diagram in Eq. 6 is an intersection.

X ∩ Y p1 //

p2
��

X_�

j1
��

Y �
�

j2
//Z

(5) G(X ∩ Y)
G(p1) //

G(p2)

��

G(X)
_�

G(j1)

��
G(Y)�

�

G(j2)
//G(Z)

(6)

The following Lemma characterises the topology of intersections in Pol.

Lemma 4.5 X ∩ Y is the Set-theoretic intersection of X,Y together with the sub-

space topology induced by Z.

Proof. The proof is routine. 2

Recall that if f : X → Y is a morphism in a category C, its cokernel pair

(if it exists) is the pushout of f with itself (Mac Lane [15], III.3). In Top,

there is a well-known characterisation of embeddings as limits of their coker-

nel pair (see e.g. (Adamek et al. [1], 7.56-7.58)). In Pol, we have the following:

X �
� f //
_�

f
��

Y
_�

j1
��

Y �
�

j2
// Y +X Y

Proposition 4.6 Let f : X ↪→ Y be an embedding. Then (i)

the pushout object Y +X Y is Polish, (ii) the cokernel arrows

j1, j2 : Y → Y +X Y are embeddings and (iii) the intersection

of j1 and j2 is homeomorphic to X.

Proof. The proof is routine. 2

The following Lemma ensures that the pushout object of an embedding with

range in Polcz is still compact zero-dimensional.

220

F (ω(X))
F (j2) //

αω(X)

��

F (ω(X) +X ω(X))

αω(X)+Xω(X)

��

F (X)

αX

��

(Fη)X //

(Fη)X
;;

F (ω(X))
F (j1)

66

αω(X)

��

G(ω(X))
G(j2) //G(ω(X) +X ω(X))

G(X)
(Gη)X //

(Gη)X
;;

G(ω(X))
G(j1)

66

Fig. 1. A caption

F (Y)
(Fη)Y //

αY
��

F (ω(Y))

αω(Y)

��

F (X)

F (f)
>>

(Fη)X//

αX

��

F (ω(X))
F (ω(f))

99

αω(X)

��

G(Y)�
� (Gη)Y //G(ω(Y))

G(X)

G(f)
>>

� � (Gη)X //G(ω(X))
G(ω(f))

99

Fig. 2. Another one

Lemma 4.7 Let f : X ↪→ Y be an embedding in Pol such that Y ∈ Obj(Polcz).

Then Y +X Y ∈ Obj(Polcz).

Proof. The proof that Y +X Y is Polish is routine. It thus remains to see that

it is compact and zero-dimensional. Since finite unions of compacts are compact,

the coproduct Y + Y is compact. By universality of coproducts, the cokernel maps

j1, j2 : Y → Y +XY define a unique continuous map j1+j2 : Y +Y → Y +XY , which

is easily seen to be surjective, and it follows that Y +X Y is the continuous image

of a compact, i.e. is compact. To see that it is zero-dimensional, we use the fact

that on compact Hausdorff spaces zero-dimensionality coincides with being totally

disconnected. Let x ∈ Y +X Y and let Ux be a subset such that x ∈ Ux. We can

assume w.l.o.g. that x is in the first copy of Y and that Ux is included in this copy.

Since Y is totally disconnected, if Ux 6= {x} it can be written as the union of two

disjoint opens V1, V2 in the subspace topology induced by Y and and thus also by

Y +X Y . It follows that if Ux 6= {x} it cannot be connected in Y +X Y . 2

Theorem 4.8 Let F,G : Pol[z → Pol be a pair of functors such that G preserves

injections, embeddings and intersections. Then Nat(F,G) ∼= Nat(F |Polcz , G|Polcz).

Proof. In the interest of readability, we will elude the inclusion I[z : Polcz → Pol[z.

Let α : F |Polcz ⇒ G|Polcz be a natural transformation. We prove that (i) for all

X ∈ Obj(Pol[z), αω(X) : F (ω(X)) → G(ω(X)) restricts uniquely to a morphism

αX : F (X)→ G(X) such that αω(X) ◦ (Fη)X = (Gη)X ◦αX , and (ii) this restriction

uniquely extends α to a natural transformation from F to G.

(i) Consider, given X ∈ Obj(Pol[z), the embedding ηX : X ↪→ ω(X). By Prop.

4.6, X is the intersection of the cokernel maps j1, j2 : ω(X) ↪→ ω(X) +X ω(X).

Moreover by Lemma 4.7, there exists a component αωX+XωX . By functoriality and

naturality of η, the diagram in Fig. 1 (ignoring αX) commutes. Since G preserves

embeddings and intersections, there exists a unique mediating map αX : F (X) →
G(X) making the whole diagram commute.

(ii) Finally, we need to check that extending α to F |Pol[z
→ G|Pol[z

in this way is

natural. Let f : X → Y in Pol[z and let ηX , ηy denote the embeddings of X and Y

in their respective zero-dimensional compactifications. The corresponding diagram

is depicted in Fig. 2. The top, bottom, front, back and right-hand square commute,

and it follows that (Gη)Y ◦G(f)◦αX = (Gη)Y ◦αY ◦F (f), i.e. G(f)◦αX = αY ◦F (f)

since (GηY) is injective. 2

221

III. From Pol[z to Pol. The last part of the Machine is a procedure to extend

natural transformations from Pol[z to Pol. We have seen in Prop. 3.11 that Polish

spaces are the colimits of their “diagrams of zero-dimensionals”. We will require

functors in the domain of natural transformations to commute with these colimits.

Definition 4.9 (Z-cocontinuous functors) A functor F : Pol → Pol is Z-

cocontinuous if for all X ∈ Obj(Pol), F (X) ∼= colimFZX where ZX is defined in

Def. 3.10.

Moreover, we will require these functors to be Z-stable, which means that the

underlying sets of the spaces in the range of the considered functors are invariant

by zero-dimensionalisation. As we will prove later, this is for instance the case of

the Giry, multiset and list functors.

Definition 4.10 (Z-stable functor) A functor F : Pol → Pol is Z-stable if

UFX = UFZX(F) for all F ∈ Bases(X).

Theorem 4.11 Let F,G : Pol → Pol be a pair of functors such that F is Z-

cocontinuous and Z-stable. Then Nat(F,G) ∼= Nat(FUpI
[
p, GUpI

[
p).

Proof. Let α : FUpI
[
p ⇒ GUpI

[
p and X ∈ Obj(Pol) be given. By Z-cocontinuity,

F (X) is the colimiting object of the diagram FZX = FUpI
[
pzBX : Bases(X)op →

Pol (Def. 3.10). Applying α, we get a natural transformation αzBX : FZX ⇒
GZX . Composing with the counit ε : I[pz → IdPol[yields a natural transformation

(GUpε)(αzBX) : FZX ⇒ GUpIdPol[BX . Note that GUpIdPol[BX is equal to the

constant functor with value G(X). Therefore, we have constructed a cocone from

FZX to G(X). The situation above is summed up in the following diagram:

Pol[
Up //

α

��

Pol
F

''
Bases(X)op

BX //Pol[z //

Id
Pol[

22

Pol[z
ε
�

I[p

''

I[p
77

Pol

Pol[
Up

//Pol
G

77

By universality, there exists a unique map uX : F (X) → G(X) such that uX ◦
(FUpεBX)F = (GUpεBX)F ◦ (αzBX)F . Let us prove naturality of {uX}X∈Obj(Pol).

For all f : X → Y and for all base G of Y , there exists a base F of X such that

f : (X,F) → (Y,G), is base-preserving, and by functoriality, so is z(f) : ZX(F) →
ZY (G). We get the following diagram:

FZX(F)
(αzBX)F //

Fz(f)

��

(FUpεBX)F

&&

GZX(F)

Gz(f)

��

(GUpεBX)F

xx
FX

uX //

F (f)
��

GX

G(f)
��

FY uY
//GY

FZY (G)
(αzBY)G

//

88

GZY (G)

ff

222

In the above diagram, the left and right cells commute by naturality of ε while

the top and bottom cells commute by construction of the arrows uX , uY . Note

that the arrow (FUpεBX)F is the image through F of the identity function εF =

id : ZX(F) → X. Since F is Z-stable, this arrow is surjective. We conclude that

the central square commute, and we extend α by setting for all X αX = uX as

constructed above. 2

IV. The Machine. Bringing the parts of the Machine together, we obtain:

Theorem 4.12 Let F,G : Pol→ Pol be a pair of functors such that:

(i) F is Z-cocontinuous and Z-stable,

(ii) G is Polf -continuous, preserves embeddings and intersections.

Then one has Nat(F,G) ∼= Nat(F |Polf , G|Polf).

5 Feeding the Machine

We now investigate the properties of some functors, with an eye on applying the

Machine.

The Giry functor. For any space X, we denote by G(X) the space of Borel

probability measures over X, endowed with the weak topology (Giry, [9]). This

operation can be extended to a functor G : Pol→ Pol which admits the Giry monad

structure (G, δ, µ) (Giry, [9]). The action of G on maps f : X → Y is defined by

G(f)(P) , P ◦ f−1. The unit is given by the Dirac delta: δX : X → G(X) while the

multiplication is defined by averaging: µX : G2(X) → G(X) , P 7→
∫
G(X) p dP (p).

G is a rather well-behaved functor:

Proposition 5.1 (i) For all ccd D, G(limD) ∼= limG◦D; (ii) G is Z-cocontinuous

and Z-stable; (iii) G preserves injections and embeddings; (iv) G preserves intersec-

tions.

Proof. (i) is the Bochner extension theorem in functorial form ([7], Theorem 2.5).

(ii) Z-cocontinuity is in ([7], Theorem 3.7); Z-stability stems from Prop. 3.7, 3. For

(iii), see e.g. ([7], Lemma 2.1). Now for (iv): let j1, j2 : A,B� X be two embeddings,

let p1 : A ∩ B → A and p2 : A ∩ B � B be the corresponding embeddings and

consider µ ∈ G(A), ν ∈ G(B) such that G(j1)(µ) = G(j2)(ν). It follows from (Kechris

[11], Theorem 15.1) and the fact that p1 is injective that whenever U is a Borel set

of A ∩ B, p1[U] is a Borel set of A, and similarly for p2. We can therefore define

λ ∈ G(A∩B) by λ(U) = µ(p1[U]) = ν(p2[U]). To see that the equality on the right

holds, note that since j1 in injective p1[U] = j−1
1 (j1[p1[U]]), and thus

µ(p1[U]) = µ(j−1
1 (j1[p1[U]])) = G(j1)(µ)(j1[p1[U]]) = G(j2)(ν)(j1[p1[U]])

= G(j2)(ν)(j2[p2[U]]) = ν(p2[U])

This assignment from pairs (µ, ν) such that Gj1(µ) = Gj2(ν) to λ ∈ G(A ∩ B) is

clearly injective, and it follows that G(A∩B) ∼= GA∩GB as sets. Since G preserves

embeddings, G(j1 ◦ p1) = G(j2 ◦ p2) is an embedding, and it follows that G(A ∩ B)

and GA ∩ GB are in fact homeomorphic. 2

223

Example 5.2 Theorem 4.12 implies that the monadic data of the Giry monad is

entirely determined on Polz by its finite components. We conjecture this holds for

arbitrary Polish spaces.

The non-zero finite measures functors. We will also consider functors closely

related to G: we let M+ be the functor mapping any space X to the space of non-

zero positive finite measures over X with the weak topology, and acting on maps

similarly as G. The functor of non-zero signed finite measures over X, denoted by

M∗, is defined similarly. See ([7], Sec. 2) for more details. The following is trivial

(consider the normalisation of a finite non-zero measure):

Proposition 5.3 For all space X, we have the isomorphism M+(X) ∼= G(X)×R>0

and M∗(X) ∼= G(X)× R∗, where R∗ = R \ {0}.

As a consequence, M+ and M∗ verify all the properties listed in Prop. 5.1. Note

that for all finite space n, M+(n) is also homeomorphic to Rn≥0 \ {0}.

The multiset functor. We consider the multiset functor B : Pol → Pol. It is

given explicitly by

B(X) ,
∐
n∈N

Xn/Sn

where Xn/Sn is the quotient of Xn under the obvious action of Sn on tuples with

the quotient topology, i.e. the final topology for the quotient map q : Xn � Xn/Sn.

See Appendix A for a proof that B(X) is Polish. Its action on maps is given by

setting for any f : X → Y and µ ∈ B(X), B(f)(µ) = y 7→
∑

x∈f−1(y) µ(x). This

is easily shown to be continuous. Observe also that for X finite, B(X) ∼= NX . The

multiset functor verifies the following properties:

Proposition 5.4 (i) B is Polf -continuous; (ii) B preserves injections and embed-

dings; (iii) B preserves intersections.

Proof. See Appendix B. 2

The Vietoris functor. As a non-probabilistic example, we will consider the Vi-

etoris functor. We recall its definition.

Definition 5.5 We denote by V : Pol → Pol the functor mapping any space X

to the space of compact subsets of X topologised with the Hausdorff distance, and

mapping any continuous function f : X → Y to V(f) , K ∈ V(X) 7→ f(K).

See (Kechris [11], 4.F) for a proof that V(X) is indeed Polish. V has the following

properties:

Proposition 5.6 (i) V is Polf -continuous; (ii) V preserves injections and embed-

dings; (iii) V preserves intersections.

Proof. (i) is in Appendix B. (ii) and (iii) are in Appendix B. 2

Example 5.7 An interesting example is provided by the support of a measure.

Usually, the support of p ∈ G(X) is defined to be the smallest closed subset of

measure 1. On finite spaces, for p ∈ G(n), we define suppn(p) , {x ∈ n | p(x) > 0}.

224

Let us check that this is natural: for f : m → n, we have that supp(G(f)(p)) =

supp(p◦f−1) =
{
x ∈ n | f−1(x) ∩ supp(p) 6= ∅

}
, i.e. supp(G(f)(p)) = f(supp(p)) =

V(f)(supp(p)). Therefore, supp : G|Polf ⇒ V|Polf is a natural transformation. The

Machine (Theorem 4.12) uniquely extends supp to a natural transformation supp :

G ⇒ V. This type is rather unusual, as the support of a probability measure is

closed but not generally compact.

6 Rigidity

The results presented in Sec. 4 allow to construct natural transformations from

finitary specifications. In this section, we apply these results to exhibit striking

rigidity properties of G and related functors.

Definition 6.1 A pair of functors F,G : C → D is called rigid, if there exists at

most one natural transformation η : F ⇒ G. In particular, we will say that an

endofunctor F : C → D is rigid if the identity natural transformation id : F ⇒ F

is the only natural transformation that exists from F to itself.

For each finite space k and functor T : Pol → Pol, there exists a canonical

action of Sk, the permutation group over k elements, given by:

α : Sk × T (k)→ T (k), (π, x) 7→ T (π(x))

We will call this action the canonical action. We will call an element x ∈ T (k)

stabilised by the entire group Sk under the canonical action an isotropic element.

Isotropic elements will play a crucial role in our theorem.

Theorem 6.2 (Rigidity Theorem) Let H : Pol → Pol be a subfunctor of the

Giry monad G satisfying the following conditions: (i) H(k) = G(k) for every finite

Polish space k; (ii) H is Polf -continuous;(iii) H preserves injections. Let also T :

Pol → Pol be a functor such that (iv) for each finite Polish space k there exists a

dense subset Qk ⊆ T (k) with the property that if x ∈ Qk there exists a finite Polish

space k′, a morphism f : k′ → k and an isotropic element x′ ∈ T (k′) such that

T (f)(x′) = x. In these circumstances the pair (T,H) is rigid.

We prove this theorem in steps. But let us first show some example of functors

satisfying the property above.

Example 6.3 Let us show that the Vietoris functor V satisfies the condition (iv).

Note first that for every k, the full set k ∈ V(k) is isotropic: for any π ∈ Sk
α(π, k) = Vπ(k) = k since π is bijective. Now take Qk = V(k) (which is trivially

dense) and x = {x1, . . . , xn} ∈ V(k). Consider the full set n ∈ V(n) along with the

map f : n→ k, i 7→ xi, it is clear that V(f(n)) = x, and n is isotropic.

Example 6.4 The Giry monad G satisfies all conditions of Theorem 6.2: it satisfies

(i) trivially, it satisfies (ii) and (iii) by Prop. 5.1. Let us show that it satisfies (iv) as

well. Note first that the uniform probabilities are the isotropic elements: if
(

1
k , . . . ,

1
k

)
denotes the uniform distribution on k elements, then

α

(
π,

(
1

k
, . . . ,

1

k

))
= G(π)

(
1

k
, . . . ,

1

k

)
=

(
1

k
, . . . ,

1

k

)
◦ π−1 =

(
1

k
, . . . ,

1

k

)
225

Consider now Qk = ∆k ∩ Qk, the rational probabilities on k elements. It is clearly

dense in G(k). Any x ∈ Qk, can without loss of generality be written as
(p1
n , . . . ,

pm
n

)
for a common denominator n. Now consider the projection map defined by

p : n→ k, i 7→


1 if 1 ≤ i ≤ p1

2 if p1 + 1 ≤ i ≤ p1 + p2

. . .

k if
∑k−1

i=1 pi + 1 ≤ i ≤
∑k

i=1 pi

It is easy to check from this definition that
(p1
n , . . . ,

pm
n

)
= G(p)

(
1
n , . . . ,

1
n

)
, where(

1
n , . . . ,

1
n

)
is isotropic.

Example 6.5 Let M+,M∗ : Pol → Pol be the finite non-zero positive (resp.

signed) measure functors, then M+(k) ∼= G(k) × R>0 and M∗(k) ∼= G(k) × R∗.
These functors satisfy condition (iv): the isotropic elements are those of the shape

((1/k, . . . , 1/k), λ) for λ ∈ R∗ or R>0. A dense subset is provided by (Qk∩G(k))×R∗
and (Qk ∩ G(k)) × R>0 respectively and the same argument as in Example 6.4

shows that every element ((p1/n, . . . , pk/n), λ) is the image of ((1/n, . . . , 1/n), λ)

by G(p)× id with p defined as in Example 6.4.

Example 6.6 The multiset functor B also has the property (iv). B(k) has one

isotropic element: the unordered list [(1, . . . , k)], and any [(x1, . . . , xk)] ∈ B(k) is

the image of [(1, . . . , k)] under B(f) for the map f : k → k, i 7→ xi (which might

very well not be injective).

Let us proceed to the proof of Theorem 6.2. The following settles the finite case:

Lemma 6.7 Let (T,H) be a pair of functors satisfying the conditions of Theorem

6.2, then (T,H) is rigid on Polf .

Proof. Let ν : T ⇒ H be a natural transformation. We first show that if x ∈ T (k)

is isotropic then

νk(x) =

(
1

k
, . . . ,

1

k

)
(7)

where
(

1
k , . . . ,

1
k

)
denotes the uniform probability distribution on k. Fix i ∈

{1, . . . , k}, and consider the permutations (ij) ∈ Sk, 1 ≤ j ≤ k sending i to j,

j to i and leaving all other elements of k unchanged. We have

νk(x)(i) = νk(T (ij)(x))(i) (x isotropic)

= H(ij)(νk(x))(i) (By naturality)

= G(ij)(νk(x))(i) (H = G on Polf)

= νk(x)(ij)−1(i) (By def. of G)

= νk(x)(j) (By def. of (ij))

Since this holds for every 1 ≤ j ≤ k we have
∑k

j=1 νk(x)(j) =
∑k

j=1 νk(x)(i) =

kνk(x)(i) = 1 and thus νk(x)(i) = 1
k for every 1 ≤ i ≤ k, i.e. νk(x) =

(
1
k , . . . ,

1
k

)
.

226

Let us now consider an arbitrary x ∈ Qk, by assumption there exist f : k′ → k and

an isotropic element x′ ∈ T (k′) such that T (f)(x′) = x. It follows that

νk(x) = νk(T (f)(x′)) (By assumption on T)

= H(f)(νk(x
′)) (By naturality)

= G(f)(νk(x
′)) (H = G on Polf)

= G(f)

(
1

k′
, . . . ,

1

k′

)
(x′ is isotropic and (7))

Clearly, the same reasoning applies to any other natural transformation ρ : T ⇒ H.

We have thus shown that for each finite Polish set k, νk is unique on a dense subset

Qk of T (k). Since νk is a morphism in Pol it is continuous, and since Polish spaces

are complete, it is in fact Cauchy-continuous. It follows that the restriction of νk to

Qk has a unique extension to T (k). Since the restriction of νk to Qk is unique, it

follows that νk is also unique. 2

Note that the entire group Sk was necessary to show Lemma 6.7, i.e. a weaker

notion of isotropic element would not be sufficient.

Lemma 6.8 Let (T,H) be a pair of functors satisfying the conditions of Theorem

6.2, then (T,H) is rigid on Polcz.

Proof. Assume ν : T |Polf ⇒ H|Polf is given. By Lemma 6.7, ν is unique. Since H

is Polf -continuous, Theorem 4.2 applies and the proof is complete. 2

Lemma 6.9 Let (T,H) be a pair of functors satisfying the conditions of Theorem

6.2, then (T,H) is rigid on Pol[z.

Proof. It is enough to reuse the uniqueness part of the proof of Theorem 4.8. 2

We can finally prove Theorem 6.2.

Proof. (Theorem 6.2) Let α : T |Pol[z
⇒ H|Pol[z

be given. By Lemma 6.9, α is the

unique such transformation. Let β, β′ : T ⇒ H be given, extending α. For all X and

F ∈ Bases(X), the identity function id : zF (X)→ X is continuous. By the rigidity

assumption, βzF (X) = β′zF (X). Using this equation and naturality,

βX ◦ T (id) = H(id) ◦ βzF (X) = H(id) ◦ β′zF (X) = β′X ◦ T (id)

Therefore β = β′. 2

Example 6.10 We have shown earlier that G satisfies all the conditions of Theorem

6.2. It follows that there can only exist a single natural transformation G⇒ G, and

since the identity transformation is natural, it follows that G is rigid.

Example 6.11 Let M+ : Pol→ Pol be the finite positive measure functor. We can

check that the following transformation is natural: define ν : M+ → G at a Polish

space X by νX(Q) , A 7→ Q(A)
Q(X) for A a Borel set of X. This is well defined since

0 < Q(X) < ∞. It is also natural: if f : X → Y is a map in Pol, then for each Q

227

in M+(X) and Borel set B of Y we have:

G(f)(νX(Q))(B) = νX(Q)(f−1(B)) =
Q(f−1(B))

Q(X)
=
Q(f−1(B))

Q(f−1(Y))

= νY (M+(f)(Q))(B)

Since M+ satisfies (iv), it follows from Theorem 6.2, that the normalisation trans-

formation ν we have just defined is the only natural transformation M+ ⇒ G.

7 Applications

In previous work [7], we showed that a cornerstone of nonparametric Bayesian statis-

tics, the Dirichlet process [8,10], is in fact a natural transformation from M+ to G2.

This result hinged on a non-axiomatic version of the Machine of Sec. 4. In order

to validate our new developments we first give a short construction of the Dirichlet

process in axiomatic form. The value of our general framework is then illustrated

by constructing the Poisson process as a natural transformation. At the heart of

these constructions are families of distributions which are stable by convolution

(mistakenly taken to be infinitely divisible in [7]). Common examples include: the Γ

distribution, the Gaussian distribution, the Poisson distribution, etc. What exam-

ples such as Dirichlet or Poisson processes have in common is that they can all be

represented by natural transformations of the shape M+ ⇒ GH where the functor

H can be either B or M+. Since M+ is Z-cocontinuous, since G and H are Polf -

continuous, preserve injections, embeddings and intersections (see Appendix B) we

can define a natural transformation of this type by restricting ourselves to Polf and

running the Machine.

In the cases which we have mentioned above, the natural transformation in Polf
can in fact be defined by a single map! The fundamental property which makes this

possible is that both M+ and B turn coproducts into products. When this is the case

it is sometimes possible to define φ : M+ ⇒ GH on Polf from a map φ1 : M+(1)→
GH(1). For this we need a fundamental result which holds very generally in the

category Meas of measurable spaces and measurable maps. We define the product

measure natural transformation between the bifunctors π : G − ×G− → G(− × −)

at each pair of measurable spaces ((X,ΣX), (Y,ΣY)) by π(X,Y)(p, q) 7→ p× q where

p× q is the product measure defined on the product σ-algebra (ΣX ⊗ ΣY).

Theorem 7.1 The transformation π : G−×G− → G(−×−) is natural in both its

arguments.

Proof. The proof is routine. 2

Let us now fix a continuous map φ1 : M+(1)→ GH(1). For any n in Polf we use

the fact that n =
∐n
i=1 1 and the fact that M+ and H turn coproducts into products

to define φn : M+(n)→ GH(n) by

M+(n) ∼= M+(1)n
φn1 //

φn

((
(GH(1))n

⊗
H1 //G(H1)n ∼= GH(n)

228

where
⊗

H(1) is the n-fold measure product at H(1). The maps φn define the com-

ponent of a transformation M+ ⇒ GH. But when is it natural? A simple criterion

is given in the following result.

Theorem 7.2 A transformation φ : M+ → GH built as above is natural in Polf iff

the following diagrams commute:

M+(2)
φ2 //

M+(e)
��

GH(2)

GH(e)
��

M+(1)
φ1

//GH(1)

(8)

M+(n)
φn //

M+(ij)
��

GH(n)

GH(ij)
��

M+(n)
φn

//GH(n)

(9)

M+(1)
φ1 //

M+(i1)
��

GH(1)

GH(i1)
��

M+(2)
φ2

//GH(2)

(10)

M+(1)
φ2 //

M+(i2)
��

GH(2)

GH(i2)
��

M+(2)
φ1

//GH(2)

(11)

where e : 2→ 1 is the obvious unique epimorphism, (ij) : n→ n is any permutation

of two elements of n, and i1, i2 : 1→ 2 are the two injections of 1 into 2 = 1 + 1.

Proof. Any map f : m → n between finite sets can be written as a permutation

π : n → n followed by a monotone surjection q : n � k followed by a monotone

injection i : k� n. Since every permutation of n can be written as a composition of

permutation of two elements, repeated usage of Diagram (9) shows that GHπ◦φn =

φn ◦M+π. Monotone surjections q : m� n can be written as a composition of maps

of the shape

id1 + id1 + . . .+ e+ id1 + . . .+ id : k → k − 1

For notational clarity let us consider the case e+ id1 : 3� 2. The following square

commutes:

M+(3) ∼= M+(2)×M+(1)
φ2×φ1//

M+(e)×id1
��

GH(2)× GH(1)
⊗
//

GH(e)×id1
��

G(H(2)×H(1)) ∼= GH(3)

G(H(e)×id1)
��

M+(2) ∼= M+(1)×M+(1)
φ1×φ1

//GH(1)× GH(1) ⊗ //G(H(1)×H(1)) ∼= GH(2)

Indeed, the right-hand side square commutes by Theorem 7.1, whilst the left-hand

side square commutes by assumption that Diagram 8 commutes. Monotone injec-

tions are treated in a similar way. 2

We will call a family of probability distributions φn : M+(n) → GH(n) additive

if (8) holds, exchangeable if (9) holds, and say that it admits zero parameters if (10)

and (11) hold.

The Γ distribution Γ1M
+(1) → GM+(1) maps any parameter λ ∈ M+(1) to a

probability with density x 7→ xλ−1e−x

Γ(λ) w.r.t. Lebesgue [3]. The family of probability

229

distributions Γn generated by Γ1 is clearly exchangeable; it is also additive [7] and

one can easily adapt the definition so that it admits zero parameters. It follows from

Theorem 7.2 that Γn : M+(n)→ GM+(n) is a natural transformation on Polf which

extends to Pol. The Dirichlet process is then simply defined as D : M+ ⇒ G2 ,
(Gν)Γ, where ν : M+ ⇒ G is the normalisation natural transformation (unique, by

rigidity!).

Similarly, if we define Π1 : M+(1) → GB(1) ∼= G(N) by Π1(λ)(k) = λke−λ

k! , then

it is well-known that the family Πn generated by Π1 (similarly to the previous case)

is additive. It is also clearly exchangeable. Finally to allow for zero parameters, we

extend Π1 : M≥0(1)→ G(N) by putting Π1(0) = δ0, the Dirac delta at 0. It is clear

that for any test function f : N→ R

∑
k=0

f(k)
λke−λ

k!
= f(0)e−λ +

∑
k=1

f(k)
λke−λ

k!

λ→0−→ f(0) =
∑
k

f(k)δ0

i.e. our extension is continuous for the weak topology. This fact is the exact analogue

of Proposition 4.2 in [7]. The family Πn : M≥0(n) → GNn thus defines a natural

transformation in Polf by Theorem 7.2, and by applying the Machine we produce

a natural transformation on Pol. The processes ΠX : M+

≥0(X) → GB(X) (for X

in Pol) defined by this natural transformation are very well-known in probability

theory, they are the (inhomogeneous) Poisson point processes on X parameterised

by a measure on X.

8 Outlook

Our results allow the compositional and finitary approximation of a class of param-

eterised “stochastic” processes seen as natural transformations between probability-

like functors satisfying some general axioms. It is worth noting that all the conditions

on endofunctors that we require for the codomain of natural transformatins are pre-

served by composition (if we strengthen Polf -continuity to commutation with all

limits of ccds). Indeed, we are confident that compositionality can be pushed fur-

ther: following coalgebraic practice, we will investigate whether functors in e.g. the

polynomial closure of Giry can be fed to the Machine. For this to happen, parts

of the Machine have yet to be better understood, in particular the special role

played by the requirement of Z-cocontinuity (commutation with diagrams of zero-

dimensional refinements). For instance, we ignore whether the Vietoris functor and

the multiset functors are Z-cocontinuous, or whether Z-cocontinuity is preserved

by composition.

Rigidity is an unexpected mathematical outcome of our structural decomposition

of Pol. Where the Machine allows to prove existence of natural transformations,

rigidity allows to prove unicity and is somewhat dual to the former. We expect

that the notion of isotropic element will find applications beyond the scope of these

developments.

On the applications side, we are confident that many processes beside Dirichlet

and Poisson can be subject to the same treatment. Poisson-Dirichlet, Cox processes

and some form of Gaussian processes seem to be easy targets. In the case of Dirich-

230

let, we already know that the Machine allows to prove an asymptotic “learning”

property. The work of (Culbertson et al, [6]) will provide a convenient setting where

we will study how topological properties of Bayesian models such as continuity relate

to asymptotic properties of Bayesian update. The finitary handle provided by the

Machine might also be useful in deriving new computability or complexity results

in the field of probability.

References

[1] Jiri Adamek, Horst Herrlich, and George E. Strecker. Abstract and concrete categories : the joy of cats.
Pure and applied mathematics. Wiley, New York, 1990. A Wiley-Interscience publication.

[2] Charalambos D Aliprantis and Kim C Border. Infinite dimensional analysis. Springer, 1999.

[3] N. Balakrishnan and V.B. Nevzorov. A Primer on Statistical Distributions. Wiley, 2004.

[4] N. Bourbaki. Elements de mathématique. Topologie Générale. Springer, 1971.

[5] Philippe Chaput, Vincent Danos, Prakash Panangaden, and Gordon Plotkin. Approximating Markov
Processes by averaging. Journal of the ACM, 61(1), January 2014. 45 pages.

[6] Jared Culbertson and Kirk Sturtz. A categorical foundation for Bayesian probability. Applied
Categorical Structures, pages 1–16, 2012.

[7] Vincent Danos and Ilias Garnier. Dirichlet is natural. Electronic Notes in Theoretical Computer
Science, 319:137 – 164, 2015. MFPS XXXI.

[8] Thomas S Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics,
pages 209–230, 1973.

[9] M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor, Categorical Aspects
of Topology and Analysis, number 915 in LNM, pages 68–85. Springer-Verlag, 1981.

[10] Amol Kapila, Bela Frigyik, and Maya R. Gupta. Introduction to the Dirichlet distribution and related
processes. Technical Report UWEETR-2010-0006, University of Washington., 2010.

[11] Alexander S Kechris. Classical descriptive set theory, volume 156 of Graduate Text in Mathematics.
Springer, 1995.

[12] Klaus Keimel and Gordon Plotkin. Mixed powerdomains for probability and nondeterminism. Logical
Methods in Computer Science, 2015.

[13] Dexter Kozen. Kolmogorov extension, martingale convergence, and compositionality of processes.
Technical report, Computing and Information Science, Cornell University, December 2015.

[14] Dexter Kozen, Kim G Larsen, Radu Mardare, and Prakash Panangaden. Stone duality for markov
processes. In LICS 2013, pages 321–330, 2013.

[15] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1998.

231

A Construction of the multiset functor B

Proposition A.1 For X Polish, let B(X) ,
∐
n∈NX

n/Sn, where Xn/Sn is the

quotient of Xn under the obvious action of Sn on tuples with the quotient topology,

i.e. the final topology for the quotient map q : Xn � Xn/Sn. B(X) is Polish.

Proof. We first shown that if Q is dense in X, then Qn/Sn is dense in Xn/Sn:

let U be an open set of Xn/Sn, then q−1(U) is open in Xn and intersects Qn,

i.e. there exists (r1, . . . , rn) ∈ Qn with (r1, . . . , rn) ∈ q−1(U), but this means that

q(r1, . . . , rn) ∈ U and q(r1, . . . , rn) ∈ Qn/Sn. To see that it is completely metrisable,

let d be a complete metric for X,and consider the metric on Xn/Sn given by:

dq([x], [y]) = min
π∈Sn

dn(x, π(y))

where [x], [y] represent the orbits of x, y ∈ Xn respectively, and dn is the product

metric given by

dn((x1, . . . , xn), (y1, . . . , yn)) =

(∑
i

d(xi, yi)
p

) 1
p

(A.1)

for some 0 < p < ∞ (any choice of p generates an equivalent topology on Xn).

Note that for any permutation π ∈ Sn, dn(x, y) = dn(π(x), π(y)) since this simply

amounts to re-arranging the summands in Eq. (A.1). It is not immediately clear

that dq is well-defined or that it defines a metric. To see that it is well defined let

x′ be another representative of [x], then by definition there exists ρ ∈ Sn such that

ρ(x) = x′, and it follows that

min
π∈Sn

dn(x′, π(y)) = min
π∈Sn

dn(ρ(x), π(y)) = min
π∈Sn

dn(x, ρ−1π(y)) = min
π∈Sn

dn(x, π(y))

It follows that dq is well-defined. Let us now check that it is a metric. For any x, y

we clearly have dq([x], [y]) ≥ 0 and dq([x], [y]) = 0 means that there exists π ∈ Sn
such that dn(x, π(y)) = 0 i.e. x = π(y) since dn is a metric, and it follows that

[x] = [y]. For the symmetry, note that dn is invariant under permutations of Sn, i.e.

dn(x, y) = dn(π(x), π(y)) since this simply rearranges the order of the summands in

the product metric. It follows that

dq([x], [y]) = min
π∈Sn

dn(x, π(y))

= min
π∈Sn

dn(π−1(x), y) dn invariant under π−1

= min
π∈Sn

dn(y, π−1(x)) dn is symmetric

= dq(y, x)

Finally, we need to check the triangular inequality. Since dn satisfies the triangular

232

inequality we have for any choice π1, π2 ∈ Sn that:

dn(x, π1(y)) ≤ dn(x, π1(z)) + dn(π2(z), π(x))

≤ dn(x, π2(z)) + dn(z, π−1
2 π1(x)) dn invariant under π−1

2

and it follows that dq([x], [y]) ≤ dq([x], [z]) + dq([z], [y]) since going through all the

combinations π−1
2 π1 will exhaust the entire group Sn. The fact that (Xn/Sn, dq) is

complete follows from the fact that (Xn, dn) is. Let us prove that dq induces the

topology of Xn/Sn. Let us take an open set U in Xn/Sn. By definition q−1(U) is

open in Xn, and can therefore be written as a union of open balls (for the metric

d) U = ∪iBdn(xi, εi). By definition q−1(U) is invariant under permutation, so

q−1(U) =
⋃
π∈Sn

π(q−1(U)) =
⋃
π∈Sn

π

(⋃
i

Bdn(xi, εi)

)
=
⋃
π∈Sn

⋃
i

π (Bdn(xi, εi))

=
⋃
i

⋃
π∈Sn

π (Bdn(xi, εi))

since direct images commute with unions. It follows from the fact that each

π is an homeomorphism that
⋃
π∈Sn π(Bdn(xi, εi)) is open in Xn. Moreover,⋃

π∈Sn π(Bdn(xi, εi)) is by construction invariant under permutation, so

q−1(q(
⋃
π∈Sn

π(Bdn(xi, εi)))) =
⋃
π∈Sn

π(Bdn(xi, εi))

and therefore each q(
⋃
π∈Sn π(Bdn(xi, εi)) is an open in Xn/Sn. We conclude by

observing that q(
⋃
π∈Sn π(Bdn(xi, εi)) = Bdq(q(xi), εi) and that

q−1(Bdq(q(xi), εi)) = q−1(q(
⋃
π∈Sn

π(Bdn(xi, εi))) =
⋃
π∈Sn

π(Bdn(xi, εi))

is open in Xn. Therefore, the balls Bdq(q(xi), εi) are open in Xn/Sn, and since direct

images commute with unions it is not difficult to see that U =
⋃
iBdq(q(xi), εi) is a

union of opens from the basis generated by the metric. Since each Xn/Sn is Polish

and since Pol has countable coproducts, B(X) is Polish. 2

B Properties of the functors B and V

Proposition B.1 The multiset functor B preserves injections, embeddings and in-

tersections.

Proof. Note first that B(i) is defined component-wise i.e. via Bn(i) : Bn/Sn �
Xn/Sn injecting an equivalence class of n-tuples of element of B in Xn/Sn. The fact

that B(i) is injective follows from the fact that every component Bn(i) is. Similarly

to show that B(i) is an embedding it is enough to show that each Bn(i) is. To see

that this is the case we need to show that for every open U of Bn/Sn there exists

an open V of Xn/Sn such that U = V ∩Bn/Sn and conversely that every subset of

this shape is open in Bn/Sn. We write pn : Bn � Bn/Sn and qn : Xn � Xn/Sn.

233

For the first direction, let U be open in Bn/Sn, it follows that p−1
n (U) is open in

B, and thus that there exists an open V of Xn such that p−1
n (U) = Bn ∩ V . If we

can choose V to be closed under permutation we are done. Every permutation is a

bijective isometry and thus a homeomorphism, and thus an open map, i.e. π(V) is

open for every π ∈ Sn. It follows that

V ∗ =
⋃
π∈Sn

π(V)

is open and closed under permutations (this procedure amounts to taking all the

reflections of tuples along the diagonal). It follows that q−1
n (qn[V ∗]) = V ∗ and qn(V ∗)

is thus open in Xn/Sn. Moreover since Bn∩V is already closed under permutations

Bn ∩ V = Bn ∩ V ∗, and therefore U = Bn/Sn ∩ qn(V ∗). For the opposite direction,

let U be open in Xn/Sn and consider U ∩Bn/Sn, it is clear that

p−1
n (U ∩Bn/Sn) = p−1

n (U) ∩ p−1
n (Bn/Sn) = (q−1

n (U) ∩B) ∩B = q−1
n (U) ∩B

which is open in Bn since qn(U) is open in Xn.

For intersections, we proceed as in Proposition 5.1. Let j1, j2 : A,B � X be

two embeddings, let p1 : A ∩ B → A and p2 : A ∩ B � B be the corresponding

embeddings and consider µ ∈ BA, ν ∈ BB such that Bj1(µ) = Bj2(ν). We define

λ ∈ B(A ∩B)

λ(x) = µ(p1(x)) = ν(p2(x))

We check that the last equality holds in exactly the same way as in the proof of

Proposition 5.1, and the rest of the proof also follows identically. 2

Proposition B.2 The Vietoris functor V preserves monomorphisms, embeddings

and intersections.

Proof. It is clear that V preserves injective maps. To see that it preserves embed-

dings, consider an element of the basis of the topology on V(X), i.e. an element of

the form (Kechris [11] I, 4.F)

W = {K ∈ V(X) | K ⊆ U0&K ∩ U1 6= ∅& . . .&K ∩ Un 6= ∅}

for U0, . . . , Un opens in X. It follows that

W ∩ V(B)

= {K ∈ V(B) | K ⊆ (U0 ∩B)&K ∩ (U1 ∩B) 6= ∅& . . .&K ∩ (Un ∩B) 6= ∅}

which is an element of the basis of the topology of V(B), since elements of the shape

Ui ∩B are precisely the opens of B. Conversely therefore, starting from an element

W ′ of this shape it is clear that by removing all the intersections with B we get an

element W of the basis of the topology on V(X) such that W ∩ V(B) = W ′, and V
thus preserves embeddings.

For intersections, let j1, j2 : A,B � X be two embeddings, let p1 : A ∩ B → A

and p2 : A∩B� B be the corresponding embeddings and consider KA ∈ VA,KB ∈
VB such that Vj1(KA) = Vj2(KB), i.e. such that j1[KA] = j2[KB]. This means that

234

K = KA = KB is a subset of A∩B. To see that it is compact in A∩B, let
⋃
i Ui ⊇ K

be an open cover: for each i either Ui is of the form p−1
1 (Vi) for some Vi open in

A, or it is of the form p−1
2 (Vi) for some Vi open in B. In the latter case, since j2 is

an embedding, there exists Wi open in C such that Ui = p−1
2 (j−1(Wi)), but then

Ui = p−1
1 (j−1

1 (Wi)), which means that we can assume without loss of generality that

for each i the element Ui of the cover is of the form p−1
1 (Vi) for some Vi open in A. It

is easy to see that Vi is an open cover of K in A, from which we can extract a finite

sub-cover, whose inverse image under p1 will be an finite sub-cover of K in A ∩B.

It follows that VA ∩ VB ' V(A ∩ B) as sets, and since V preserves embeddings,

they are also homeomorphic. 2

Proposition B.3 B is Polf -continuous.

Proof. Let Xi, i ∈ I be a ccd of Polf objects. We show limBXi = B(limXi). For

this we need to show that the unique continuous map u : B(limXi) → limBXi is

a homeomorphism. To show this will show that it is bijective and open. We start

by defining an inverse φ : limBXi� B(limXi). Since the set underlying the limits

are computed in Set, showing that φ exists and is an inverse as a function will be

enough to prove that u is bijective. We can assume w.l.o.g. that the morphisms

between the finite Polish spaces Xi are surjective.

Given a ‘thread’ (µi)i∈I ∈ limBXi we need to define a finitely supported multiset

on the threads (xi)i∈I ∈ limXi. For the thread (µi) consider the projective system

of supports (supp(µi))i∈I together with the obvious restrictions fij � supp(µi) of the

connecting maps fij : Xi → Xj which are also surjective. We claim that lim supp(µi)

is finite and forms the support of the multiset φ((µi)i∈I) on limXi . We make the

following observation:

(i) Each support is finite

(ii) The size of the support cannot increase by following the connecting arrows,

since they are surjective.

(iii) The total mass k of µi, i ∈ I is constant throughout the thread because B
applied to a connecting morphism preserves the total mass of a multiset.

(iv) The cardinality of the set supp(µi) is bounded by k since we cannot assign a

weight less than one to any element in the support.

(v) There exists an i ∈ I after which the cardinality of supp(µi) remains constant,

i.e. such that |supp(µk)| = |supp(µj)| for each j > k. If this wasn’t the case it

would contradict the previous points.

Thus let k be such that |supp(µk)| = |supp(µj)| for each j > k, we claim that

pk : lim supp(µi) → supp(µk) is a bijection. It is surjective since the connecting

morphisms in the diagram are surjective. If (xi)i∈I , (yi)i∈I are two threads such

that pk(xi) = pk(yi) then xk = yk. Now take any k′ ∈ I, by co-directedness there

exists j > k, k′ and by assumption on k, supp(µk) and supp(µj) have the same

cardinality, i.e. the connecting morphism pjk is bijective. There therefore exists a

unique xj ∈ supp(µj) such that pjk(xj) = xk = yk, and it follows that both thread

must go through the same element at k′ too, for any k′, which shows that pk is

235

injective. We define φ((µi)i∈I) as the multiset on limXi defined by:

(xi)i∈I 7→

{
0 if (xi)i∈I /∈ lim supp(µi)

µk(xk) else (where k is defined as above)

We need to show that the definition is independent of the choice of k. Consider

another index k′ such that |supp(µk′)| = |supp(µj)| for each j > k′. Again by

co-directedness there exists j > k, k′. We now calculate:

µk(xk) = µk(fjk(xj)) = Bfjk(µj)(fjk(xj)) = µj(xj) = Bfjk′(µj)(fjk′(xj))

= µk′(xk′)

Let us now show that φ thus defined is a left and right inverse to u. Given a multiset

µ ∈ B(limXi) on threads of limXi, u(µ) is the thread of multisets νi on Xi defined

by νi(x) = µ[p−1
i ({x})], i.e. the mass given by µ to the set of threads going through

x ∈ Xi. This family forms a thread since for every fij : Xi → Xj and y ∈ Xi,

νj(y) = µ[p−1
j ({y})] = µ[p−1

i (f−1
ij (y)] = νi(f

−1
ij (y)) = Bfij(νi)(y)

For µ ∈ B(limXi), let u(µ) = (νi)i∈I . The support supp(νi) is given by the set

Yi ⊆ Xi of points traversed by a thread in the support of µ, and it is therefore not

hard to see that lim supp(νi) with the multiplicities defined by φ is precisely µ, i.e.

φ ◦ u = idB(limXi). Conversely u ◦ φ = idlimXi by universality of limXi.

Finally, we show that the unique u : B(limXi)→ limBXi is a homeomorphism.

We already know that it is continuous and bijective, so it remains to be shown

that it is open. For this we must look at the topologies on B(limXi) and limBXi.

In the former U is an open exactly when q−1
n (U) is open in (limXi)

n for each n

where qn : (limXi)
n � (limXi)

n/Sn. Any subset U of B(limXi) can be written as

an union of sets Un in (limXi)
n/Sn, so it is sufficient to show that u maps opens

of (limXi)
n/Sn (corresponding to sets of multisets of total mass n) to opens in

limBXi. It is not hard to check that U is open in (limXi)
n/Sn iff there exists V

open in (limXi)
n such that qn[V ∗] = U where V ∗ =

⋃
π∈Sn π[V]. To check that

u(U) is open it is therefore enough to check that u◦qn ◦π[V] is open for any open in

(limXi)
n, and since π is a homeomorphism this really means checking that u◦qn[V]

is open. By the definition of the product topology and of the topology on limXi

it is enough to check that u ◦ qn[Y j
k] is open for Y j

k the set of n-tuples of threads

of limXi whose jth component goes through Yk ⊆ Xk. The morphism qn collapses

such an n-tuple to a multiset on threads and qn[Y j
k] is the set of multisets of total

mass n which assigns mass at least one to threads going through Yk.

To check that u sends these open sets to open sets we need to describe the

topology on the codomain. Fortunately is it much simpler. Since each Xi is finite,

Xn
i /Sn is finite, and must therefore have the discrete topology. Since B(Xi) =∐
nX

n
i /Sn is given the final topology for all the injections its topology must also

be discrete. The topology on limB(Xi) is thus generated by the opens of the shape

p−1
i (Ui) where Ui is any subset of B(Xi) and pi is the canonical projection.

We can now check that u is open. Let us denote qn[Y j
k] = Y n

k the set of multisets

of total mass n which assigns mass at least one to threads going through Yk. It

236

gets mapped to a set B(pk(Y
k
n)) of multisets on Xk, which in turns defines u(Y n

k) =

p−1
k (B(pk(Y

k
n))) which is indeed open. 2

Proposition B.4 Let (Xi)i∈I be a ccd of compact spaces. Then V(limXi) ∼=
limVXi

Proof. Let (Xi)i∈I be a ccd of compact Polish space; we must show that V limXi =

limVXi. Let us first show that there exists a bijection between these sets. We write

pi : limXi → Xi for the canonical projections. We know that there exists a unique

continuous map u : V limXi → limVXi; it takes a compact K of limXi and maps

it to the thread (pi[K])i∈I of limVXi (since the continuous image of a compact is

compact). Let K,K ′ be two compacts of limXi such that pi[K] = pi[K
′] for every

i ∈ I, for every thread (xi)i∈I in limXi it is clear that (xi) ∈ K iff pi(xi) ∈ pi[K] iff

pi(xi) ∈ pi[K ′] iff (xi) ∈ K ′ and thus u is injective.

We now define an inverse map φ : limVXi → V limXi as follows. For each thread

of compacts (Ki)i∈I in limVXi, since each Xi is Hausdorff, each Ki is closed and

thus p−1
i (Ki) is a closed subset of limXi. We define

φ((Ki)i∈I) =
⋂
i

p−1
i (Ki)

To see that this is well-defined, we need to show that φ((Ki)i∈I) is compact. Since

each p−1
i (Ki) is closed, their intersection φ((Ki)i∈I) is closed. We also know that

since each Xi is compact limXi is a closed subspace of the product
∏
Xi which

is compact by Tychonoff’s theorem. It follows that limXi is compact, and since V
sends compacts to compacts (Kechris Theorem 4.26), V limXi is compact. Finally

since φ((Ki)i∈I) is closed in a compact it is itself compact.

To see that φ is a left inverse of u, start with K ∈ V limXi, u(K) = (pi[K])i∈I
and

φ(u(K)) =
⋂
i

p−1
i (pi[K])

Let (xi) be a thread in K, then clearly pi((xi)) = xi ∈ pi[K] for all i, and thus

(xi) ∈ φ(u(K)). Conversely, let (xi) be a thread in φ(u(K)) then by definition of φ,

pi((xi)) ∈ pi[K] for every i, i.e. xi ∈ pi[K] for every i, i.e. (xi) ∈ K, and it follows

that φ ◦ u = idV limXi . Conversely, φ is a right inverse since u ◦ φ = idlimVXi by

universality of u. We have thus established that u is bijective.

Finally, since u : V limXi → limVXi is a continuous bijection with a compact

domain and a Hausdorff codomain, it is a homeomorphism, which concludes the

proof. 2

237

MFPS 2016

Complete Elgot Monads and Coalgebraic
Resumptions†

Sergey Goncharov1,? Stefan Milius2 Christoph Rauch3,?

Lehrstuhl für Theoretische Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Abstract

Monads are used to abstractly model a wide range of computational effects such as nondeterminism, state-
fulness, and exceptions. Complete Elgot monads are monads that are equipped with a (uniform) iteration
operator satisfying a set of natural axioms, which allows to model iterative computations just as abstractly.
It has been shown recently that extending complete Elgot monads with free effects (e.g. operations of
sending/receiving messages over channels) canonically leads to generalized coalgebraic resumption monads,
which were previously used as semantic domains for non-wellfounded guarded processes. In this paper, we
continue the study of complete Elgot monads and their relationship with generalized coalgebraic resumption
monads. We give a characterization of the Eilenberg-Moore algebras of the latter. In fact, we work more
generally with Uustalu’s parametrized monads; we introduce complete Elgot algebras for a parametrized
monad and we prove that they form an Eilenberg-Moore category. This is further used for establishing a
characterization of complete Elgot monads as those monads whose algebras are coherently equipped with
the structure of complete Elgot algebras for the parametrized monads obtained from generalized coalgebraic
resumption monads.

Keywords: Complete Elgot monad, complete Elgot algebra, resumption monad, uniform iteration

1 Introduction

One traditional use of monads in computer science, stemming from the seminal

thesis of Lawvere [20], is as a tool for algebraic semantics where monads arise as

a high-level metaphor for (clones of) equational theories. More recently, Moggi

proposed to associate monads with computational effects and use them as a generic

tool for denotational semantics [22], which later had a considerable impact on the

design of functional programming languages, most prominently Haskell [1]. Finally,

in the first decade of the new millennium, Plotkin and Power reestablished the

connection between computational monads and algebraic theories in their theory of

algebraic effects [23, 24].

† Full version is available at http://arxiv.org/abs/1603.02148
? Supported by Deutsche Forschungsgemeinschaft (DFG) under project SCHR 1118/8-1
1 Email: Sergey.Goncharov@fau.de
2 Email: mail@stefan-milius.eu Supported by Deutsche Forschungsgemeinschaft (DFG) under project
MI 717/5-1
3 Email: Christoph.Rauch@fau.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://arxiv.org/abs/1603.02148
mailto:Sergey.Goncharov@fau.de
mailto:mail@stefan-milius.eu
mailto:Christoph.Rauch@fau.de

Goncharov, Milius, Rauch

We use the outlined view to study the notion of iteration as a concept that has

a well-established algebraic meaning and which is very relevant in the context of

computational effects. On the technical level our present work can be viewed as a

continuation of the previous extensive work on monads with iteration [2,5,7] having

its roots in the work of Elgot [12] and Bloom and Ésik [10] on iteration theories.

More specifically, we are concerned with a particular construction on monads:

given a monad T and a functor Σ, we assume the existence of the coalgebra

TΣX = νγ. T (X + Σγ) (F)

for each object X (these final coalgebras exist under mild assumptions on T , Σ, and

the base category). It is known [28] that TΣ extends to a monad TΣ and we call the

latter the generalized coalgebraic resumption monad.

Intuitively, (F) is a generic semantic domain for systems combining extensional

(via T) and intensional (via Σ) features with iteration. To make this intuition more

precise, consider the following simplistic

Example 1.1 Let A = {a, b} be an alphabet of actions. Then the following system

of equations specifies processes x1, x2, x3 of basic process algebra (BPA):

x1 = a · (x2 + x3) x2 = a · x1 + b · x3 x3 = a · x1 +X

We can think of this specification as a map P → T ({X} + ΣP) where P =

{x1, x2, x3}, Σ = A × -- and T = Pω is the finite powerset monad. Using the stan-

dard approach [26] we can solve this specification by finding a map P → TΣ{X}
that assigns to every xi the corresponding semantics over the domain of possibly

non-wellfounded trees TΣ{X} = νγ.Pω({X}+A× γ). The crucial fact here is that

the original system is guarded, i.e. every recursive call of a variable xi is preceded

by an action. This implies that the given recursive system has a unique solution.

If the guardedness assumption is dropped, solutions may fail to be unique, but it

is possible to introduce a notion of canonical solution if the Kleisli category of the

monad T is enriched in the category of complete partial orders, or more generally,

if T is a complete Elgot monad. A monad T is a complete Elgot monad if it is

equipped with an iteration operator that assigns to every morphism of the form

f : X → T (Y + X) a solution f † : X → TY satisfying a certain well-established

set of equational axioms of iteration and also uniformity [27] (e.g. Pω is not a

complete Elgot monad, but the countable powerset monad Pω1 is). The central

result of the recent work [14] is that whenever T is a complete Elgot monad then so

is the transformed monad (F). In particular, this allows for canonical solutions of

recursive equations over processes (in the sense of Example 1.1) whenever recursive

equations over T are solvable.

In the present paper we investigate the relationship between guarded and un-

guarded iteration, which are implemented via generalized coalgebraic resumption

monads and complete Elgot monads, respectively. As an auxiliary abstraction de-

vice, we use the notion of a parametrized monad introduced by Uustalu [28], i.e. a

bifunctor # : C×C→ C such that for every object X, the functor -- #X is a monad.

For example, the bifunctor X#Y = T (X+ΣY) in (F) yields a parametrized monad.

239

Goncharov, Milius, Rauch

Following [5], we introduce complete Elgot algebras for a parametrized monad #,

which are algebras for # equipped with an iteration operator satisfying simplified

versions of the axioms of complete Elgot monads. However, in contrast to the latter

complete Elgot #-algebras omit any form of the Bekić law that states how mutu-

ally recursive definitions are solved. We then prove that for every object X the

final coalgebra νγ.X # γ is equivalently a free complete Elgot #-algebra on X and

that the category of Eilenberg-Moore algebras for the ensuing monad νγ. -- #γ is

isomorphic to the category of complete Elgot #-algebras.

Furthermore, we show that for every complete Elgot monad T, every free T-

algebra TZ canonically extends to a complete Elgot #-algebra for X # Y =

T (X + Y). This situation can be roughly summarized as follows:

(νγ. -- #γ)-algebras ∼= complete Elgot #-algebras ⊇ free T-algebras

From the perspective of Example 1.1 this connection can be regarded as follows.

Since Σ = Id, the set of guards consists of only one action, which can be understood

as delaying. Now, the inclusion of T-algebras into (νγ. -- #γ)-algebras essentially

means that complete Elgot monads interpret staged, possibly infinite, guarded pro-

cesses over T by forgetting the guards.

Suppose that, conversely, we have any monad T such that the above inclusion

holds in the sense that T-algebras are coherently equipped with structures of com-

plete Elgot #-algebras. Then T is equipped with an iteration operator satisfying

a set of axioms that are weaker than the axioms of complete Elgot monads; the

ensuing notion is that of a weak complete Elgot monad.

The paper is organized as follows. After categorical preliminaries (Section 2)

we present and discuss complete Elgot monads in Section 3. In Section 4 we intro-

duce algebras and complete Elgot algebras for a parametrized monad #; next, in

Section 5, we show that the category of complete Elgot #-algebras is isomorphic

to the Eilenberg-Moore category of the monad νγ. -- #γ (Theorem 5.7); further-

more, we show that a free complete Elgot #-algebra on X is equivalent to the final

coalgebra νγ.X#γ (Theorem 5.9). Finally, in Section 6 we apply the developed re-

sults to characterize complete Elgot monads as those whose algebras are coherently

equipped with complete Elgot algebra structures (Theorem 6.4 and 6.6).

Further Related Work. Algebras for parametrized monads were introduced

in [4, 6] albeit for the special case of a base, i.e. a finitary parametrized monad

on a locally finitely presentable category. Loc. cit. also introduces iterative base

algebras which are algebras for a base having unique solutions of finitary recursive

equations. Complete Elgot algebras for an endofunctor H were introduced in [5],

and it was proved that they form the Eilenberg-Moore category of the monad T ob-

tained by taking the final coalgebras TX = νγ.(X+Hγ); this is the free completely

iterative monad on H (see [2]). Since X # Y = X +HY is a parametrized monad,

our notion of complete Elgot algebras generalizes the previous notion to the level of

parametrized monads and it extends iterative algebras by considering an iteration

operation subject to certain axioms in lieu of unique solutions. Our Theorem 5.7

generalizes [5, Theorem 5.8].

The study of monads with an iteration operator is inspired by Bloom and Ésik’s

iteration theories [10]. Extending this from Lawvere theories (i.e. finitary monads

240

Goncharov, Milius, Rauch

on Set) to monads on more general categories has led to the notion of Elgot monad

introduced in [7]. While iteration theories and Elgot monads study an iteration

operator for recursive equations with finitely many recursion variables, complete

Elgot monads [14] are equipped with an iteration operator for all (finitary and

infinitary) recursive equations.

2 Preliminaries

We assume that readers are familiar with basic category theory [21]; we write |C| for

the class of objects of a category C and f : X → Y for morphisms in C. We often

omit indexes, e.g. on natural transformations, if they are clear from the context.

In this paper we work with an ambient category C with finite coproducts. We

denote by inl and inr the left- and right-hand coproduct injections from X and Y

to X + Y , and [f, g] : X + Y → Z the is the copair of f : X → Z and g : Y → Z,

i.e. the unique morphism with [f, g] inl = f and [f, g] inr = g. The codiagonal is

denoted by ∇ = [id, id] : X +X → X as usual.

We consider monads on C given in the form of Kleisli triples T = (T, η, --?)

where T is an endomap on |C|, η, called monad unit, is a family of morphisms

ηX : X → TX indexed over |C|, and (Kleisli) lifting assigns to each f : X → TY a

morphism f? : TX → TY such that the following laws hold:

η? = id, f? η = f, (f? g)? = f? g?.

This is equivalent to the definition of a monad as a triple (T, η, µ) that consists

of a functor T and two natural transformations, the monad unit η : Id → T and

the monad multiplication µ : TT → T [21]. In particular, given a Kleisli triple,

µ = id? yields the monad multiplication, η extends to a natural transformation, and

T to an endofunctor with morphism mapping Tf = (η f)?. The Kleisli category

CT of T is formed by Kleisli morphisms X → TY , i.e. CT(X,Y) = C(X,TY) with

ηX as identity morphism on X and Kleisli composition: given Kleisli morphisms

f : X → TY and g : Y → TZ we have

f � g =
(
X

f−−→ TY
g?−−→ TZ

)
.

We write f : X �−→Y for a Kleisli morphism f : X → TY .

The forgetful functor from CT to C has a left adjoint sending any f : X → Y

to f = η f : X → TY . Like any left adjoint, this functor preserves colimits, and in

particular coproducts. Since |C| = |CT|, this implies that coproducts in CT exist

and are lifted from C. Explicitly, inl = η inl : X �−→X + Y , inr = η inr : Y �−→X + Y

are the coproduct injections in CT and [f, g] : A + B �−→C (formed in C) is the

copair of f : A �−→C and g : B �−→C in TT. We denote by f ⊕ g : A+B �−→A′ +B′

the coproduct of morphisms f : A �−→A′ and g : B �−→B′ in CT. Besides CT, we

consider the category CT of (Eilenberg-Moore) algebras for T, whose objects are

pairs (A, a : TA → A), satisfying two laws: a η = id and a (Ta) = aµ; a T-algebra

morphism f from (A, a) to (A, b) is a morphism f : A → B such that f a = b Tf .

See [21] for more details.

241

Goncharov, Milius, Rauch

Fixpoint:

f
X

X

Y

= f f
X

X
X

Y
Y

Naturality:

f gX

X

Y Z

= f gX

X

Y Z

Codiagonal:

g
X

Y

X
X

= g
X

Y

XX

Uniformity:

h f
Z X

Y

X

= g h
Z

Z

Y
X

⇓

h f
Z X

Y

X

= g
Z

Z

Y

Fig. 1. Axioms of complete Elgot monads.

We will make use of standard facts on coalgebras for an endofunctor [25]. Given

an endofunctor F : C → C, an F -coalgebra is a pair (X, c) where X is an object

of C called the carrier of the coalgebra and c : X → FX is a morphism called the

(transition) structure. A coalgebra morphism f from (X, c) to (Y, d) is a morphism

f : X → Y such that d f = (Ff) c. Coalgebras and their morphisms form a

category. The final F -coalgebra, if it exists, is the terminal object in that category

and is denoted by

νF
out−−−→ F (νF).

By Lambek’s lemma, out is an isomorphism, whose inverse out-1 : F (νF)→ νF can

be obtained as coit(F out), where for any coalgebra (X, f : X → FX) we denote by

coit f the unique coalgebra morphism X → νF from X to the final coalgebra νF .

3 Complete Elgot Monads for Iteration

Complete Elgot monads are a slight generalization of Elgot monads from [7,8], which

in turn, for the base category being Set, correspond precisely to those iteration

theories of Bloom and Ésik [10] that satisfy the functorial dagger implication for

base morphisms. In the following definition cited from [14] (for simplicity, we do

not consider strong monads here because the possible presence of a strength has no

bearing on our results), we follow the terminology of [9,27] where the same axioms

242

Goncharov, Milius, Rauch

were considered in the dual setting of generic parametrized recursion.

Definition 3.1 (Complete Elgot monads) A complete Elgot monad is a

monad T equipped with an operator --†, called iteration, that assigns to each mor-

phism f : X �−→Y + X a morphism f † : X �−→Y such that the following axioms

hold:

fixpoint: f † = [η, f †] � f , for any f : X �−→Y +X;

naturality: g � f † = ((g ⊕ η) � f)† for any f : X �−→Y +X and g : Y �−→Z;

codiagonal 4 :([η, inr] � g)† = g†† for any g : X �−→(Y +X) +X;

uniformity: f � h = (η ⊕ h) � g implies f † � h = g† for any f : X �−→Y + X,

g : Z �−→Y + Z and h : Z → X.

The above axioms of iteration can be comprehensibly represented in a flowchart-

style as in Fig. 1. Here the feedback loops correspond to iteration and the coloured

frames indicate the scope of the constructs being iterated. We believe that this

presentation is rather well in touch with the intuition. For example, the naturality

axiom expresses the fact that the scope of the iteration can be stretched to embrace

a function post-processing the output of the terminating branch.

There is an obvious similarity between the axioms in Fig. 1 and the axioms

of traced monoidal categories [18]. In fact, Hasegawa [16] proved that there is an

equivalent presentation of a dagger operation satisfying the above axioms in terms

of a uniform trace operator w.r.t. coproducts (actually, Hasegawa worked in the

dual setting with products). Note that the present axioms make use of coproduct

injections and the codiagonal morphism, while the trace axioms can be formulated

more generally for any monoidal product.

One standard source of examples for complete Elgot monads is a suitable en-

richment of the Kleisli category CT over complete partial orders.

Example 3.2 (ω-continuous monads) An ω-continuous monad is a monad T
such that the Kleisli category CT is enriched over the category Cppo of ω-complete

partial orders with bottom ⊥ and (nonstrict) continuous maps; moreover, composi-

tion in C is required to be left strict and composition in CT right strict: ⊥ f = ⊥,

f � ⊥ = ⊥; equivalently, ⊥ is a constant of T. We also assume that coproducts

in CT are Cppo-enriched; for this it suffices that copairing is monotone in both

arguments. It then follows that it is also continuous; for
⊔
i[fi, g] is a morphism

satisfying (
⊔
i[fi, g]) inl =

⊔
i fi and (

⊔
i[fi, g]) inr = g by continuity of composition,

whence
⊔
i[fi, g] = [

⊔
i fi, g]. Similarly, one shows continuity in the second argu-

ment. (Note that monotonicity is used only so that the [fi, g] form an ω-chain

provided that the fi do.)

It is shown in [14] that an ω-continuous monad is a complete Elgot monad with

e† calculated as the least fixed point of the map f 7→ [η, f] � e. This yields the

powerset monad P, the Maybe-monad (-- +1), or the nondeterministic state monad

P(--×S)S as examples of complete Elgot monads on Set. The lifting monad (--)⊥ is

a complete Elgot monad on the category of complete partial orders without bottom.

4 The codiagonal axiom is often written as ((η ⊕ ∇) � g)† = g†† implicitly alluding to the canonical
isomorphism Y + (X +X) ∼= (Y +X) +X.

243

Goncharov, Milius, Rauch

g h
X

X

Y

Z

Y
= g h g

X
Y

Z

Z

Y

X

Y

Fig. 2. Dinaturality axiom.

Another principal source of examples are free complete Elgot monads for which the

iteration of guarded morphisms is uniquely defined.

Example 3.3 (Free complete Elgot monads) Suppose T is the initial complete

Elgot monad. It is shown in [14] that whenever the functor TΣ defined by (F)

exists, it yields the free complete Elgot monad on Σ (note that the original T is the

free complete Elgot monad on the constant functor on the initial object of C). In

Set (more generally, in any hyperextensive category [3]) the initial complete Elgot

monad T is the Maybe-monad -- +1.

Example 3.4 (Capretta’s partiality monad) One instructive example, not cov-

ered by the above cases is the coalgebraic resumption monad νγ. -- +γ, studied by

Capretta for modeling partiality in the intensional type theory [11]. Note that this

example is not covered by Example 3.3, for that only states that νγ. T (X + γ) is

a complete Elgot monad, provided T is one (e.g. it follows that νγ. X + 1 + γ is a

complete Elgot monad on Set), but T = Id is not a complete Elgot monad in any

of the relevant examples.

We conjecture that T = νγ. -- +γ can be shown to be a complete Elgot monad

over any sufficiently rich (type-theoretic) universe; in particular, this can be easily

seen in Set: Here TX explicitly evaluates to X ×N+ {⊥}, hence every TX can be

ordered as a flat domain, i.e. x v y iff x = ⊥ or x = y; this easily extends to a Cppo-

enrichment as required in Example 3.2 and hence gives rise to a complete Elgot

monad structure on T. Intuitively, every function f : X → T (Y +X) either diverges

or delivers a result together with the number of steps needed to compute it. The

iteration f † sums the numbers occurring across the loop and in case of convergence

delivers the sum together with the result value. Note that the number of unfoldings

of f † in this process does not contribute to the result, which explains why the

fixpoint identity indeed holds for T.

In comparison to the previous work [14], Definition 3.1 remarkably drops the axiom

of dinaturality (see Fig. 2). The reason is that this axiom turns out to be derivable,

which is a fact that was recently discovered and formalized on the level of iteration

theories [13]. Corollary 6 from op. cit. can be couched in present terms as follows

(modulo the terminological change: parameter identity instead of naturality, double

dagger instead of codiagonal and dagger implication for base morphisms instead of

uniformity):

Proposition 3.5 (Dinaturality) Given g : X �−→Y +Z and h : Z �−→Y +X, then

([inl, h] � g)† = [η, ([inl, g] � h)†] � g.

The codiagonal axiom in Definition 3.1 can equivalently be replaced by a form of

244

Goncharov, Milius, Rauch

the well-known Bekić identity, see [10].

Proposition 3.6 (Bekić identity) A complete Elgot monad T is, equivalently,

a monad satisfying the fixpoint, naturality and uniformity axioms (as in Defini-

tion 3.1), and the Bekić identity

(Tα [f, g])† = [η, h†] � [inr, g†],

where g : X �−→(Z + Y) + X, f : Y �−→(Z + Y) + X, h = [η, g†] � f : Y �−→Z + Y ,

with α : (A+B) + C → A+ (B + C) being the obvious associativity isomorphism.

4 Parametrized Monads for Complete Elgot Algebras

In order to study complete Elgot monads and their algebras it is helpful to make a

further abstraction step and generalize from monads to parametrized monads [28]

(finitary parametrized monads are also called bases [4]), which are of independent

interest.

Definition 4.1 (Parametrized monad) A parametrized monad over C is a func-

tor from C to the category of monads over C and monad morphisms. More explic-

itly, a parametrized monad is a bifunctor # : C×C→ C such that for any X ∈ |C|,
-- #X : C→ C is a monad, and for any f : X → Y , id # f : Z #X → Z # Y is the

Z-component of a monad morphism from -- #X to -- #Y .

Remark 4.2 The order of arguments in X#Y is in agreement with [28] and differs

from [4] where the notation Y 2X equivalent to the present X#Y is used. We chose

the order of arguments to ensure agreement with the type profile of the iteration

operator --†, which is in turn in agreement with the expression (F).

Following [4] we will from now on denote the unit and multiplication of the monads

-- #X by uXA : A→ A#X and mX
A : (A#X) #X → A#X, respectively.

Example 4.3 (Parametrized monads) We recall some standard examples of

parametrized monads from [28]; further examples can be found e.g. in [6].

(i) Whenever T = (T, η, --?) is a monad and Σ is a functor, A # X = T (A+ ΣX)

is a parametrized monad with the unit given by

uXA =
(
A

inl−−→ A+ ΣX
ηA+ΣX−−−−→ T (A+ ΣX)

)
and the multiplication by

mX
A =

(
T (T (A+ ΣX) + ΣX)

[id,ηA+ΣX inr]?−−−−−−−−−→ T (A+ ΣX)
)
.

Specifically, if Σ is the constant functor on an object E then X # Y is the

exception monad transformer with exceptions from E [22]. Another interesting

special case is when T is the identity monad (cf. Remark 4.8).

(ii) A # X = A × X? is a parametrized monad with the unit and multiplication

given by

uXA : a 7→ (a, ε) and mX
A : (a,w, v) 7→ (a,wv),

245

Goncharov, Milius, Rauch

where ε denotes the empty word and wv concatenation of words.

(iii) Given a contravariant endofunctor H, A#X = AHX is a parametrized monad

with the unit and multiplication given by

uXA : a 7→ λx. a and mX
A : (f : HX → (HX → A)) 7→ λx. f(x)(x).

This is a generalization of the well known reader monad, which can be recovered

by instantiating H with a constant functor.

The following is a straightforward extension of the notion of an algebra for a base

studied in [4] to arbitrary parametrized monads.

Definition 4.4 (#-algebras) Given a parametrized monad # : C × C → C, a

#-algebra is a pair (A, a) consisting of an object A of C, and an algebra for the

monad -- #A, i.e. a morphism a : A#A→ A satisfying

A A#A

A

uAA

id
a

(A#A) #A A#A

A#A A

a#id

mA
A

a

a

A morphism between #-algebras (A, a) and (B, b) is a C-morphism f : A→ B such

that
A#A A

B #B B

a

f#f f

b

For our leading example X # Y = T (X + ΣY) the category of #-algebras can be

described explicitly. Recall that a T-Σ-bialgebra in the sense of Kelly [19] is a triple

(A, a, f) where a : TA→ A is a T-algebra and f : ΣA→ A is a Σ-algebra.

Proposition 4.5 Let X # Y = T (X + ΣY) for a monad T and a functor Σ on C.

Then #-algebras are precisely T-Σ-bialgebras.

Proof (Sketch). Given a #-algebra α : T (A + ΣA) → A one forms two algebra

structures

a =
(
TA

T inl−−→ T (A+ ΣA)
α−−→ A

)
and b =

(
ΣA

inr−−→ A+ ΣA
η−−→ T (A+ ΣA)

α−−→ A
)
.

A straightforward calculation then shows that a is a T-algebra structure, whence

(A, a, b) is a T-Σ-bialgebra.

Conversely, given any T-Σ-bialgebra a : TA→ A← ΣA : b one forms

α =
(
T (A+ ΣA)

T [id,b]−−−−−→ TA
a−−→ A

)
.

Another straightforward computation establishes that this is the structure of a #-

algebra.

246

Goncharov, Milius, Rauch

Finally, it is easy to see that the above two constructions are mutually inverse

and extend to an (identity on morphisms) isomorphism between the categories of

#-algebras and T-Σ-bialgebras. 2

Corollary 4.6 Let X#Y = T (X+Y) for a monad T on C. The category CT of T-

algebras is isomorphic to the full subcategory of those #-algebras a : T (A+A)→ A,

which factor through T∇ : T (A+A)→ TA.

Analogously to complete Elgot monads, we introduce #-algebras with iteration.

This generalizes the definition of a complete Elgot algebra for a functor from [5].

Definition 4.7 (Complete Elgot #-algebras) A complete Elgot #-algebra is a

#-algebra a : A#A→ A equipped with an iteration operator

e : X → A#X

e† : X → A

satisfying the following axioms:

solution: for every e : X → A#X we have

X A

A#X A#A

e†

e

A#e†

a

functoriality: for every e : X → A#X, f : Y → A#X and h : X → Y ,

X A#X

Y A# Y

e

h A#h

f

implies

X

A

Y

e†

h

f†

f h = (id # h) e implies f † h = e†;

compositionality: for every f : Y → A# Y and g : X → Y #X define

f † • g = (X
g−−→ Y #X

f†#id−−−→ A#X)

and f � g : Y +X → A# (Y +X) by

Y +X Y #X (A# Y) #X

A# (Y +X) (A# (Y +X)) # (Y +X)

[uXY ,g] f#id

(id#inl)#inr

mY +X
A

Compositionality states that (f � g)† inr = (f † • g)† : X → A.

A morphism from a complete Elgot #-algebra (A, a, --†) to a complete Elgot #-

algebra (B, b, --‡) is a C-morphism f : A→ B, such that for all e : X → A # X we

247

Goncharov, Milius, Rauch

have: (
X

e†−−−→ A
f−−→ B

)
=
(
X

e−−→ A#X
f#id−−−−→ B #X

)‡
.

This defines the category of complete Elgot #-algebras CElg#(C).

Remark 4.8 Note that complete Elgot #-algebras for the parametrized monad

A#X = A+ΣX (i.e. the parametrized monad of Example 4.3 (i) for T the identity

monad) are precisely the complete Elgot algebras for the functor Σ introduced and

studied in [5].

Like in the case of complete Elgot monads, a standard way to obtain complete Elgot

#-algebras is by enforcing a suitable enrichment over complete partial orders with

bottom.

Example 4.9 (Continuous algebras are complete Elgot algebras) Consider

any category C that is enriched over Cppo such that composition is left strict, i.e.

⊥ f = ⊥, and a parametrized monad # : C ×C → C that is locally continuous in

both arguments, i.e. ⊔
i

(fi # gi) =
(⊔

i
fi

)
#

(⊔
i
gi

)
holds for any ω-chains (fi : X → Y)i<ω and (gi : X ′ → Y ′)i<ω. Then every #-

algebra becomes a complete Elgot #-algebra when equipped with the operation --†

assigning to every e : X → A # X its least solution. In more detail, let A be a

#-algebra. To every e : X → A#X we assign e† : X → A given by

e† =
⊔

i
e†i ,

where e†0 = ⊥ : X → A and ei+1 = a (id # e†i) e. That means that e† is the least

fixed point of the function s 7→ a (id # s) e on C(X,A). The verification that this

satisfies the axioms of a complete Elgot #-algebra can be found in the full version

of our paper.

Example 4.10 The previous example can easily be generalized as follows. Let #

be a parametrized monad on an arbitrary category C. Suppose that a : A#A→ A

is a #-algebra such that

(i) for every object X, C(X,A) is a cpo with ⊥,

(ii) for every morphism g : X → Y , the map C(g,A) : C(Y,A) → C(X,A) with

f 7→ fg is continuous,

(iii) the map f 7→ a (id # f) is a continuous map on C(X,A).

Then clearly for every e : X → A#X the least solution e† exists; indeed, the map

s 7→ a (id # s)e is continuous on C(X,A). And the assignment e 7→ e† of a least

solution turns A into a complete Elgot #-algebra. The proof of this fact is identical

to the proof for the previous example.

Note that if C = Set and A is a cpo with ⊥ then C(X,A) is equipped with the

pointwise cpo structure and then conditions (i) and (ii) follow automatically.

For illustrative purposes we proceed to describe one concrete instance of this

scenario. Let X#Y = X+Y ×Y on C = Set. Let S be a set and let S′ = S+{0,⊥}.

248

Goncharov, Milius, Rauch

Then

(S′, seq or : S′ + S′ × S′ → S′)

is a #-algebra under the following assignments:

seq or(x) = x seq or(⊥, x) = ⊥ seq or(s, x) = s seq or(0, x) = x

where s ∈ S. Moreover, S′ is equipped with the flat cpo structure, i.e. x v y iff

x = ⊥ or x = y, and seq or is continuous. Then all hom-sets C(X,S′) are, of course,

cpos with ⊥ under the pointwise order, and it is then easy to see that our three

conditions above are satisfied; for condition (iii) one uses that S′ + S′ × S′ is also a

cpo (without bottom) and that seq or is clearly continuous. Thus S′ is a complete

Elgot #-algebra.

Suppose we have a predicate p : S → 2 on S and a function f : X → S+X ×X
representing a graph over the set of nodes X (where every vertex has either two

outgoing transitions or none and is labeled in S). Let p? : S → S′ be defined by

p?(s) = s if p(s) = 1 and p?(s) = 0 otherwise and consider the map

g =
(
X

f−−→ S +X ×X p?+id−−−−→ S′ +X ×X
)
.

Since g : X → S′ # X, we obtain the function g† : X → S′, which performs the

depth-first search of the first element of S satisfying p starting for a given vertex.

The results from S′ are to be interpreted as follows: s ∈ S is returned if the element

is found, 0 if the element is not found, ⊥ indicates the divergence.

We revisit these definitions in Example 5.8 after giving a characterization of

complete Elgot algebras.

Note that we did not require a morphism of complete Elgot #-algebras to be a

morphism of #-algebras. In fact, this follows automatically.

Proposition 4.11 Let f : A → B be a complete Elgot #-algebra morphism from

(A, a, --†) to (B, b, --‡). Then f is a morphism of #-algebras.

Proof (Sketch). The idea is to represent a as a loop terminating after the first

iteration and then deduce preservation of a by f from preservation of iteration by

f guaranteed by definition. More concretely, we take

e = (id # inr) [id, uAA] : (A#A) +A→ A# ((A#A) +A)

and show that e† = [a, id]. The remaining proof amounts to deriving b (f # f) = f a

from f e† = ((f # id) e)‡. 2

5 Complete Elgot Algebras as Algebras for a Monad

In this section we show that complete Elgot #-algebras can be recognized as pre-

cisely Eilenberg-Moore algebras of the monad of generalized coalgebraic resumptions

on #, which we introduce below.

Recall that it was shown by Uustalu [28] that parametrized monads give rise to

monads at least in two different ways:

249

Goncharov, Milius, Rauch

Proposition 5.1 Suppose # is a parametrized monad on C such that the least

fixpoint µγ. X # γ (the greatest fixpoint νγ. X # γ) exists for every X ∈ |C|. Then

µγ. -- #γ (νγ. -- #γ) is the underlying functor of a monad.

Remark 5.2 For the parametrized monad X # Y = T (X + ΣY) it is well-known

that

TµΣX = µγ. T (X + Σγ)

is the object mapping of a monad TµΣ (in fact, TµΣ is the coproduct of the monad T
amd the free monad on Σ, see [17]). In the following we shall mostly be interested

in the case where µ is replaced by ν, i.e. the monad TΣ of (F).

It is known that the initial algebra µγ. X # γ carries the free #-algebra on X;

conversely, the free #-algebra is an initial (X # --)-algebra (see [6, Theorem 2.18]).

Here we are interested in the final coalgebras νγ.X # γ. One of the goals of this

section is to establish that the final (X#--)-coalgebra carries the free complete Elgot

#-algebra on X, and conversely, assuming a free complete Elgot #-algebra on X,

its carrier is a final (X # --)-coalgebra (see Corollary 5.10).

From now on we assume that the final coalgebras νγ.X # γ exist and denote

them z#X (standardly omitting the structure morphisms outX : z#X → X#z#X).

Recall that coit f : X → z#Y is the unique final morphism induced by a coalgebra

(X, f : X → Y # X). Following [28], in order to introduce and reason about

the monad structure of z#, we use a more flexible primitive corecursion principle,

derived from the standard coiteration principle embodied in coit.

Proposition 5.3 ([28]) For any endofunctor F with a final coalgebra νF , and

any f : X → F (νF + X), there is a unique morphism h : X → νF satisfying

out h = F [id, h] f .

The morphism h in Proposition 5.3 is said to be defined by primitive corecursion.

We use primitive corecursion to slightly generalize the coit construct in the special

case of z#:

Lemma 5.4 For any e : X → B # X and f : B → A # z#A, there is a unique

morphism h satisfying

X B #X

z#A A# z#A.

h

e

m
z#A

A (f#h)

out

(1)

For any e : X → B #X and f : B → A# z#A we denote by

coit(e, f) : X −→ z#A

the unique h making diagram (1) commute. Using (1), the monad structure on z#

can be given as follows:

ηνX = out-1 u
z#X
X = coituXX

f? = coit((f # id) out, out) where f : X → z#Y

250

Goncharov, Milius, Rauch

This also defines µν = id? = coit(out, out). Note that, by Lemma 5.4, f? is the

unique morphism satisfying the equation

out f? = m
z#Y
Y (out f # f?) out . (2)

Lemma 5.5 Let e : X → B #X and f : B → A# z#A. Then

coit(e, f) = (out-1f)? (coit e).

As an easy corollary of Lemma 5.5 we obtain that coit e = coit(e, u
z#X
X); indeed, we

have

coit(e, u
z#X
X) = (out-1 u

z#X
X)? (coit e) = (ηνX)? (coit e) = coit e.

We state another useful property in the following lemma:

Lemma 5.6 Let e : X → B #X and g : B → C. Then

z#g (coit e) = coit((g # id) e).

The following theorem is our first main result. It establishes an equivalence of

complete Elgot #-algebras and z#-algebras.

Theorem 5.7 For any parametrized monad # : C×C→ C, the Eilenberg-Moore

algebras of z# = νγ. -- #γ are exactly the complete Elgot #-algebras. More pre-

cisely, Cz# and CElg#(C) are isomorphic categories, witnessed by the following

construction (in both directions, morphisms are mapped to themselves):

Cz# → CElg#(C): for a z#-algebra (A,χ : z#A → A) we define a #-algebra

(A,χ out-1 (id # ην) : A # A → A, --†) with e† = χ (coit e) : X → A for any

e : X → A#X.

CElg#(C) → Cz#: for a #-algebra (A, a : A # A → A, --†) we define an

z#-algebra (A, out† : z#A→ A).

Proof (Sketch). For the direction from Cz# to CElg#(C) we have to verify the

axioms of complete Elgot #-algebras. The hardest case is that of the composition-

ality identity. We have on the one hand

(f † • g)† = χ coit(f † • g)

= χ coit ((χ (coit f) # id) g)

= χ coit ((χ# id) ((coit f) # id) g)

= χ (z#χ) coit(((coit f) # id) g) // Lemma 5.6

= χµν coit(((coit f) # id) g) // χ is an z#-algebra

= χ coit(((coit f) # id) g, out), // Lemma 5.5

and on the other hand, by definition,

(f � g)† inr = χ coit(mY+X
A (((id # inl) f) # inr) [uXY , g]) inr .

Let us denote mY+X
A (((id # inl) f) # inr) [uXY , g] by h. By Lemma 5.4, it suffices

to show the identity out (coith) inr = m
z#A
A (out#((coith) inr)) (coit f # id) g. The

251

Goncharov, Milius, Rauch

latter is easy to obtain from the auxiliary equation (coith) inl = coit f whose proof

is a routine.

For the direction from CElg#(C) to Cz# , we have to prove the two axioms

of Eilenberg-Moore algebras. The harder one is out† z#(out†) = out† µν and it

is obtained from the instance of compositionality (out � out)† inr = (out† • out)† by

establishing out† [id, µν] = (out � out)† and out† z#(out†) = (out† • out)†. Further

calculations ensure that the correspondence between CElg#(C) and Cz# is functo-

rial and moreover an isomorphism. 2

Let us illustrate Theorem 5.7 by revisiting Example 4.10.

Example 5.8 Recall that we consider the parametrized monad X#Y = X+Y ×Y
so that z#X is the set of finite and infinite binary trees whose leaves are labeled

in X. The fact that (S′, seq or : S′ + S′ × S′ → S′, --†) is a #-algebra means,

equivalently, that S′ is an z#-algebra. In particular, the z#-algebra structure is a

function Seq or : z#S
′ → S′ that transforms a given binary tree over S′ to a single

element of S′ calculated by using the depth-first search strategy seeking the first

leaf of the given tree that is labeled by S: In case of success, the answer is in S,

otherwise the answer is either 0 ∈ S′ meaning that no element from S was found

and ⊥ in case of divergence (i.e. the procedure arrived in an infinite branch before

any element from S was detected).

Note further that any function f : X → S +X ×X = S #X represents a graph

as explained in Example 4.10. The unique map coit f : X → z#S into the final

coalgebra then computes for every node x ∈ X its tree unfolding. Now, starting

with a predicate p : S → 2, the function g† : X → S′ defined in Example 4.10 is

equal to the composition

X
coit f−−−−−−→ z#S

z#(p?)−−−−−−→ z#S
′ Seq or−−−−−−→ S′.

Indeed, by Theorem 5.7, g† = Seq or (coit g) = Seq or coit((p? + id) f) and the rest

follows by Lemma 5.6.

We proceed with the goal of showing that the final coalgebras νγ.X # γ are,

equivalently, the free complete Elgot #-algebras. In fact, given a final (X # --)-

coalgebra outX : z#X → X #z#X, it follows from (the proof of) Theorem 5.7 that

z#X carries the free z#-algebra on X, and therefore it carries the free complete

Elgot #-algebra on X (because the isomorphism of categories preserves freeness of

algebras). It is not difficult to work out that the following morphisms

z#X # z#X (X # z#X) # z#X X # z#X z#X
outX #id m

z#X

X out-1X

and

X X # z#X z#X
u
z#X

X out-1X

form the algebra structure and universal morphism of a free complete Elgot algebra

for # on X. The iteration operator on z#Y is obtained as follows. Given e : X →
z#Y # X one forms the following coalgebra c : z#Y + X → Y # (z#Y + X) for

252

Goncharov, Milius, Rauch

Y # --:

z#Y +X z#Y #X (Y # z#Y) #X

Y # (z#Y +X) (Y # (z#Y +X)) # (z#Y +X)

[uXz#Y ,e] out#id

(id#inl)#inr

m
z#Y +X

Y

Then one puts e† = (coit c) inr.

Conversely, we have the following result.

Theorem 5.9 Suppose that ϕX : FX #FX → FX and ηX : X → FX form a free

complete Elgot #-algebra on X. Then

X # FX FX # FX FX
ηX#id ϕX

is an isomorphism, and its inverse is the structure of a final (X # --)-coalgebra.

The proof of the above bijective correspondence between final (X#--)-coalgebras

and free complete Elgot #-algebras is a non-trivial generalization of the proof

of [5, Theorem 5.4] from complete Elgot algebras for endofunctors to those for

parametrized monads; here we have seen one direction of the bijective correspon-

dence as a consequence of Theorem 5.7 while we outline the proof of Theorem 5.9 in

the full version of the paper.

Corollary 5.10 A free complete Elgot #-algebra on X is equivalently a final coal-

gebra for X # --.

To conclude the present section, we show that surprisingly, in any free complete

Elgot #-algebra FY the iteration operator always assigns a unique solution to any

morphism e : Y → FY # Y .

Proposition 5.11 Suppose that ϕY : FY # FY → FY and ηY : Y → FY form a

free complete Elgot #-algebra on Y . Then for every e : X → FY #X, e† : X → FY

is a unique solution, i.e. a unique morphism satisfying the solution axiom with e.

Proof. Recall first from Theorem 5.9 that FY is (equivalently) a final (Y # --)-

coalgebra with the structure t : FY → Y # FY obtained as an inverse of

Y # FY
ηY #id−−−−−−→ FY # FY

ϕY−−−−→ FY.

Let e : X → FY #X and consider the following (Y # --)-coalgebra

e = (FY #X (Y # FY) # (FY #X)

(Y # (FY #X)) # (FY #X) Y # (FY #X)).

t#e

(id#uXFY)#(id#id)

mFY #X
Y

Now let d : X → FY be any solution of e, i.e. we have d = ϕY (FY # d)e. We will

prove below that ϕY (FY # d) : FY #X → FY is a coalgebra homomorphism from

253

Goncharov, Milius, Rauch

e to t. Since e does not depend on the solution d we then conclude that

e† = ϕY (id # e†)e = ϕY (id # d)e = d

using finality of FY in the middle step.

To finish the proof consider the following diagram:

FY #X FY # FY FY

(Y # FY) # FY

(Y # FY) # (FY #X) (Y # FY) # (FY # FY) Y # FY

(Y # (FY #X)) # (FY #X) (Y # (FY # FY)) # (FY # FY)

Y # (FY #X) Y # (FY # FY) Y # FY

t#e

id#d

t#id

ϕY

tmFY
Y

id#(id#d)

(id#uX
FY)#id

id#ϕY

(id#uFY
FY)#id

mFY #X
Y

(id#(id#d))#(id#d)

(id#ϕY)#ϕY

mFY #FY
Y

id#(id#d) id#ϕY

Note first that the left-hand edge is e. The upper left-hand square commutes since

d is a solution of e, for the part below it use that (id # d)uXFY = uFYFY holds since

id # d is a monad morphism, and the lower left- and right-hand part commute by

the laws of #. That the upper-right hand part commutes follows from the proof of

Theorem 5.9, and the remaining little inner part commutes since ϕY u
FY
FY = idFY ,

which holds because ϕY is the structure of a #-algebra. Hence ϕY (id # d) is a

coalgebra homomorphisms as desired, which completes the proof. 2

6 Algebras of Complete Elgot Monads

We are now in a position to apply the results on complete Elgot #-algebras de-

veloped in the previous sections to explore the connection between complete Elgot

monads and complete Elgot algebras. Recall that given a monad T and an endo-

functor Σ over C, X # Y = T (X + ΣY) is a parametrized monad and therefore,

by Proposition 5.1, TΣ given by (F) is a monad. We reserve notation Tν for the

special case when Σ = Id:

TνX = νγ. T (X + γ).

From a computational point of view, TνX can be considered as a type of pro-

cesses triggering a computational effect formalized by T at each step and eventually

254

Goncharov, Milius, Rauch

outputting values from X in case of successful termination. The unary operation

captured by Σ = Id can be understood as delaying. This perspective was previ-

ously pursued in [15]. Now, if T is a complete Elgot monad, or more generally, any

monad equipped with an iteration operator, we can define a collapsing morphism

δX : TνX → TX as follows:

δX =
(
TνX

outX−−−→ T (X + TνX)
)†
, (3)

which intuitively flattens every possibly infinite sequence of computational steps of

TνX into a single step of TX. Let us illustrate this with the following toy example.

Example 6.1 Let TX = Pω1(A?×X) where Pω1 is the countable powerset functor

and A is some fixed alphabet of actions like in Example 1.1. We extend T to a

monad T by putting

ηX(x) = {(ε, x)} and f?(s ⊆ A? ×X) = {(ww′, y) | (w, x) ∈ s, (w′, y) ∈ f(x)},

where ε ∈ A? is the empty word and f : X → Pω1(A? × Y). It is easy to see that T
is an ω-continuous monad (see Example 3.2) and hence a complete Elgot monad

with the iteration operator defined using least fixed points. An element of TX is

intuitively a countably branching process, with results in X, at each step capable

of executing a finite series of actions. Now the collapsing morphism (3) for every

process p ∈ Tν{X} calculates the set tr(p) ⊆ A? of all sucessful traces of p.

As we will see later (Theorem 6.4 (i)),
(
TX, TνTX

δTX−−→ TTX
µX−−→ TX

)
is a

Tν-algebra and hence, by Theorem 5.7, a complete Elgot #-algebra. Hence, for

a complete Elgot monad T, its free algebras are complete Elgot #-algebras. Our

next question concerns the converse: Is it possible to equip a given monad T with

an iteration operator provided that free T-algebras are equipped with structures

of complete Elgot #-algebras in a coherent way? It turns out that without any

further assumptions on the category of complete Elgot #-algebras almost all laws

of complete Elgot monads become derivable. More precisely, we introduce the

following class of monads.

Definition 6.2 A monad T is called a weak complete Elgot monad if it is equipped

with an iteration operator --† that satisfies fixpoint, naturality, and uniformity ax-

ioms and the following identity: for any g : X �−→Y +X, f : Y �−→Z + Y we have(
Y +X

[inl,g]−−−−→ Y +X
f+id−−−−→ Z + Y +X

)†
inr = X

g†−−→ Y
f†−−→ Z. (4)

(See Fig. 3 for the pictorial form.)

It is relatively easy to deduce (4) from the codiagonal identity, hence we obtain

Proposition 6.3 Any complete Elgot monad is a weak complete Elgot monad.

We now can establish a tight connection between weak complete Elgot monads and

complete Elgot #-algebras.

Theorem 6.4 Let T be a monad on C and let X # Y = T (X + Y).

255

Goncharov, Milius, Rauch

g

f
X

X

Y

Z

Y

Y

= g fX

X

Y
Z

Y

Fig. 3. The additional axiom for weak complete Elgot monads.

(i) If T = (T, η, --?, --†) is a weak complete Elgot monad then CT is isomorphic to

the full subcategory of CElg#(C) formed by those complete Elgot #-algebras

(A, a : T (A+A)→ A, --‡) which factor through T∇ : T (A+A)→ TA and for

which e‡ = a (T inl) e† for every e : X → T (A+X).

(ii) Conversely, any functor J : CT → CElg#(C) sending a T-algebra a : TA→ A

to a (T∇) : T (A+A)→ A and identical on morphisms induces a weak complete

Elgot monad structure on T as follows:

e : X → T (Y +X)

e† = (T (η + id) e)‡ : X → TY
(5)

where --‡ is the iteration operator on J(TY, µ) (by Clause (i), J is then full and

faithful).

Remark 6.5 Note that Theorem 6.4(i) can be seen as an analogue of Corollary 4.6

for complete Elgot #-algebras.

If CElg#(C) additionally satisfies a variant of the codiagonal identity, the construc-

tion from Clause (ii) of Theorem 6.4 produces precisely complete Elgot monads.

Theorem 6.6 Let T be a monad on C, let X # Y = T (X + Y) and let J : CT →
CElg#(C) be a functor as in Clause (ii) of Theorem 6.4. Then T is equipped with

the structure of a weak complete Elgot monad given by (5), and moreover T is a

complete Elgot monad iff every (A, a, --‡) in the image of J satisfies the equations

(mX
A#X e)

‡ = (e‡)‡ (6)

for every e : X → (A#X) #X (this uses the fact that A#X = T (A+X) is a free

T-algebra and hence a complete Elgot #-algebra).

7 Conclusions and Further Work

We introduced the notion of complete Elgot algebra for a parametrized monad,

based on the previous work [4,28]. We showed that the category of complete Elgot

algebras for a parametrized monad # is isomorphic to the category of Eilenberg-

Moore algebras for the monad νγ. -- #γ whenever the latter exists. As the category

of complete Elgot #-algebras is given axiomatically, this can be considered as a

form of soundness and completeness result, specifically, it indicates that algebras

for νγ. -- #γ are subject to a lightweight theory of (uniform) iteration.

We explored the connection between complete Elgot #-algebras for X # Y =

T (X + Y) and Eilenberg-Moore algebras of complete Elgot monads, i.e. monads

256

Goncharov, Milius, Rauch

from [14] supporting a uniform iteration operator satisfying standard axioms of

iteration. Specifically, we showed that monads T whose algebras are coherently

equipped with the structure of a complete Elgot #-algebra are precisely complete

Elgot monads with the codiagonal axiom replaced by its weakened form (Theo-

rem 6.4). Moreover, if the category of complete Elgot #-algebras satisfies a variant

of the codiagonal law, such monads T are complete Elgot monads (Theorem 6.6).

As an open problem we leave the question whether assumption (6) on complete

Elgot algebras in Theorem 6.6 can be lifted. If this was the case, then the notions

of weak complete Elgot monads and complete Elgot monads would be equivalent.

We believe that the results we obtained are potentially useful for facilitating

constructions over complete Elgot monads, in particular we seek a conceptual sim-

plification for the sophisticated proofs underlying the main result of [14] stating

that (F) is a complete Elgot monad whenever T is. Also we are interested in ap-

plications of our results to semantics of abstract side-effecting processes in the style

of [15] under equivalences coarser than the behavioral equivalence.

References

[1] “Haskell 98 Language and Libraries — The Revised Report,” Cambridge University Press, 2003, also:
J. Funct. Prog. 13 (2003).

[2] Aczel, P., J. Adámek, S. Milius and J. Velebil, Infinite trees and completely iterative theories: a
coalgebraic view, Theoretical Computer Science 300 (2003), pp. 1–45.

[3] Adámek, J., R. Börger, S. Milius and J. Velebil, Iterative algebras: How iterative are they?, Theory
Appl. Cat. 19 (2008), pp. 61–92.

[4] Adámek, J., S. Milius and J. Velebil, Iterative algebras for a base, Electr. Notes Theor. Comput. Sci.
122 (2005), pp. 147–170.

[5] Adámek, J., S. Milius and J. Velebil, Elgot algebras, Log. Methods Comput. Sci. 2 (2006), pp. 1–31.

[6] Adámek, J., S. Milius and J. Velebil, Bases for parametrized iterativity, Inform. and Comput. 206
(2008), pp. 966–1002.

[7] Adámek, J., S. Milius and J. Velebil, Equational properties of iterative monads, Information and
Computation 208 (2010), pp. 1306 – 1348.

[8] Adámek, J., S. Milius and J. Velebil, Elgot theories: a new perspective of the equational properties of
iteration, Math. Structures Comput. Sci. 21 (2011), pp. 417–480.

[9] Benton, N. and M. Hyland, Traced premonoidal categories, ITA 37 (2003), pp. 273–299.

[10] Bloom, S. L. and Z. Ésik, “Iteration theories: the equational logic of iterative processes,” Springer-Verlag
New York, Inc., New York, NY, USA, 1993.

[11] Capretta, V., General recursion via coinductive types, Logical Methods in Computer Science 1 (2005).

[12] Elgot, C. C., Monadic computation and iterative algebraic theories*, in: H. Rose and J. Shepherdson,
editors, Logic Colloquium ’73Proceedings of the Logic Colloquium, Studies in Logic and the Foundations
of Mathematics 80, Elsevier, 1975 pp. 175–230.

[13] Ésik, Z. and S. Goncharov, Some remarks on Conway and iteration theories (2016), arXiv preprint:
http://arxiv.org/abs/1603.00838.

[14] Goncharov, S., C. Rauch and L. Schröder, Unguarded recursion on coinductive resumptions, in: Proc.
Mathematical Foundations of Programming Semantics XXXI, MFPS 2015, ENTCS, 2015.

[15] Goncharov, S. and L. Schröder, A coinductive calculus for asynchronous side-effecting processes,
Information and Computation 231 (2013), pp. 204 – 232.

[16] Hasegawa, M., Recursion from cyclic sharing: Traced monoidal categories and models of cyclic lambda
calculi, in: Proc. 3rd International Conference on Typed Lambda Calculi and Applications, Lecture
Notes Comput. Sci. 1210 (1997), pp. 196–213.

257

http://arxiv.org/abs/1603.00838

Goncharov, Milius, Rauch

[17] Hyland, M., G. Plotkin and J. Power, Combining effects: Sum and tensor, Theoret. Comput. Sci. 357
(2006), pp. 70–99.

[18] Joyal, A., R. Street and D. Verity, Traced monoidal categories, Mathematical Proceedings of the
Cambridge Philosophical Society 119 (1996), pp. 447–468.

[19] Kelly, G., A unified treatment of transfinite constructions for free algebras, free monoids, colimits,
associated sheaves, and so on, Bulletin of the Australian Mathematical Society 22 (1980), pp. 1–83.

[20] Lawvere, W., Functorial semantics of algebraic theories, Proc. Natl. Acad. Sci. USA 50 (1963), pp. 869–
872.

[21] Mac Lane, S., “Categories for the Working Mathematician,” Springer, 1971.

[22] Moggi, E., Notions of computation and monads, Inf. Comput. 93 (1991), pp. 55–92.

[23] Plotkin, G. and J. Power, Adequacy for algebraic effects, in: FoSSaCS’01, LNCS 2030, 2001, pp. 1–24.

[24] Plotkin, G. and J. Power, Notions of computation determine monads, in: FoSSaCS’02, LNCS 2303
(2002), pp. 342–356.

[25] Rutten, J., Universal coalgebra: a theory of systems, Technical report, Amsterdam, The Netherlands,
The Netherlands (1996).

[26] Rutten, J. and D. Turi, Initial algebra and final coalgebra semantics for concurrency, Springer-Verlag,
1994 pp. 530–582.

[27] Simpson, A. and G. Plotkin, Complete axioms for categorical fixed-point operators, in: In Proceedings
of 15th Annual Symposium on Logic in Computer Science, 2000, pp. 30–41.

[28] Uustalu, T., Generalizing substitution, ITA 37 (2003), pp. 315–336.

258

MFPS 2016

Classical realizability
in the CPS target language

Jonas Frey1

Department of Computer Science
University of Copenhagen, Denmark

jofr@di.ku.dk

Abstract

Motivated by considerations about Krivine’s classical realizability, we introduce a term calculus for an
intuitionistic logic with record types, which we call the CPS target language. We give a reformulation of
the constructions of classical realizability in this language, using the categorical techniques of realizability
triposes and toposes.
We argue that the presentation of classical realizability in the CPS target language simplifies calculations
in realizability toposes, in particular it admits a nice presentation of conjunction as intersection type which
is inspired by Girard’s ludics.

Keywords: Classical realizability, ludics, topos, tripos, CPS translation.

1 Introduction

The relationship between continuation passing style (CPS) translations of the λ-

calculus, negative translations of classical into intuitionistic logic, control operators

in abstract machines, and evaluation order (call-by-value vs. call-by-name) was un-

covered during the 70’s, 80’s, and early 90’s of the past century. The first step was

Plotkin [Plo75] recognizing that CPS translations can be used to simulate differ-

ent evaluation orders within one another. In the 80’s, Felleisen and his collabora-

tors [FFKD86] made the connection between control operators in abstract machines

and CPS translations, observing that the behavior of a control operator like call/cc
in the source language of a CPS translation can be implemented by a purely func-

tional expression in the target language. Griffin [Gri90] observed the analogy of CPS

translations and negative translations via the proofs-programs-correspondence, and

through this analysis he discovered that the natural type for call/cc is Pierce’s law,

i.e. the propositional schema ((A⇒ B)⇒ A)⇒ A. Since Pierce’s law when added

1 This work is supported by the Danish Council for Independent Research Sapere Aude grant “Complexity
via Logic and Algebra” (COLA).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:jofr@di.ku.dk

Frey

to constructive logic yields full classical logic, his observation was celebrated as the

unexpected discovery of an algorithmic meaning of classical logic.

Negative translations do not require full intuitionistic logic as target logic, and

– inspired by Girard’s [Gir91] – Lafont, Reus, and Streicher identified the (¬,∧)-

fragment of intuitionistic logic as sufficient [Laf91,LRS93]. Although in this repre-

sentation negation is taken as primitive, it is often useful to think of negation as

given by the intuitionistic encoding ¬A ≡ A⇒ ⊥, and when constructing models

in cartesian closed categories or response categories [SR98,Sel01] C, one has to in-

terpret ⊥ by an object R ∈ C other than the initial object to avoid degeneracy. This

R is called the response type, and is comparable to the parameter A in Friedman’s

A-translation [Fri78].

Krivine’s classical realizability [Kri09] is a realizability interpretation of classi-

cal logic which builds on the algorithmic understanding of classical logic arising

from Griffin’s insight. It is formulated using an extension of the λ-calculus with

call/cc, with an operational semantics provided by the Krivine abstract machine

(KAM) [Kri07]. To interpret logic, the interpretation utilizes a parameter called

the pole, which plays a role comparable to the response type R, and to Friedman’s

A, as has been pointed out by Miquel [Miq11].

A motivation of the present work is to make more explicit in which sense the

pole plays the role of the response type, by giving a formulation of classical real-

izability in the target language instead of the source language, in which Krivine’s

work takes place. To this end, we introduce a term language for a minimal intu-

itionistic logic based on negation and disjunction (not conjunction as Lafont, Reus

and Streicher proposed). A design goal is to get a minimalistic system with a simple

operational semantics, and this is achieved by combining negation and disjunction

into a ‘synthetic’ finitary multi-disjunction which should be understood as some-

thing like ¬(A1 ∨ · · · ∨ An), but we write as
〈
l1(A1), . . . , ln(An)

〉
, where l1, . . . , ln

are elements of a countable set L of labels, comparable to biases in Girard’s lu-

dics [Gir01]. The CPS target language is a term language of a natural deduction

system based on this type constructor scheme.

Instead of presenting the system as a minimal intuitionistic logic based on nega-

tion and disjunction, we could also have chosen a presentation as a dual-intuitionistic

(i.e. using sequents with many formulas on the right and at most one on the

left) [Urb96] system based on negation and conjunction, which would be closer

to Carraro, Salibra, and Ehrhard’s stack calculus [CES12], a system which was in-

troduced for similar reasons (as an analysis of Krivine realizability), but is based

on implication rather than negation. I have chosen the intuitionistic – rather than

dual-intuitionistic – presentation for the simple reason that it is easier to handle and

does not require as much ‘backward thinking’, but it is good to keep the alternative

point of view in mind when comparing with Krivine realizability. In particular, the

terms of the CPS target language are records, i.e. a kind of tuples, and should be

viewed in analogy to stacks on the Krivine machine, which fits with the fact that

we use sets of terms as truth values where Krivine uses sets of stacks.

However, we reverse the order on truth values relative to Krivine’s account, and

take the empty set as falsity (rather than the set of all stacks as Krivine does),

since we use a call-by-value translation of classical logic into the target language

260

Frey

instead of the call-by-name translation that is implicit in Krivine’s approach. This

difference is immaterial from a model-theoretic point of view since it only reverses

the order on predicates, which are symmetric as Boolean algebras, but it changes

the implementation of classical connectives: where in Krivine realizability, universal

quantification is the primitive operation that is given by unions of truth values

(and the encoding of ∃ is indirect and involves dualization), in our presentation

existential quantification is the primitive operation. Moreover, in Section 4 we

describe how conjunction can be represented as an intersection type under certain

(mild) conditions, and together we get a simple representation of the connectives of

regular logic (i.e. the (∃,∧,>)-fragment of first order logic) not involving the pole

at all. This is desirable since regular logic is all that is required for the tripos-to-

topos construction [HJP80], and a simpler representation of its connectives greatly

facilitates calculations in classical realizability toposes.

1.1 Related work

The CPS target language is similar in spirit to Thielecke’s CPS calculus [Thi97],

which can also be motivated as a term calculus for a type system with a kind of

multi-negation. The main difference is that in Thielecke’s system the basic type

constructor is a negated n-ary conjunction, and not a negated n-ary disjunction as

in the CPS target language.

Although different in objective, Curien et al.’s work on term calculi for classical

logic [CH00,CMM10] was also inspirational for the present article.

Finally, Terui’s computational ludics [Ter11] is a term calculus for ludics designs

with a notion of head reduction analogous to the CPS target language. Specifically,

the CPS target language can be understood as a non-linear version of the purely

additive fragment of the syntax of computational ludics.

2 The CPS target language

The syntax of the CPS target language, given in Table 1, distinguishes two syntactic

classes called terms and programs.

A term is either a variable or a record, i.e. a family 〈 l1(x1. p1), . . . , ln(xn. pn)〉 of

programs pi – the methods of the record, each abstracted by a variable xi – indexed

by a finite subset {l1, . . . , ln} ⊆ L of a countable set of labels, which we take to be

the set L = {a, . . . , z}∗ of lower case strings (in practice we will only use strings

of length 1). The use of different fonts is important: curly k, l are placeholders

for generic labels, whereas sans-serif k, l are specific labels. The order in which

the methods of a record are listed is not important – we view them abstractly as

functions from finite sets F ⊆fin L of labels to programs with a distinguished free

variable. In accordance with this viewpoint, we use ‘family notation’ 〈 l(x. p) | l∈
F 〉 for records when convenient (in particular in Section 4). We refer to the set of

labels indexing the methods of a record t as the domain of the record and denote it

dom(t) – thus dom(〈 l1(x1. p1), . . . , ln(xn. pn)〉) = {l1, . . . , ln} and dom(〈 l(x. p) |
l∈ F 〉) = F .

A program is an expression of the form tlu, with the intended meaning that the

261

Frey

Expressions:

Terms: s, t, u ::= x | 〈 l1(x. p1), . . . , ln(x. pn)〉

Programs: p, q ::= tlu | . . . (possibly non-logical instructions)

Reduction:

〈 l1(x. p1), . . . , ln(x. pn)〉lit � pi[t/x] if 1 ≤ i ≤ n

Types:

A ::= X |
〈
l1(A1), . . . , ln(An)

〉
n ≥ 0

Typing rules:

(Var)
Γ ` xi : Ai

Γ ≡ x1 :A1, . . . , xn :An, 1 ≤ i ≤ n

(Abs)
Γ, y :B1 ` p1 · · · Γ, y :Bm ` pm

Γ ` 〈 l1(y. p1), . . . , lm(y. pm)〉 :
〈
l1(B1), . . . , lm(Bm)

〉
(App)

Γ ` t :
〈
l1(B1), . . . , lm(Bm)

〉
Γ ` u : Bi

Γ ` tliu
1 ≤ i ≤ m

Table 1
The CPS target language.

program (or method) labeled l in t is called with u as an argument. This reading

suggests the reduction rule 〈 l1(x1. p1), . . . , ln(xn. pn)〉lit � pi[t/xi] (provided 1 ≤
i ≤ n), which gives the operational semantics of the language. We use the symbol

‘�’ only for top-level reduction of programs (i.e. weak head reduction), and write

‘→β’ for the compatible closure (i.e. the closure under term and program formers)

of � on terms and programs. A redex is a program tlu where t is a record (not a

variable). A redex tlu with l 6∈ dom(t) can not be reduced and is said to be blocked.

A normal form is a term or program that does not contain any redexes, i.e. in every

application tlu the term t is a variable.

We define the sets FV(t) and FV(p) of free variables of a term or program in

the usual way, where the distinguished variable x of a method l(x. p) in a record t

is considered bound in p. There are no closed normal programs (since the term in

head position cannot be a variable) but there are blocked closed programs like 〈〉k〈〉
and diverging closed programs like 〈 k(x. xkx)〉k〈 k(x. xkx)〉.

To allow the construction of non-trivial classical realizability models, the syn-

tax has to be extended by non-logical constructs like constants or instructions to

perform side effects 2 . This is achieved by extending the clause for programs in

the grammar. To have a model for idealized shell-programs, for example, one can

extend the definition of programs to be

p, q ::= tlu | r(p, q) | w0(p) | w1(p) | 0 | 1

2 Essentially because of [Fre15b, Lemma 26].

262

Frey

with the intended meaning that the program r(p, q) reads a bit from standard input

and continues with p or q depending on its value, w0(p) and w1(p) write a 0 or 1,

respectively, to standard output before continuing with p, and 0 and 1 represent

successful and unsuccessful termination. For example, 〈 k(x. xkx)〉k〈 k(x. r(xkx,0))〉
is a program that reads bits from standard input until it encounters a 1, whereupon

it terminates successfully.

Formally, such an extension of the syntax has to be accompanied by an extension

of the operational semantics, which in the case of the above example can either be

given as a labeled transition system or as a transition relation on programs with

state. This is explained in detail in [Fre15b] using Krivine’s syntax, where it is

also explained how in such a setting specifications on program behavior give rise

to poles and thus to realizability triposes and toposes. These ideas all transfer

to the reformulation of classical realizability given in this article, but instead of

formulating our results in this generality – which would require a lot of repetition –

we use as running example only a single non-logical constant end which represents

termination and is comparable to Girard’s daimon z 3 . Thus, from now on we

assume that programs are of the form

p, q ::= tlu | end.

We denote the sets of closed terms and programs generated by this grammar (to-

gether with the rule for terms in Table 1) by T and P, and more generally we

denote by T[x1, . . . , xn] and P[x1, . . . , xn] the sets of terms and programs whose

free variables are contained in {x1, . . . , xn}. The analogous sets of pure terms and

programs (i.e. those not containing end) are denoted by T0, P0, T0[x1, . . . , xn], and

P0[x1, . . . , xn].

We consider a Curry-style type system for the CPS target language, whose types

are generated from type variables and for each finite set {l1, . . . , ln} an n-ary con-

structor which forms the record type
〈
l1(A1), . . . , ln(An)

〉
out of types A1, . . . , An.

There are two kinds of typing judgments corresponding to the two syntactic classes:

• terms t ∈ T0[x1, . . . , xn] are typed by sequents (x1 :A1, . . . , xn :An ` t : B), and

• programs p ∈ P0[x1, . . . , xn] are typed by sequents (x1 :A1, . . . , xn :An ` p).

Thus, programs are not associated to types, but we think of them as having response

type (or type ⊥).

There are three rules (Var), (Abs) and (App), typing variables, records, and

applications, respectively. Furthermore, the typing relation is closed under a number

of admissible rules.

Lemma 2.1 The derivable typing judgments are closed under the rules in Table 2.

Proof. Each of the four pairs of rules can be shown to be admissible by simulta-

neous induction on the structure of t and p. 2

A consequence of the admissibility of (Cut) is subject reduction.

3 A referee points out that a concept comparable to the daimon already appears in Coquand’s evidence
semantics [Coq95].

263

Frey

(Cut)
Γ ` s :A Γ, x :A ` p

Γ ` p[s/x]

Γ ` s :A Γ, x :A ` t : B

Γ ` t[s/x] : B

(Sym)
Γ ` p

σ(Γ) ` p
Γ ` t : B

σ(Γ) ` t : B

(Weak)
Γ ` p

Γ, x :A ` p
Γ ` t : B

Γ, x :A ` t : B

(Contr)
Γ, x :A, y :A ` p

Γ, x :A ` p[x/y]

Γ, x :A, y :A ` t : B

Γ, x :A ` t[x/y] : B

Table 2
Admissible rules for the typing relation, where Γ ≡ x1 :A1, . . . , xn :An, and σ is a permutation.

Lemma 2.2 (Subject reduction) If Γ ` 〈 l1(x1. p1), . . . , ln(xn. pn)〉lit is deriv-

able for some 1 ≤ i ≤ n, then Γ ` pi[t/xi] is derivable.

Proof. Inspection of the typing rules shows that Γ ` 〈 l1(x1. p1), . . . , ln(xn. pn)〉lit
can only be derived by a deduction

Γ, x1 :A1 ` p1 . . . Γ, xn :An ` pn

Γ ` 〈 l1(x1. p1), . . . , ln(xn. pn)〉 :
〈
l1(A1), . . . , ln(An)

〉
Γ ` t : Ai

Γ ` 〈 l1(x1. p1), . . . , ln(xn. pn)〉lit

and applying (Cut) to the hypotheses with pi and t yields the claim. 2

3 Realizability

Classical realizability models are always defined relative to a pole, which is a set

‚ ⊆ P of closed programs satisfying

p � q, q ∈‚ ⇒ p ∈‚ (1)

for all p, q ∈ P. The deliberations that follow are valid for arbitrary poles satisfying

this condition (relative to reasonable extensions of the pure language with non-

logical instructions such as in [Fre15b,FS16]), but to have something to hold on to,

we fix a pole ‚ by

‚ = {p | p �∗ end} ,

which is the set of all programs p whose weak reduction sequence ‘terminates’, i.e.

leads to the constant end 4 .

A truth value is a set S ⊆ T of closed terms. We define as semantic counterparts

of the type constructors for each set {l1, . . . , ln} of labels an n-ary connective on

the set P (T) of truth values.

4 The classical realizability model arising from this pole has some interesting properties, as the author
learned from Krivine [Fre15a].

264

Frey

(Var)
Γ
 xi : Si

(App)
Γ
 t :

〈
l1(T1), . . . , ln(Tn)

〉
Γ
 u : Ti

Γ
 tliu

(Abs)
Γ, y :T1
 p1 · · · Γ, y :Tm
 pm

Γ
 〈 l1(y. p1), . . . , ln(y. pm)〉 :
〈
l1(T1), . . . , ln(Tm)

〉
(Cut)

Γ
 s :S Γ, x :S
 p

Γ
 p[s/x]

Γ
 s :S Γ, x :S
 t : T

Γ
 t[s/x] : T

(Sym)
Γ
 p

σ(Γ)
 p
Γ
 t : T

σ(Γ)
 t : T

(Weak)
Γ
 p

Γ, x :S
 p
Γ
 t : T

Γ, x :S
 t : T

(Contr)
Γ, x :S, y :S
 p

Γ, x :S
 p[x/y]

Γ, x :S, y :S
 t : T

Γ, x :S
 t[x/y] : T

Table 3
Admissible rules for realization judgments, where S1, . . . , Sn, S, T1, . . . , Tm, T ⊆ T, Γ ≡ x1 :S1, . . . , xn :Sn,

and σ is a permutation.

Definition 3.1 Given truth values S1, . . . , Sn ∈ P (T) and labels l1, . . . , ln ∈ L,

the truth value
〈
l1(S1), . . . , ln(Sn)

〉
is defined by〈

l1(S1), . . . , ln(Sn)
〉

= {t ∈ T | ∀i ∈ {1, . . . , n} ∀s ∈ Si . tlis ∈‚} .

We introduce realization judgments as semantic counterparts of typing judg-

ments.

Definition 3.2 Given truth values S1, . . . , Sn, T ⊆ T, a term t ∈ T[x1, . . . , xn] and

a program p ∈ P[x1, . . . , xn],

the notation x1 :S1, . . . , xn :Sn
 t : T (2)

stands for ∀s1 ∈ S1, . . . , sn ∈ Sn . t[s1/x1, . . . , sn/xn] ∈ T
and the notation x1 :S1, . . . , xn :Sn
 p (3)

stands for ∀s1 ∈ S1, . . . , sn ∈ Sn . p[s1/x1, . . . , sn/xn] ∈‚.

We call expressions of the form (2) and (3) realization judgments. Slightly redun-

dantly, we also say ‘the realization judgment (Γ
 t : T) is valid ’ instead of simply

asserting the judgment itself.

The following result is an analogue of Krivine’s adequation lemma [Kri09, The-

orem 3].

Lemma 3.3 Valid realization judgments are closed under the rules in Table 3.

Proof. The only nontrivial case is (Abs). Assume that Γ, y :Tk
 pk for 1 ≤ k ≤ m,

265

Frey

and that si ∈ Si for 1 ≤ i ≤ n. We have to show that

(〈 l1(y. p1), . . . , ln(y. pm)〉[~s/~x])lj t ∈‚
for every 1 ≤ j ≤ m and t ∈ Tj . For fixed j and t we have

(〈 l1(y. p1), . . . , ln(y. pm)〉[~s/~x])lj t =

(〈 l1(y. p1[~s/~x]), . . . , ln(y. pm[~s/~x])〉)lj t � pj [~s/~x, t/y]

where the reduct is in ‚ by assumption, and the claim follows from (1). 2

3.1 Classical realizability triposes

We now show how to do classical realizability in the CPS target language by instan-

tiating a simple (call-by-value) negative translation. To start we fix the shorthands

> ≡
〈〉

¬A ≡
〈
k(A)

〉
¬(A,B) ≡

〈
l(A), r(B)

〉
for nullary, unary, and binary type constructors, and using these we encode classical

conjunction as

A ∧B ≡ ¬(¬A,¬B). (4)

The negative translation maps classical sequents

A1, . . . , An ` B1, . . . , Bm

consisting of formulas built up from propositional variables and the connectives, >,

¬ and ∧, to intuitionistic sequents

A∗1, . . . , A
∗
n,¬B∗1 , . . . ,¬B∗m `

where the formulas A∗i and B∗j are obtained by expanding the classical connectives

according to the above shorthands and encoding.

We could now define classical realization judgments by mimicking the negative

translation on the level of realizability, but we will not spell this out explicitly,

and rather develop the remainder of the section in categorical language, by laying

out the construction of classical realizability triposes analogous to the treatment

in [Fre15b].

Broadly speaking, realizability triposes [HJP80] capture the model theoretic

essence of realizability interpretations as a collection of order relations on sets of

semantic predicates, which together are required to form an indexed preorder – i.e. a

contravariant functor P : Setop → Ord from sets to preorders – subject to certain

conditions. The precise definition of strict Boolean tripos (which is the version of

triposes that we use) is given in Definition A.3.

In our setting, semantic predicates on a set J are functions

ϕ,ψ : J → P (T)

266

Frey

into the set of truth values, and the order on predicates is defined by

ϕ ≤ ψ :⇔ ∃p ∈ P0[x, y] ∀j ∈ J .
(
x :ϕ(j), y :¬ψ(j)
 p

)
, (5)

i.e. ϕ ≤ ψ if there exists a pure program p[x, y] which realizes the negative transla-

tion of ϕ(j) ` ψ(j) uniformly in j.

The first step in establishing that semantic predicates form a tripos is to show

that the predicates on a fixed set form a Boolean prealgebra, i.e. a preorder whose

poset reflection is a Boolean algebra (Definition A.1).

Theorem 3.4 For every set J , the set of P (T)J of semantic predicates on J

equipped with the order relation (5) is a Boolean prealgebra.

Proof. We show first that ≤ is actually a preorder. Reflexivity follows from the

fact that (x :S, y :¬S
 ykx) for arbitrary truth values S.

For transitivity, assume that ϕ ≤ ψ and ψ ≤ θ, i.e. that there exist p ∈ P[v, w]

and q ∈ P[x, y] such that (v :ϕ(j), w :¬ψ(j)
 p) and (x :ψ(j), y :¬θ(j)
 q).

The claim ϕ ≤ θ follows from Lemma 3.3 via the derivation

x :ψ(j), y :¬θ(j)
 q
y :¬θ(j)
 〈 k(x. q)〉 : ¬ψ(j) v :ϕ(j), w :¬ψ(j)
 p

v :ϕ(j), y :¬θ(j)
 p[〈 k(x. q)〉/w]

Next we show that the order has finite meets. The predicate with value constant

> is a greatest element, since (x :S, y :¬>
 yk〈 〉) for arbitrary truth values S.

We claim that a binary meet of ϕ and ψ is given by pointwise application of (the

semantic version of) the type constructor defined in (4), i.e. (ϕ∧ψ)(j) = ϕ(i)∧ψ(i).

The such defined ϕ ∧ ψ is smaller than ϕ since (x :¬(¬ϕ(j),¬ψ(j)), y :¬ϕ(j)

xly), and similarly for ψ. To see that it is a greatest lower bound, assume that

θ ≤ ϕ and θ ≤ ψ, i.e. there exist programs p ∈ P[w, x] and q ∈ P[w, y] such that

(w : θ(j), x :¬ϕ(j)
 p) and (w : θ(j), y :¬ψ(j)
 q). Then we have θ ≤ ϕ ∧ ψ by

the following derivation.

w : θ(j), x :¬ϕ(j)
 p w : θ(j), y :¬ψ(j)
 q

w : θ(j)
 〈 l(x. p), r(y. q)〉 : ¬(¬ϕ(j),¬ψ(j))

w : θ(j), z :¬(¬ϕ(j),¬ψ(j))
 zk〈 l(x. p), r(y. q)〉

To finish the proof that (P (P)J ,≤) is a Boolean algebra, it now suffices to verify the

conditions (i)–(iii) of Lemma A.2, with the negation operation given by (¬ϕ)(j) =

¬ϕ(j).

For (i) assume that ϕ ∧ ψ ≤ ¬⊥, i.e. that there exists p[x, y] ∈ P[x, y] with

(x :¬(¬ϕ(j),¬ψ(j)), y :¬¬>
 p). Then we have

w :ϕ(j), z :¬¬ψ(j)
 zk〈 k(y. p[〈 l(v. vkw), r(w.wky)〉/x, 〈 k(v. vk〈〉)〉/y])〉

(in the following we do not spell out the derivation of realization judgments any

more, and leave the type checking to the reader) and hence ϕ ≤ ¬ψ.

267

Frey

For (ii) we have

x :¬(¬ϕ(j),¬¬(ϕ(j)), y :¬¬>
 xr〈 k(z. xlz)〉

and for (iii) we have

x :¬¬ϕ(j), y :¬ϕ(j)
 xky.

2

Every function f : J → I induces a function f∗ : P (T)I → P (T)J on predicates

by precomposition, and it is easy to see that f∗ is monotone and preserves all logical

structure (since all propositional operations on predicates are defined pointwise in

a uniform way). Since the operation (f 7→ f∗) clearly preserves composition and

identities, it is the morphism part of a contravariant functor

K‚ : Setop → BA.

from sets to Boolean prealgebras with object part J 7→ (P (T)J ,≤). We can now

prove the main theorem.

Theorem 3.5 K‚ is a strict Boolean tripos (Definition A.3).

Proof. It remains to show that the reindexing maps f∗ admit left adjoints subject

to the Beck-Chevalley condition, and that there is a generic predicate.

Let f : J → I. We claim that a left adjoint ∃f to f∗ can be defined by fiberwise

union, i.e.

∃f (ϕ)(i) =
⋃
fj=i

ϕ(j) for ϕ ∈ P (T)J ,

and to prove this we have to show that for any ψ ∈ P (T)I we have ϕ ≤ f∗ψ if and

only if ∃fϕ ≤ ψ. Unfolding definitions yields

∃p ∈ P0[x, y] ∀j ∈ J ∀s ∈ ϕ(j) ∀t ∈ ¬ψ(fj) . p[s, t] ∈‚
for the first inequality, and

∃p ∈ P0[x, y] ∀i ∈ I ∀s ∈
⋃
fj=i

ϕ(j) ∀t ∈ ¬ψ(i) . p[s, t] ∈‚

for the second one. The two statements are equivalent since in both cases the

arguments of ϕ and ψ range over all pairs (i, j) with fj = i.

It is easy to see (and well known e.g. from the effective tripos) that fiberwise

unions strictly satisfy the Beck-Chevalley condition.

Finally, a generic predicate is given by the identity function on P (T). 2

To conclude the section, we reprove [Fre15b, Lemma 26] in the new syntax.

Lemma 3.6 The tripos K‚ induced by a pole ‚ is non-degenerate (not equivalent

to the terminal tripos) if and only if P0 ∩‚ = ∅.

Proof. A tripos is degenerate if and only if all truth values are equivalent, which is

easily seen to be equivalent to the existence of a pure program p[x] ∈ P0[x] such that

268

Frey

the realization judgment (x :T
 p[x]) holds. If this is the case, then p[〈〉] ∈ P0∩‚.

Conversely, if there exists q ∈ P0 ∩‚ then we have (x :T
 q). 2

4 Conjunction as intersection type

In the previous section we have seen that relative to a fixed pole ‚ the semantic

predicates give rise to a tripos K‚, and this tripos in turn gives rise to a topos

Set[‚] whose construction relies only on the regular fragment of first order logic,

i.e. the fragment of logic consisting of existential quantification and conjunction. To

facilitate computation in classical realizability toposes, it is good to have an easy

representations of the basic connectives, and in the proof of Theorem 3.5 we saw

that existential quantification in the tripos is given by set theoretic union, which

is easy enough. However, for conjunction we only have the representation (4) and

the involved double negation entails a high logical complexity and obscures things

considerably, i.e. it is difficult to know what the elements of S ∧ T look like, even if

we know the elements of S and T very well.

In this section, we show that under certain conditions on the pole we can identify

a class of ‘nice’ representatives of predicates in the tripos which admits an imple-

mentation of conjunction as intersection type, while being closed under the other

logical operations. The idea to represent conjunction as intersection is inspired by

ludics [Gir01].

Given a record

t = 〈 l(x. p) | l∈ F 〉
and a set M ⊆ L of labels, define the restriction of t to M to be the record

t|M = 〈 l(x. p) | l∈ F ∩M〉.

The syntactic order v on terms and programs is the reflexive-transitive and com-

patible (i.e. closed under term and program constructors) closure of the set of all

pairs (t|M , t) for records t and sets M of labels. Observe that the empty record

〈〉 is smaller than any other record in the syntactic order, but not smaller than a

variable.

Definition 4.1 A pole ‚ is called strongly closed, if it satisfies the conditions

p→∗β q, q ∈‚ ⇒ p ∈‚ and

p v q, p ∈‚ ⇒ q ∈‚,

i.e. it is closed under inverse β-reduction and upward w.r.t. the syntactic order.

A truth value S ⊆ T is called strongly closed, if it satisfies the analogous condi-

tions
t→∗β u, u ∈ S ⇒ t ∈ S and

t v u, t ∈ S ⇒ u ∈ S.

Although strong closure is a much stronger condition on a pole than mere closure

under inverse head reduction, it is satisfied for many ‘reasonable’ poles, in particular

for the pole of terminating programs, and more generally for poles constructed from

specifications as in [Fre15b].

269

Frey

For a fixed strongly closed ‚, there is an easy way to strongly close any given

truth value, via a well-known double duality construction. Concretely, for S ⊆ T
define

S↑ = {p[x] ∈ P[x] | ∀s ∈ S . p[s] ∈‚} ,
and dually for E ⊆ P[x] define

S↓ = {s ∈ T | ∀p[x] ∈ E . p[s] ∈‚} .
If ‚ is strongly closed, it is obvious that so is S↑

↓
for any truth value S.

A truth value S is said to be supported by a set M ⊆ L of labels, if we have

s|M ∈ S for every s ∈ S. More generally, a predicate ϕ ∈ P (T)J is said to be

supported by M , if ϕ(j) is supported by M for all j ∈ J .

The main result of the section is the following.

Theorem 4.2 Let ϕ,ψ ∈ P (T)J be predicates that are both pointwise strongly

closed, and supported by disjoint finite sets F = {l1, . . . , ln} and G = {k1, . . . ,km}
of labels, respectively. Then the predicate ϕ ∩ ψ, which is defined by (ϕ ∩ ψ)(j) =

ϕ(j) ∩ ψ(j), is a meet of ϕ and ψ and is supported by F ∪G.

Proof. We claim that the realization judgments

x :ϕ(j) ∩ ψ(j)
 x : ϕ(j) x :ϕ(j) ∩ ψ(j)
 x : ψ(j)

and

x :ϕ(j), y :ψ(j)
 u[x, y] : ϕ(j) ∩ ψ(j)

with u[x, y] = 〈 l1(z. xl1z), . . . , ln(z. xlnz), k1(z. yk1z), . . . , km(z. ykmz)〉

hold for all j. The first two are obvious. For the third one assume that s ∈ ϕ(j) and

t ∈ ψ(j). Then for each li ∈ dom(s) the redex sliz in u[s, t] can be reduced, and

the result u′[s, t] satisfies u′[s, t] w s|F . We have s|F ∈ ϕ(j) since ϕ(j) is supported

by F , and u′[s, t] ∈ ϕ(j) ∈ ϕ(j) and u[s, t] ∈ ϕ(j) by strong closure. An analogous

argument shows that u[s, t] is in ψ(j), and therefore in ϕ(j)∩ψ(j). The claim that

ϕ ∩ ψ is a meet of ϕ and ψ now follows from the following lemma.

To see that ϕ ∩ ψ is supported by F ∪G, assume that t ∈ ϕ(j) ∩ ψ(j) for some

j ∈ J . Then t|F∪G w t|F ∈ ϕ(j) and by strong closure we have t|F∪G ∈ ϕ(j). 2

Lemma 4.3 If ϕ,ψ, θ ∈ P (T)J are predicates and s[z], t[z] ∈ T0[z] and u[x, y] ∈
T0[x, y] are pure terms such that the realization judgments

z : θ(j)
 s[z] :ϕ(x) z : θ(j)
 t[z] :ψ(x) x :ϕ(j), y :ψ(j)
 u[x, y] : θ(x, y)

for all j ∈ J , then θ is a meet of ϕ and ψ.

Proof. From the first two judgments we can deduce (z : θ(j), v :¬ϕ(j)
 vks[z])

and (z : θ(j), v :¬ψ(j)
 vkt[z]), which means that θ ≤ ϕ and θ ≤ ψ, and thus

θ ≤ ϕ ∧ ψ. From the third judgment we can derive

w :¬(¬ϕ(j),¬ψ(j)), z :¬θ(j)
 wl〈 k(x.wr〈 k(y. zku[x, y])〉)〉,

270

Frey

which means that ϕ ∧ ψ ≤ θ. 2

Thus we have a nice representation of conjunction for pointwise strongly closed

predicates which are finitely supported by disjoint sets.

Disjointness can always be achieved by renaming, i.e. ‘relocating’, as long as

supports are finite. Moreover, strong closure and finite support are preserved by

existential quantification, and by the semantic type constructors (Definition 3.1)

provided the the pole is strongly closed. A finitely supported and strongly closed

generic predicate can also be obtained, by negating the canonical one given by the

identity on P (T).

A Boolean (pre)algebras and Boolean triposes

This appendix recalls the definitions of Boolean (pre)algebra and strict Boolean

tripos, and states an auxiliary lemma to characterize Boolean prealgebras.

Definition A.1 A Boolean algebra is a complemented distributive lattice, i.e. a

distributive lattice (B,≤,>,∧,⊥,∨) such that for every a ∈ B there exists a b ∈ B
with a ∧ b = ⊥ and a ∨ b = >.

A Boolean prealgebra is a preorder whose poset-reflection is a Boolean algebra.

The term ‘Boolean prealgebra’ does not seem to be very prevalent in the litera-

ture, but it appears e.g. in [Fla85].

Lemma A.2 A preorder (B,≤) is a Boolean prealgebra if and only if it has finite

meets (denoted by ∧,>) and there exists a function ¬(−) : B → B such that

(i) a ∧ b ≤ ¬> ⇒ a ≤ ¬b (ii) a ∧ ¬a ≤ ¬> (iii) ¬¬a ≤ a

for all a, b ∈ B.

Proof. The following derivation shows that ¬(−) is antimonotone.

a ≤ b
¬b ∧ a ≤ ¬b ∧ b ¬b ∧ b ≤ ¬>

¬b ∧ a ≤ ¬>
¬b ≤ ¬a

The converse implication of (i) is shown as follows.

a ≤ ¬b
a ∧ b ≤ ¬b ∧ b ¬b ∧ b ≤ ¬>

a ∧ b ≤ ¬>

The following shows that ¬(−) is an involution,

a ∧ ¬a ≤ ¬>
a ≤ ¬¬a

which implies that (A,≤) is auto-dual and hence a lattice. The non-trivial direction

271

Frey

of distributivity is shown as follows.

¬(a ∧ b) ∧ a ∧ b ≤ ¬>
¬(a ∧ b) ∧ a ≤ ¬b

¬(a ∧ b) ∧ a ∧ ¬c ≤ ¬b ∧ ¬c
¬(a ∧ b) ∧ a ∧ ¬c ≤ ¬¬(¬b ∧ ¬c)
¬(¬b ∧ ¬c) ∧ ¬(a ∧ b) ∧ a ∧ ¬c ≤ ¬>
¬(¬b ∧ ¬c) ∧ ¬(a ∧ b) ∧ ¬c ≤ ¬a ¬(¬b ∧ ¬c) ∧ ¬(a ∧ b) ∧ ¬c ≤ ¬c

¬(¬b ∧ ¬c) ∧ ¬(a ∧ b) ∧ ¬c ≤ ¬a ∧ ¬c
¬(¬b ∧ ¬c) ∧ ¬(a ∧ b) ∧ ¬c ≤ ¬¬(¬a ∧ ¬c)
¬(¬a ∧ ¬c) ∧ ¬(¬b ∧ ¬c) ∧ ¬(a ∧ b) ∧ ¬c ≤ ¬>
¬(¬a ∧ ¬c) ∧ ¬(¬b ∧ ¬c) ≤ ¬(¬(a ∧ b) ∧ ¬c)

(a ∨ c) ∧ (b ∨ c) ≤ (a ∧ b) ∨ c

It remains to check that for a ∈ A, ¬a is a complement of a in the sense of the

previous definition. This follows from (ii) and the fact that ¬(−) is an involution.2

The following definition of strict Boolean tripos is a special case of the concept

of tripos as introduced in [HJP80].

Definition A.3 A strict Boolean tripos is a contravariant functor

P : Setop → BA

from the category of sets to the category of Boolean prealgebras and structure

preserving maps such that

• for any f : J → I, the map P(f) has a left 5 adjoint ∃f (which is not required to

preserve Boolean prealgebra structure), such that for any pullback square

L q
//

p
��

K
g
��

J
f // I

we have P(g) ◦ ∃f = ∃q ◦P(p) (this is the Beck-Chevalley condition), and

• there exists a generic predicate, i.e. a set Prop and an element tr ∈ P(Prop) such

that for every set I and ϕ ∈ P(I) there exists a unique f : I → Prop with

P(f)(tr) = ϕ.

Acknowledgements

The ideas presented in this article were developed over a long period of time, and

I profited from discussions on related issues with many people, including – but not

limited to – Pierre Clairambault, Pierre-Louis Curien, Nicolas Guenot, Paul Blain

Levy, Paul-André Melliès, Guillaume Munch-Maccagnoni, Jakob Grue Simonsen,

Thomas Streicher, Noam Zeilberger, and Stéphane “El Źım” Zimmermann.

Thanks to the referees for their careful rereading and helpful comments.

5 Note that the right adjoint ∀f is for free in the Boolean case, it is given by ∀fϕ = ¬∃f¬ϕ.

272

Frey

References

[CES12] A. Carraro, T. Ehrhard, and A. Salibra. The stack calculus. In Proceedings Seventh Workshop
on Logical and Semantic Frameworks, with Applications, LSFA 2012, Rio de Janeiro, Brazil,
September 29-30, 2012., pages 93–108, 2012.

[CH00] P.L. Curien and H. Herbelin. The duality of computation. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal,
Canada, September 18-21, 2000., pages 233–243, 2000.

[CMM10] P.L. Curien and G. Munch-Maccagnoni. The duality of computation under focus. In Theoretical
computer science, volume 323 of IFIP Adv. Inf. Commun. Technol., pages 165–181. Springer,
Berlin, 2010.

[Coq95] T. Coquand. A semantics of evidence for classical arithmetic. J. Symbolic Logic, 60(1):325–337,
1995.

[FFKD86] M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba. Reasoning with continuations.
In Proceedings of the Symposium on Logic in Computer Science (LICS ’86), Cambridge,
Massachusetts, USA, June 16-18, 1986, pages 131–141, 1986.

[Fla85] R.C. Flagg. Church’s thesis is consistent with epistemic arithmetic. In Intensional mathematics,
volume 113 of Stud. Logic Found. Math., pages 121–172. North-Holland, Amsterdam, 1985.

[Fre15a] J. Frey. Computability and Krivine realizability. Note of a conversation with J.L. Krivine,
available at https://sites.google.com/site/jonasfreysite/krivine-comp.pdf, 2015.

[Fre15b] J. Frey. Realizability toposes from specifications. In 13th International Conference on Typed
Lambda Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland, pages 196–210,
2015.

[Fri78] H. Friedman. Classically and intuitionistically provably recursive functions. In Higher set theory
(Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977), volume 669 of Lecture Notes in Math.,
pages 21–27. Springer, Berlin, 1978.

[FS16] J. Frey and J.G. Simonsen. Toposes for Time Complexity Classes, 2016. Developments in
Implicit Computational Complexity (DICE 2016), available at https://lipn.univ-paris13.fr/
DICE2016/Abstracts/paper_6.pdf.

[Gir91] J.Y. Girard. A new constructive logic: classic logic. Mathematical Structures in Computer
Science, 1(03):255–296, 1991.

[Gir01] J.Y. Girard. Locus solum: From the rules of logic to the logic of rules. Mathematical Structures
in Computer Science, 11(03):301–506, 2001.

[Gri90] T. Griffin. A formulae-as-type notion of control. In Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 47–58. ACM, 1990.

[HJP80] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory. Math. Proc. Cambridge Philos.
Soc., 88(2):205–231, 1980.

[Kri07] J.L. Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation, 20(3):199–207, 2007.

[Kri09] J.L. Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197–229, 2009.

[Laf91] Y. Lafont. Negation versus implication. Logical Frameworks, pages 223–229, 1991.

[LRS93] Y. Lafont, B. Reus, and T. Streicher. Continuation semantics or expressing implication by
negation. Unpublished, available at http://iml.univ-mrs.fr/~lafont/pub/continuation.ps,
1993.

[Miq11] A. Miquel. Existential witness extraction in classical realizability and via a negative translation.
Log. Methods Comput. Sci., 7(2):2:2, 47, 2011.

[Plo75] G.D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoret. Comput. Sci., 1(2):125–
159, 1975.

[Sel01] P. Selinger. Control categories and duality: on the categorical semantics of the lambda-mu
calculus. Math. Structures Comput. Sci., 11(2):207–260, 2001.

[SR98] T. Streicher and B. Reus. Classical logic, continuation semantics and abstract machines. Journal
of functional programming, 8(06):543–572, 1998.

[Ter11] K. Terui. Computational ludics. Theor. Comput. Sci., 412(20):2048–2071, 2011.

[Thi97] H. Thielecke. Continuation semantics and self-adjointness. Electronic Notes in Theoretical
Computer Science, 6:348–364, 1997.

[Urb96] I. Urbas. Dual-intuitionistic logic. Notre Dame J. Formal Logic, 37(3):440–451, 1996.

273

https://sites.google.com/site/jonasfreysite/krivine-comp.pdf
https://lipn.univ-paris13.fr/DICE2016/Abstracts/paper_6.pdf
https://lipn.univ-paris13.fr/DICE2016/Abstracts/paper_6.pdf
http://iml.univ-mrs.fr/~lafont/pub/continuation.ps

MFPS 2016

Categorical Models of the Differential λ-Calculus
Revisited

J.R.B. Cockett 1,2

Department of Computer Science
University of Calgary

Calgary, Canada

J.D. Gallagher3

Department of Computer Science
University of Calgary

Calgary, Canada

Abstract

The paper shows that the Scott-Koymans theorem for the untyped λ-calculus extends to the differential λ-
calculus. The main result is that every model of the untyped differential λ-calculus may be viewed as a dif-
ferential reflexive object in a Cartesian closed differential category. This extension of the Scott-Koymans theorem
depends critically on unravelling the somewhat subtle issue of which idempotents can be split so that differential
structure lifts to the idempotent splitting.
The paper uses (total) Turing categories with “canonical codes” as the basic categorical semantics for the λ-
calculus. It shows how the main result may be developed in a modular fashion by first adding left-additive
structure to a Turing category, and then – on top of that – differential structure. For both levels of structure it is
necessary to identify how “canonical codes” behave with respect to the added structure and, furthermore, how
“universal objects” behave. The latter is closely tied to the question – which is the crux of the paper – of which
idempotents can be split in these more structured settings.

Keywords: Scott-Koymans, Differential Lambda Calculus, Categorical Models

1 Introduction

In [12], Ehrhard and Regnier introduced the differential λ-calculus to give a syn-
tactic counterpart for the models of linear logic which Ehrhard had introduced
in [10,11]. In these models proofs were interpreted as differentiable maps with
the linear maps, in the sense of linear logic, becoming rather elegantly the maps

1 partially supported by NSERC
2 Email: robin@cpsc.ucalgary.ca
3 Email: jdgallag@ucalgary.ca

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:robin@cpsc.ucalgary.ca
mailto:jdgallag@ucalgary.ca

Cockett-Gallagher

which were linear in the differential sense. The differential λ-calculus, introduced
a new aspect because, as described in [12], it was an untyped system with a con-
fluent rewriting system and, thus provided a model of computability. Further-
more, it was immediately apparent that this calculus was very closely related to
the resource λ-calculus [6,5,7]. This confluence of developments, thus, initiated
the study of models of computability in which the computable functions admit a
differentiation.

The categorical semantics for these settings was developed in series of papers.
Initially the tensorial (or linear logic) side of the story was developed in [2]: this
closely followed the path of Ehrhard’s more model driven development. Tensor
differential categories (also written ⊗-differential categories) came equipped with
a comonad (an exponential modality) 4 and it was understood that the differential
λ-calculus would then be interpreted in the coKlesili category for this comonad.

Of course, this rather indirect approach did not facilitate the exploration of
these coKleisli categories which rapidly become the main focus of attention. The
next step – motivated not least by desire to understand the axiomatic behaviour of
differentiation in classical calculus – was, therefore, to develop a direct axiomati-
zation for these categories. Toward this end Cartesian differential categories (also
written ×-differential categories) were introduced [3]. Importantly, these were
more general than simply being an axiomatization of the coKleisli category for
a ⊗-differential category. While it is certainly the case that coKleisli categories of
⊗-differential categories are ×-differential categories 5 , the converse is certainly
not true.

The next step in this development involved ×-differential categories which
were – in the appropriate sense – Cartesian closed. In [8] a sound and complete
interpretation of the simply typed differential λ-calculus into Cartesian closed dif-
ferential categories was provided. Furthermore, the connection between the re-
source λ-calculus and the differential λ-calculus was then implicitly determined
by tying both to the same categorical semantics. To complete the story it thus only
remained to provide a precise account of the semantics of the untyped differen-
tial λ-calculus. At this stage, it was abundantly clear that the interpretation of
the untyped differential calculus should be into some sort of reflexive object in a
Cartesian closed differential category and, thus, there should be an analogue of
the Scott-Koymans 6 theorem [14,18] which says that all model arise from such a
situation.

In [17], Manzonetto initiated the investigation of models of the untyped differ-
ential λ-calculus. He showed that linear reflexive objects in a Cartesian differential

4 In fact, ⊗-differential categories come with different strengths of axiomatizations. In [2] an effort was made to
obtain the weakest possible axiomatization. Of note, however, is the stronger notion which was introduced by
Marcello Fiore in [13].
5 A precise characterization of when a Cartesian differential category is the coKleisli category of a ⊗-differential
category is described in [4].
6 At the time of the development of this theorem, Koymans was a PhD. student, Dana Scott was widely publiciz-
ing his results, and also Jim Lambek with Phil Scott were in the process of writing their book, [15], and, indeed,
were circulating chapters for comment. Their book, in particular, has a section on C-monoids which provide
the semantics for the untyped λ-calculus with both η- and β-equality. In addition, they introduced the notion
of a “weak” C-monoid in the exercises and noted that these provide the semantics of the λ-calculus with just
β-equality. The notion of “weak” there is exactly our notion of having canonical codes. Note that, in this paper,
we use “weak” to mean that the choice does not necessarily admit substitution.

275

Cockett-Gallagher

category soundly interpret the untyped differential λ-calculus. Furthermore, he
gave a completeness theorem, for the differential λ-calculus, however, with two
additional equations:

λx.(Ds · t)x = Ds · t and a + a = a.

Thus, he did not manage to provide a general completeness theorem which par-
alleled the Scott-Koymans result. In this paper we revisit this problem and we
show that by subtly changing the requirements on the idempotents which one
splits one can indeed obtain a complete analogue of the Scott-Koymans result. In
Manzonetto’s work it was assumed – very reasonably – that the idempotents one
should split had to be linear. Unfortunately, this meant that, as Curry’s pairing
combinator, (a, b) 7→ λp.p a b, is not linear one is forced to look for an alternative
idempotent which can encode pairing. Manzonetto actually found such a combi-
nator: it was the more complicated (a, b) 7→ λy.(a + Dy · b). However, in order to
make this combinator behave correctly, he had to restrict to the case where addition
was idempotent.

To access the more general situation, which is the subject of this paper, it is nec-
essary to understand more fully the behaviour of idempotents in a Cartesian dif-
ferential category. To achieve this one not only has to understand their behaviour
with respect to differentiation but also with respect to the left-additive structure.
We shall, therefore, redevelop this program by describing the categorical semantics
not only of models of the differential λ-calculus but also of models of the “addi-
tive” λ-calculus. This is because moving directly from a Cartesian closed differen-
tial setting to a model of the differential λ-calculus, without this intermediate step,
tends to obscure the subtle behaviour required of the idempotents which must be
split. In fact, in this paper we shall start the development even further back: we
actually redevelop the Scott-Koymans theorem itself from the more modern and
unifying perspective of Turing categories [9]. One justification for this is that, in
the theory of Turing categories, idempotents and idempotent completions play a
very central role. This predisposes one to take the behaviour of idempotents very
seriously as one begins to add structure.

Because our aim is to model the λ-calculus, we shall exclusively focus on Turing
categories all of whose maps are total: these were introduced by Longo and Moggi
[16] – albeit under a different name – and their realizability theory was developed
by Birkedal [1]. Such a Turing category is a weakly Cartesian closed category with
an object, T, called a Turing object which is universal. An object in a category is
universal in case all objects are a retracts of it. In order to model the untyped λ-
calculus, with β-equality, we shall employ the notion of a Turing category with
canonical codes. This allows us to interpret the term calculus of the untyped λ-
calculus very directly into these categorial models. In particular, this step does not
involve consideration of idempotents. This approach, in fact, closely parallels the
approach Koymans followed in [14], and allows a convenient separation of con-
cerns which is useful later. To recapture the Scott-Koymans theorem one observes
that splitting idempotents yields a Cartesian closed category in which the Turing
object is still universal: this immediately makes that the Turing object a reflexive
object.

276

Cockett-Gallagher

This is the approach that we then follow, in a modular fashion, as we succes-
sively add structure. First we add left-additive structure and develop the categor-
ical semantics of the untyped additive λ-calculus, and then, following the same
pattern, arrive at the categorical semantics of the untyped differential λ-calculus.
At each stage we must appropriately strengthen both the notion of being weakly
cartesian closed (with canonical codes) and of being a universal object – where the
notion of a universal object, as one adds structure, crucially depends on under-
standing which idempotents can be split.

The payoff of this reconstruction is that it allows a general analogue for the
Scott-Koymans theorem for untyped differential λ-models.

2 The λ-Calculus

The classical notion of a categorical model of the untyped λ-calculus is as a reflex-
ive object in a cartesian closed category. This is an object U which has as a retract its
object of endomorphisms, [U, U]�s

r U. 7 One way to approach the Scott-Koymans
completeness result is to interpret the λ-calculus across this retraction: this is rather
messy as one must repeatedly use the section and retraction to interpret terms. An
alternative approach, which parallels the approach of Koymans, is to interpret the
λ-calculus into a Turing category with canonical codes and then show that splitting
the idempotents results in a Cartesian closed category in which the Turing object is
still universal. This approach gives an elegant separation of the two concerns (in-
terpretation and idempotent splitting) and, furthermore, allows the introduction
of a more direct categorical counterpart to the untyped λ-calculus: namely Turing
categories with canonical codes.

2.1 Syntax of the λ-calculus

The syntax of the λ-calculus may be described as “unityped” terms in context. The
term formation rules consist of term formation rules for a Cartesian theory, see
table 1, and the special terms for the “unityped” λ-calculus see Table 2.

In the term formation rules for a Cartesian theory we insist that the variables
of a context are distinct. We shall only allow variables for atomic types and allow
the formation of variable patterns corresponding to composite Cartesian products
of objects. This allows a smooth transition to the categorical semantics as we can
turn any sequent into a map, a sequent with one premise:

p : X ` t : T

by simply collecting the context, using the pattern rules, into one type. When
substituting for a pattern one then has to match the term being substituted to the
pattern: thus, for example, the substitution [(t, s)/(x, y)] becomes, equivalently,
[t/x, s/y]. The type system ensures that term and pattern in a substitution have
exactly the same form.

7 Here [U, U] is the internal hom sometimes written UU or U ⇒ U. The notation [U, U]�s
r U means [U, U] is a

retract of U with s : [U, U] −→ U the section and r : U −→ [U, U] the retraction so sr = 1[U,U].

277

Cockett-Gallagher

A an atomic type
Γ, x : A, Γ′ ` x : A

Projection

Γ, Γ′ ` t : X
Γ, () : 1, Γ′ ` t : X

Unit Pattern
Γ, x : X, y : Y, Γ′ ` t : Z

Γ, (x, y) : X×Y, Γ′ ` t : Z
Pair Pattern

Γ ` t : X Γ ` s : Y
Γ ` (t, s) : X×Y

Pairing
Γ, Γ′ ` vs : X Γ, p : X, Γ′ ` t : Z

Γ, Γ′ ` t[s/p] : Z
Cut/Substitution

Table 1
Term formation rules for a Cartesian theory

Γ ` m : U Γ ` n : U
Γ ` mn : U

Application
Γ, x : U, Γ′ ` m : U

Γ, Γ′ ` λx.m : U Abstraction

Table 2
Term formation rules for the λ-calculus

As usual we allow α-conversion of bound variables and β-equality

λx.m ≡α λy.(m[y/x]) (λx.m)n ≡β m[n/x]

and generate the theory Λβ by forming the smallest congruence on terms that con-
tains the above equations. There is an associated category of this theory, C(Λβ),
called the classifying category of Λβ:

Objects: Words in U,×, 1.

Arrows: A map T −→ S corresponds to a sequent with one type on the left hand
side

p : T ` m : S

under the term equivalence of Λβ.

Composition: Composition is substituition:

p : X ` m : Y p′ : Y ` n : Z
p : X ` n[m/p′] : Z

We note, rather modestly, that this is a Cartesian category:

Proposition 2.1 C(Λβ) is a Cartesian category.

The rest of this section develops the properties of this category.

278

Cockett-Gallagher

2.2 Total Turing categories with canonical codes

A (total) Turing category X is a Cartesian category with:

[T.1] An object T and for each pair of objects B, C a map T × B
•BC−−−→ C;

[T.2] For each map A× B
f−→ C a map A

c f−−→ C such that

T × B •BC //C

A× B
f

<<

c f×1

OO

A Turing category has canonical codes when there is a function

X(A× B, C)
λ()−−−→ X(A, T)

such that
T T × B •BC //C

D

λ[(g×1) f)]

BB

g
// A

λ[f]

OO

A× B

λ[f]×1

OO

f

??

commute. This means that this function, λ[], for forming codes has a substitu-
tional property, namely that λ[(g× 1) f] = gλ[f] and that λ[f] is indeed a code for
f in the sense that (λ(f)× 1)•BC = f .

Observe first that the property of having canonical codes can be simplified:

Lemma 2.2 A Turing category X has canonical codes if and only if there is a code λ[•BC]
for each •BC : T× B −→ C such that whenever (c1 × 1)•BC = f = (c2 × 1)•BC that is c1
and c2 are codes for f , then c1λ[•BC] = c2λ[•BC].

Proof. The proof follows from considering the following diagram

T × B • //C

T × B

λ(•)×1

OO
•

88

A× B

f

AA

ci×1

OOλ(f)×1

99

2

The following is an economical “recognition” theorem for Turing categories
with canonical codes:

Lemma 2.3 To have a Turing category with canonical codes is to have a Cartesian category
with a universal object T and a “Turing” map T× T •−→ T which has canonical codes for
all maps maps T × T −→ T.

279

Cockett-Gallagher

Proof. For the universality of the Turing object, in a Turing category, obtain the
section as a code for A× 1

π0−−→ A. To extract a Turing structure from a universality
of T and a Turing map, derive a universal application for arbitrary objects by

T × B 1× sB−−−−→ T × T •−→ T
rC−−→ C.

The canonical code for f is λ[f] := sAλ[(rA × rB) f sC]. 2

We use this to show:

Theorem 2.4 C(Λβ) is a Turing category with canonical codes.

Proof. The universal map is U×U •−→ U; (m, n) ` mn. By lemma 2.3, it suffices to
show that • has canonical codes for terms U×U −→ U; (x, y) ` t. Define λ[(x, y) `
t] := x ` λy.t. It is easy to see that this is a canonical code.

1 is a retract of U. To see that U ×U is a retract of U use Curry’s pairing and
projection combinators: the section is (a, b) ` λp.p a b, and for the retraction take
a ` (a (λxy.x), a(λxy.y)). 2

From a logical perspective this theorem proves the completeness of the untyped
λ-calculus with respect to models which are Turing categories with canonical
codes. With some more work (some of which is developed below) one can ex-
hibit this as part of an adjunction between λ-theories and Turing categories with
canonical codes. As this is off the path of our development we shall leave it for a
fuller exposition.

2.3 Interpreting the λ-calculus

We now show that Turing categories with canonical codes are sound models for
the untyped λ-calculus by showing there is a a canonical functor J K : C(Λβ) −→ X

which carries the universal object onto the Turing object and application onto the
Turing morphism • : T × T −→ T. At this stage we should make an important re-
mark: a Turing category may have more than one possible Turing object and more
than one Turing morphism as one only needs the existence of such structure to be a
Turing category. Thus, in this development, we need to strengthen the notion of a
Turing category to specify, as part of being a Turing category, the intended Turing
structure. In particular, for a Turing category with canonical codes the function
which supplies the canonical codes will be part of this structure.

With this understanding, let X be a Turing category with canonical codes,
whose Turing object is T and universal map is T × T •−→ T. We define the in-
terpretation of the untyped λ-calculus, J K : C(Λβ) −→ X, as follows:

Objects: On objects define JXK to be X[T/U].

Maps: On arrows:

280

Cockett-Gallagher

Jp : X ` () : 1K= !JXK

Jp : X ` (m, n) : Y× ZK= 〈Jp : X ` m : YK, Jp : X ` n : ZK〉
Jx : U ` x : UK= 1T

J(p1, p2) : X1 × X2 ` x : UK= πiJpi : Xi ` x : UK where x ∈ pi

Jp : X ` mn : UK= 〈Jp : X ` m : UK, Jp : X ` n : UK〉 •
Jp : X ` λz.m : UK= λ[J(p, z) : X×U ` m : UK]

We then have:

Theorem 2.5 If X is a Turing category with canonical codes,

J K : C(Λ) −→ X

is a Cartesian functor which preserves the Turing object, the Turing map, and the canonical
codes.

The proof is standard.

2.4 Reflexive objects

An important observation for Turing categories is that the idempotent splitting of
a Turing category X, Split(X), is again a Turing category (see [9]), furthermore, the
Turing object and the Turing morphism are preserved in this splitting. Our next
objective is to show that splitting the idempotents of a Turing category which has
canonical codes results not just in a Turing category with canonical codes but in a
Cartesian closed Turing category. As the Turing object is still universal in the idem-
potent splitting, this, in particular, means that it is a reflexive object. This allows us
to conclude that all models of the untyped λ-calculus arise from a reflexive object
[T, T]�s

r T in a Cartesian closed Turing category, and this is how we interpret the
Scott-Koymans theorem.

Theorem 2.6 When X is a Turing category with canonical codes then Split(X) is a carte-
sian closed Turing category.

The proof is that of Koymans [14].
Note that [1T, 1T] = λ[•] is an idempotent which in Split(X) witnesses that the

Turing object in the splitting is a reflexive object.

3 The additive λ-calculus

The previous section sets the broad outline for this and the next section. In these
sections we will follow our program of adding structure step by step to the un-
typed λ-calculus. The first step in this program is to consider left-additive struc-
ture: it is required in order to discuss differential structure.

A left-additive category X is a category in which each homset X(A, B) is a
commutative monoid, and where

f (g + h) = f g + f h f 0 = 0.

281

Cockett-Gallagher

Γ ` m : U Γ ` n : U
Γ ` (m + n) : U Addition Γ ` 0 : U Zero

Table 3
Term formation rules addition in the additive λ-calculus

A map f in a left additive category is additive when (g + h) f = g f + h f and
0 f = 0.

A Cartesian left additive category is a left additive category with finite prod-
ucts such that

(f + g)× (h + k) = (f × h) + (g× k) 0× 0 = 0

and where ∆ : A −→ A × A and all projections πi are additive. An important
characterization of Cartesian left-additive categories is:

Proposition 3.1 (Proposition 1.2.2 [3]) To have a Cartesian left additive category is to
have a Cartesian category in which each object, X, has a canonical commutative monoid

structure, X× X +X−−→ X 0X←−− 1, that satisfies the following coherence:

+A×B := (A× B)× (A× B) ex−−→ (A× A)× (B× B)
+A ×+B−−−−−−→ A× B.

3.1 Syntax of the additive λ-calculus

The syntax of the untyped additive λ-calculus is again defined by unityped terms
in context. The term formation rules use the usual Cartesian rules Table 1, the
formation rules for the λ-calculus Table 2, and the additive rules of Table 3.

The equations for β-equality and α-conversion hold together with equations to
make (U,+, 0) into a commutative monoid, and

λx.(m + n) = λx.m + λx.n and λx.0 = 0
(m + n) a = m a + n a and 0 a = 0.

These equations generate the theory Λβ+.
As before there is an associated category, C(Λβ+), called the classifying of the

additive λ-calculus. The objects are words in U,×, 1 and the arrows are sequents
with one premise on the left of the turnstile. Composition is, again, substitution.
We state modestly:

Proposition 3.2 C(Λβ+) is a Cartesian category in which U is a commutative monoid.

Our next task is to develop the categorical semantics of the additive λ-calculus,
and thus, the properties of this category. To do this we must address two related
issues: namely what it means to be an additive universal object and what it means
to have additive canonical codes.

282

Cockett-Gallagher

3.2 Additive universal objects

The idea behind a universal object in a category is that the entire category is deter-
mined by the monoid of endomorphisms of that object. For plain categories this
just means that every object is a retract of U. However, in a Cartesian left additive
category a universal object must have a stronger property as it must also induce
the additive structure on each object. An object U in a left-additive category X is an
additive universal object in case every object, A, is a retract of U in such a manner
that the retraction rA, in A �

sA
rA U, is an additive map. This requirement ensures

that the additive structure on A is determined by that of U:

Lemma 3.3 In any left-additive Cartesian category with a retract A �
sA
rA U which has rA

additive:

(i) A× A
+A−−→ A = A× A

sA × sA−−−−−→ U ×U +−−→ U
rA−−→ A and 0A = 0rA;

(ii) eA = rAsA satisfies +UeA = (eA × eA) +U eA.

Note that (i) implies that (f e + ge)r = (f + g)r. When an idempotent e : U
−→ U satisfies part (ii), that is +Ue = (e × e) +U e, we will say e is a retractively
additive idempotent.

The following – completely general – lemma lets us define additive structure
on objects using additive retractions:

Lemma 3.4 If (U,+U , 0U) is a commutative monoid in a Cartesian category, X, and
A �

sA
rA U with eA = rAsA retractively additive – that is (eA × eA) +U eA = +UeA – then

there is a unique commutative monoid structure on A which makes rA a homomorphism.

This means, when U is a universal object, which is a commutative monoid, we
may, using Lemma 3.4, induce additive structure on any retract A of U, whose in-
duced idempotent is retractively additive: this will automatically make the retract
additive. In order, to create left-additive structure on the whole category from the
additive structure on U, we must select a particular way in which each object is an
additive retract so that we may induce a unique additive structure on each object.
Furthermore, to ensure the result is a Cartesian left-additive category, it is also nec-
essary for these induced additions to be compatible with the product: this means
we must demand that the additive structure on the product A× B be defined com-
ponentwise.

A universal structure, U , for U ∈ X consists of, for each A ∈ X, a way in which
A is a retract of U, U (A) = A �

sA
rA U. Clearly if U has a universal structure it must

be a universal object. A Cartesian category, X, has chosen products in case there
are chosen functors × : X×X −→ X and 1 : 1 −→ X right adjoint to the diagonal
and final functors respectively. In a Cartesian category with chosen products, if
(U,+U , 0U) is a commutative monoid, then a universal structure U for U is said to
be additively coherent in case:

[UAC.1] U (U) = U �
1U
1U

U;

283

Cockett-Gallagher

[UAC.2] The retraction, rU×U , of U (U ×U) satisfies:

U ×U +U //

rU×U×rU×U
��

U

rU×U

��
(U ×U)× (U ×U) ex

// (U ×U)× (U ×U)+U×+U
//U ×U

[UAC.3] Each idempotent eA = rAsA, of U (A) is retractively U-additive;

[UAC.4] U (A× B) has sA×B = (sC × sB)sU×U and rA×B = rU×U(rA × rB).

In a left-additive Cartesian category with an additive universal object, there is
no guarantee that one has an additively coherent universal structure. However,
given an additive universal structure one can generate a left-additive category:

Proposition 3.5 If X is a category with chosen products and a commutative monoid
(U,+u, 0U) which has an additively coherent universal structure, U , then there is a unique
left additive structure on X making each retraction in U additive.

The proof uses the fact that the retractions are homomorphisms of the commu-
tative monoid structure on objects.

3.3 Left-additive Turing categories

A left-additive Turing category is a Turing category which is Cartesian left-
additive and has each universal application •BC : T × B −→ C additive in its first
argument:

〈h + k, g〉 • = 〈h, g〉 •+ 〈k, g〉 • and 〈0, g〉 • = 0

A left-additive Turing category X has additive canonical codes when, as a Turing
category, X has canonical codes such that, in addition, λ[f + g] = λ[f] + λ[g] and
λ[0] = 0.

We have the following recognition theorem for left-additive Turing categories:

Proposition 3.6 X is a left-additive Turing category if and only if X is Cartesian left-
additive, with an additively universal object T which has a Turing map • : T × T −→ T
which is additive in its first argument.

Furthermore, the Turing category has additively canonical codes if and only if the Turing
map has additively canonical codes.

That objects have additive retractions from T uses the retraction from Proposi-
tion 2.3.

To see that we can construct canonical codes for A × B −→ C from canonical
codes for T × T −→ T does require a bit of care concerning the definition of the
addition on the maps: as only T has additive structure, f + g : A −→ B should be
thought of as (f s + gs)r, where B �r

s T. The canonical code is sAλ[(rA × rB)(f sC +
gsC)].

We are now ready to state:

Theorem 3.7 C(Λβ+) is a left-additive Turing category with additively canonical codes.

284

Cockett-Gallagher

The proof of this theorem relies heavily on the fact that Curry’s retraction U
−→ U ×U is additive, and this is enough to show that U has an additive universal
structure. The rest of the proof follows easily.

3.4 Interpreting the additive λ-calculus

Our next objective is to show, that for any left-additive Turing category, X, with
additively canonical codes, there is a left-additive functor C(Λβ+) −→ X. From
a logical perspective this says that left-additive Turing categories with additively
canonical codes are sound models of the additive λ-calculus.

Let X be a left-additive Turing category with additive canonical codes with
Turing object T and Turing map is • : T × T −→ T. The functor J K : C(Λβ+) −→ X

is defined in the same way as before on variables, application, abstraction, and
tuples: all we have to describe is the interpretation of the additive structure:

Jp : X ` 0 : UK = 0 : JXK −→ T
Jp : X ` m + n : UK = Jp : X ` m : UK+ Jp : X ` n : UK : JXK −→ T

Proposition 3.8 When X is a left-additive Turing category with additive canonical codes

J K : C(Λβ+) −→ X

is a Cartesian left-additive functor which preserve the Turing object, the Turing map, and
its canonical codes.

The proof is by calculation and is relatively standard.
Again with more work this interpretation can be turned into an adjunction be-

tween additive λ-theories and left-additive Turing categories with additive canon-
ical codes.

3.5 Additive reflexive objects

We now wish to split the idempotents of a left-additive Turing category with addi-
tive canonical codes. However, it is clear that we cannot split any old idempotent
if we want to be able to induce an additive structure on the splitting. So clearly we
should split the retractively additive idempotents. However, when we restrict the
idempotents we split we have to ensure that all the structure we require, namely
the Cartesian left additive structure, is still present.

Clearly all identity maps are additively retractive idempotents. Note that the
product of retractively additive idempotents is retractively additive, and the re-
quirements of being retractively additive on an idempotent is exactly what is re-
quired to obtain additive structure on each idempotent in the splitting.

Finally, note that the internal homsets of 2.6, [u, v] = λ[(1× u) •AB v], are addi-
tively retractive.

A Cartesian closed left-additive category is a Cartesian left additive category
which is closed and has every evaluation map additive in its first argument. As
a Cartesian closed category always has canonical codes, this may equivalently be
stated as the requirement that it has additive canonical codes. This gives:

285

Cockett-Gallagher

Theorem 3.9 If X is a left-additive Turing category with additive canonical codes then
splitting the additively retractive idempotents, Split+(X) yields a Cartesian closed left-
additive Turing category.

By construction all the additively retractive idempotents split with additive re-
tractions; hence, the retraction T −→ [T, T] is additive. This immediately means
that every model of the additive λ-calculus can be seen to arise as an additive re-
flexive object in a Cartesian closed left-additive category.

4 The Differential λ-calculus

A Cartesian differential category X is a Cartesian left additive category with a
combinator

A
f−→ B

A× A −−−→
D[f]

B

that satisfies seven axioms:

[CD.1] D[0] = 0 and D[f + g] = D[f] + D[g]

[CD.2] 〈0, g〉D[f] = 0 and 〈h + k, g〉D[f] = 〈h, g〉D[f] + 〈k, g〉D[f]

[CD.3] D[1] = π0, D[π0] = π0π0, and D[π1] = π0π1

[CD.4] D[〈 f , g〉] = 〈D[f], D[g]〉
[CD.5] D[f g] = 〈D[f], π1 f 〉D[g]

[CD.6] 〈〈g, 0〉 , 〈h, k〉〉D[D[f]] = 〈g, k〉D[f]

[CD.7] 〈〈p, h〉 , 〈g, k〉〉D[D[f]] = 〈〈p, g〉 , 〈h, k〉〉D[D[f]]

In a Cartesian differential category a map f is linear when D[f] = π0 f . Intu-
itively this means

d f (x)
dx

(x) · v = f (v)

The following is corollary 2.2.3 in [3]

Proposition 4.1 If a map is linear, then it is additive. Moreover, the class of linear maps
form a commutative monoid enriched category with biproducts.

The following lemma is quite useful in many calculations

Lemma 4.2 Let h and k be linear and f any map, then

D[h f k] = (h× h)D[f]k.

In a Cartesian differential category, if f : A× B −→ C, we may define the partial
derivative of f with respect to A as

D×,0 := A× (A× B)
〈1, 0〉 × 1−−−−−→ (A× B)× (A× B)

D[f]−−−→ C

286

Cockett-Gallagher

Γ, p : S, Γ′ ` m : U Γ, Γ′ ` a : S Γ, Γ′ ` v : S

Γ, Γ′ ` dm
dp (a) · v : U

Table 4
Term formation rules for the differential λ-calculus

One may obtain the partial derivative of f with respect to B by

D×,1 := B× (A× B)
〈0, 1〉 × 1−−−−−→ (A× B)× (A× B)

D[f]−−−→ C

We will also make use of maps that are linear in the first argument. This means

(v, (x, y)) 7→ d f (x, y)
dx

(x) · v = f (v, y)

i.e. that the partial derivative in the first argument is linear.
The following is useful in many calculations:

Lemma 4.3 Suppose h : A × B −→ C is linear in its first argument. Then (1× g)h is
linear in its first argument for any g.

Intuitively this is so because g does not “touch” the first argument of h.

4.1 Syntax of the differential λ-calculus

The syntax of the untyped differential λ-calculus is again defined by unityped
terms in context. Term formation uses the rules of Cartesian theories Table 1, the
rules for the λ-calculus Table 2, the rules for the additive λ-calculus, Table 3, and a
single new rule for the differential λ-calculus, Table 4. Note that the syntax we use
here is slightly different from (but equivalent to) the syntax used by Ehrhard and
Regnier in [12] 8 .

We have the following equations on terms

[Dt.1] dm1+m2
dp (a) · v = dm1

dp (a) · v + dm2
dp (a) · v d0

dp (a) · v = 0

[Dt.2] dm
dx (a) · (v1 + v2) =

dm
dx (a) · v1 +

dm
dx (a) · v2

dm
dx (a) · 0 = 0

[Dt.3] • dx
dx (a) · v = v,

• dt
d(p,p′) ((a, a′)) · (v, v′) = dt[a′/p′]

dp (a) · v + dt[a/p]
dp′ (a′) · v′

[Dt.4] dm[t/q]
dp (a) · v = dm

dq (t[a/p]) · dt
dp (a) · v

Note in the above, by the context-formation rules, p 6∈ fv(m).

[Dt.5]
d dm

dp (a)·q
dq (b) · v = dm

dp (a) · v

[Dt.6]
d dm
dp1

(a1)·v1

dp2
(a2) · v2 =

d dm
dp2

(a2)·v2

dp1
(a1) · v1

8 In Ehrhard and Regnier’s syntax, D(m) · v := λa. dmz
dz (a) · v.

287

Cockett-Gallagher

[Dt.7] dλy.m
dp (a) · v = λy.dm

dp (a) · v
By the context formation rules, x 6∈ (a, v)

[Dt.8] dλz.y z
dy (a) · v = λz.v z

Note that when we write dt
dp (a) · v in [Dt.4] the t could be a tuple of terms.

However, this is only a notation for distributing the derivative down onto term of
type U as only these have derivatives. This means d()

dp (a) · v = () and d(t1,t2)
dp (a) ·

v = (dt1
dp (a) · v, dt2

dp (a) · v).

Lemma 4.4 In Λβ∂:

(i) If y 6∈ fv(m) then dm
dy (a) · v = 0;

(ii) dm
d(p,p′) ((a, a′)) · (v, 0) = dm[a′/p′]

dp (a) · v;

(iii) dm
d(p,p′) ((s, s′)) · (0, v′) = dm[a/p]

dp′ (a′) · v′;

(iv) If y 6∈ fv(m) then dy m
dy (a) · v = vm;

(v) dm n
dx (a) · v =

(
dm
dx (a) · v

)
(n[a/x]) + d(m[a/x]) z1

dz1
(n[a/x]) · dn

dx (a) · v.

The proof is straightfoward; the first three are from [3].
There is an associated category C(Λβ∂). We have

Proposition 4.5 C(Λβ∂) is a Cartesian category in which (U,+U , 0U) is a commutative
monoid.

4.2 Differential universal objects

In subsection 3.2, we introduced the notion of an additive universal object that
induces an additive structure on each object. In a Cartesian differential category,
we must again strengthen the notion of universal object, so that the derivative
on maps U −→ U induces a derivative on all maps. An object U in a Cartesian
differential category X is a differential universal object in case every object A is a
retract of U, A �

sA
rA U, and the retraction is linear.

Lemma 4.6 In any Cartesian differential category with a retract A �
sA
rA U in which rA is

linear

(i) For any A
f−→ B, D[f] = (sA × sA)D[rA f sB]rB;

(ii) eA = rAsA satisfies (eA × eA)D[eA] = D[eA] and D[eA]eA = π0eA

The proof makes repeated use of 4.2.
When an idempotent satisfies part (ii) of the above and is retractively addtive,

we will say that it is a retractively linear idempotent.
We now extend the extend the notion of additively coherent universal structure.

In a Cartesian category with chosen products, where (U,+U , 0U) is a commutative
monoid, a universal structure U for U is differentially coherent if it is additively
coherent and additionally:

288

Cockett-Gallagher

[UDC.1] There is a differential operator for U; i.e.

U
f−→ U

U ×U −−−→
D[f]

U

that satisfies [CD.1,2,3,5].

[UDC.2] Each idempotent eA = rAsA of U (A) is retractively U-linear in the sense
that

(eA × eA)D[eA] = D[eA] and D[eA]eA = π0eA

[UDC.3] For U (U ×U) = U ×U�
sU×U
rU×U , we have that

(sU×U × sU×U)D[rU×Uπ0] = π0π0

(sU×U × sU×U)D[rU×Uπ1] = π0π1

And that for any f , g : U −→ U:

D[〈 f , g〉 sU×U]rU×U = 〈D[f], D[g]〉

[UDC.4] Let U
f−→ U. The map

D2[f] := (U ×U)× (U ×U)
sU×U × sU×U−−−−−−−−→ U ×U

D[rU×U D[f]]−−−−−−−−→ U

satisfies

〈〈g, 0〉 , 〈h, k〉〉D2[f] = 〈g, k〉D[f]

〈〈0, h〉 , 〈g, k〉〉D2[f] = 〈〈0, g〉 , 〈h, k〉〉D2[f]

((eA × eA)× (eA × eA))D2[f] = D2[f]

Given a differentially coherent universal structure on a category, one can gen-
erate a Cartesian differential category.

Proposition 4.7 If X is a category with chosen products and a commutative monoid
(U,+U , 0U) which has a differentially coherent universal structure, U , then there is a
Cartesian differential structure on X that makes each retraction in U linear.

We first show that X has a Cartesian differential structure.
Note the following facts about U idempotents.

• For all U
f−→ U, D[f eB]rB = D[f]rB

• For all A
f−→ B, (eA × eA)D[rA f sB] = D[rA f sB]

The differential operator D[] is defined on maps A −→ B:

289

Cockett-Gallagher

A
f−→ B

A× A −−−→
D[f]

=

A
f−→ B

U −−→
rA

A −→
f

B −−→
sB

U

U ×U −−−−−→
D[rA f sB]

U

A× A −−−−−→
sA × sA

U ×U −−−−−→
D[rA f sB]

U −−→
rB

B

4.3 Differential Turing categories

A differential Turing category is a Turing category which is also a Cartesian dif-
ferential catgory and where additionally each universal application T × B

•BC−−−→ C
is linear in its first argument.

The above definition has the property that if c f is a code for f , then

d f (x, y)
dx

(a) · v =
dc f (x) y

dx
(a) · v =

(
dc f (x)
dx

(a) · v
)

y

so that the derivative of f in it’s first argument is given by the derivative of c f .
A differential Turing category X has differential canonical codes when X has

additive canonical codes λ() that satisfy in addition:

D[λ(f)] = λ(〈π0 × 0, π1 × 1〉D[f])

The following is a recognition theorem for differential Turing categories.

Proposition 4.8 A Cartesian differential category X is a differential Turing category if
and only if

(i) X has a differentially universal object T;

(ii) There is a map T× T •−→ T that is universal for maps T× T −→ T and that is linear
in its first argument.

Furthermore, X is a differential Turing category with differential canonical codes if and
only if (i) and(ii) hold and T × T •−→ T has differential canonical codes.

Proof. The usual retraction is linear; this follows as T× 1 •−→ T is linear in its first
argument, and ignores its second.

To show that we can construct differentially canonical codes for A × B −→
C from canonical codes for T × T −→ T, consider the diagram that codes
〈π0 × 0, π1 × 1〉D[f] and use that r is linear, so that one takes the canonical code
for (r× r) 〈π0 × 0, π1 × 1〉 (s× s)D[r f s]. 2

For completeness we show that C(Λβ∂) is a differential Turing category with
differentially canonical codes. We will first show that C(Λβ∂) is a Cartesian dif-
ferential category in which U is a differentially universal object using proposition
4.7.

The differential structure on C(Λβ∂) is defined as follows:

290

Cockett-Gallagher

D[p : S ` m : 1] := ()

D[p : S ` m : U] := (v, p) : S× S ` dm
dp

(p) · v : U

D[p : S ` (m1, m2) : R× T] := 〈D[p : S ` m1 : R], D[p : S ` m2 : T]〉

Proposition 4.9 C(Λβ∂) is a Cartesian differential category in which U is a differentially
universal object.

This proposition uses the fact that Curry’s retraction is linear, and that this is
enough to determine a differential universal structure on U.

This leads to:

Theorem 4.10 C(Λβ∂) is a differential Turing category with differentially canonical
codes.

The proof involves a relatively straightforward sequence of calculations which
show that codes are differentially canonical.

4.4 Interpreting the differential λ-calculus

Let X be a differential Turing category with differential canonical codes. We will
show that there is a functor C(Λβ∂) −→ X that preserves all the differential structure
and the canonical differential Turing structure. The functor J K : C(Λβ∂) −→ X is
defined in the same way as before for variables, applications, abstractions, sums,
0, and tuples of terms. For the differentials:

s
q ` dm

dp
(a) · v

{
:= 〈〈Jq ` uK, 0〉 , 〈Jq ` aK, 1〉〉D[J(p, q) ` tK]

To show that J K is a functor a crucial step is to establish:

Lemma 4.11 (Substitution lemma) For J K : C(Λβ∂) −→ X where X is a differential
Turing category with differential canonical codes,

Jp ` m[n/q]K = Jp ` nKJq ` mK

This then allows:

Proposition 4.12 When X is a differential Turing category with differentially canonical
codes, then

J K : C(Λβ∂) −→ X

is a Cartesian differential functor.

4.5 Differential reflexive objects

To obtain the analog of the Scott-Koymans theorem we split the retractively linear
idempotents in a differential Turing category with differential canonical codes to
obtain a closed differential Turing category. As a first step, note:

291

Cockett-Gallagher

Lemma 4.13 In any Cartesian differential category, the class E of retractively linear idem-
potents is closed to identities and products. Furthermore, retractively linear idempotents
are retractively additive.

The above lemma ensures that SplitE (X) is a Cartesian left additive category.
The following proposition shows that if we split retractively linear idempotents,
we can lift the differential structure from a Cartesian differential category to this
idempotent splitting.

Proposition 4.14 Let X be a Cartesian differential category, and E the class of retractively
linear idempotents. Then there is a unique differential structure on SplitE (X) in which
all e ∈ E split with linear retraction and for which the inclusion X ↪→ SplitE (X) is a
Cartesian differential functor.

Proof. From 3.9, we know that as E is a product closed of retractively additive
idempotents that contains the identities, that SplitE (X) is a Cartesian left additive
category.

In order for X ↪→ SplitE (X) to be a Cartesian differential functor, the differential
on maps between identities f : 1A −→ 1B is forced to be the differential from X.

If each idempotent is to split with a linear retraction, the derivative must satisfy
(sA × sA)D[rA f sB]rB = D[f].

This means the derivative for a e
f−→ e′ is:

D[f] := (eA × eA)D[eA f eB]eB = (eA × eA)D[f]eB = D[f]eB

The details of the proof that this does indeed give a differential structure on
SplitE (X) are relatively straightfoward; the proof will be somewhat similar to the
proof of proposition 4.7. 2

Next, we show that differential Turing structure lifts to the idempotent split-
ting.

Proposition 4.15 When X is a differential Turing category (with Turing object T), then
so is SplitE (X) where E is the class of retractively linear idempotents.

Proof. We have already seen that SplitE (X) is both a Cartesian differential category
and a Turing category with Turing object 1T.

Each idempotent e is also a retract of the Turing object 1T.
Hence, using Proposition 4.8, it suffices to show that the Turing morphism

1T × 1T
•−→ 1T

is linear in its first argument, which is immediate. 2

Finally, we show that if E is the collection of retractively linear idempotents in
a differential Turing category with canonical codes, then SplitE (X) is a Cartesian
closed differential Turing category. We do not get for free that SplitE (X) is still a
Cartesian closed category: we must show that E is closed to forming internal homs.
Once we have established this, we will have that SplitE (X) is a Cartesian closed

292

Cockett-Gallagher

category that is also a differential Turing category. Moreover, it is then immediate
that the coherence for Cartesian closed differential categories

D[λ(f)] = λ(〈π0 × 0, π1 × 1〉D[f])

holds because λ(f) in SplitE (X) is the canonical code λ(f) from X. Thus, the proof
of the following theorem requires only that we show retractively linear maps are
closed to forming internal homs.

We make use of lemma 4.3. Also, recall that if h is linear in its first argument,
then

〈π0 × 0, π1 × 1〉D[h] = a×(〈1, 0〉 × 1)D[h] = a×(1× π1)h = (π0 × 1)h

A few long calculations provide the proof of:

Theorem 4.16 When E is the collection of retractively linear idempotents in a differential
Turing category with canonical codes, then SplitE (X) is a Cartesian closed differential
Turing category.

This allows us to conclude the Scott-Koymans theorem for the differential λ-
calculus.

Corollary 4.17 When E is the class of retractively linear maps of a differential Turing
category with canonical codes, the Turing object 1T is a reflexive object in SplitE (X) and
the retraction is 1T −→ [1T, 1T] is a linear map.

Thus, every model of the differential λ-calculus may be seen to arise as a dif-
ferential reflexive object in a Cartesian closed differential category.

References

[1] Birkedal, L., “Developing Theories of Types via Computability and Realizability,” Ph.D. thesis, Carnegie
Mellon University (1999).

[2] Blute, R., J. Cockett and R. Seely, Differential categories, in: Mathematical Structures in Computer Science, 2006.

[3] Blute, R., J. Cockett and R. Seely, Cartesian Differential Categories, Theory and Application of Categories 22
(2009), pp. 622–672.

[4] Blute, R., J. Cockett and R. Seely, Cartesian differential storage categories, Theory and Application of Categories
(2015).

[5] Boudol, G., The Lambda-Calculus with Multiplicities, in: CONCUR ’93 Proceedings of the 4th International
Conference on Concurrency Theory, 1993.

[6] Boudol, G., P. Curien and C. Lavatelli, A semantics for lambda calculi with resource, Mathematical Structures in
Computer Science (1999).

[7] Boudol, G. and C. Laneve, Lambda-Calculus, Multiplicities, and the pi-Calculus, Technical report, Institut
National de Recherche en Informatique et en Automatique (1995).

[8] Bucciarelli, A., T. Ehrhard and G. Manzonetto, Categorical Models for Simply Typed Resource Calculi, Electronic
Notes in Theoretical Computer Science 265 (2010), pp. 213–230.

[9] Cockett, J. and P. Hofstra, Introduction to Turing Categories., Annals of Pure and Applied Logic. 156. (2008.),
pp. 183–209.

[10] Ehrhard, T., On Köthe Sequence Spaces and Linear Logic, in: Mathematical Structures in Computer Science, 2002.

293

Cockett-Gallagher

[11] Ehrhard, T., Finiteness spaces, Mathematical Structures in Computer Science (2005).

[12] Ehrhard, T. and L. Regnier, The Differential Lambda Calculus, Theoretical Computer Science 309 (2003), pp. 1–
41.

[13] Fiore, M., Differential structure in models of multiplicative biadditive intuitionistic linear logic, TLCA (2007).

[14] Koymans, C., Models of lambda calculus, Information and Control (1982).

[15] Lambek, J. and P. Scott, “An introduction to higher order categorical logic,” Cambridge University Press,
1986.

[16] Longo, G. and E. Moggi, A category theoretic characterization of functional completeness, Theoretical Computer
Science (1990).

[17] Manzonetto, G., What is a Categorical Model of the Differential and the Resource Lambda Calculi?, Mathematical
Structures in Computer Science 22 (2012), pp. 451–520.

[18] Scott, D., Relating theories of the λ-calculus, Essays on Combinatory Logic, Lambda Calculus, and Formalism
(1980).

294

MFPS 2016

The shuffle quasimonad and modules with
differentiation and integration

Marc Bagnol, Richard Blute

Department of Mathematics and Statistics
University of Ottawa

Ottawa, Ontario CANADA

J.R.B. Cockett
Department of Computer Science

University of Calgary
Calgary, Alberta CANADA

J.S. Lemay

Department of Mathematics and Statistics
University of Calgary

Calgary, Alberta CANADA

Abstract

Differential linear logic and the corresponding categorical structure, differential categories, introduced the
idea of differential structure associated to a (co)monad. Typically in settings such as algebraic geometry,
one expresses differential structure for an algebra by having a module with a derivation, i.e. a map satisfying
the Leibniz rule. In the monadic approach, we are able to continue to work with algebras and derivations,
but the additional structure allows us to define other rules of the differential calculus for such modules; in
particular one can define a monadic version of the chain rule as well as other basic identities.

In attempting to develop a similar theory of integral linear logic, we were led to consider the shuffle
multiplication. This was shown by Guo and Keigher to be fundamental in the construction of the free
Rota-Baxter algebra, the Rota-Baxter equation being the integral analogue of the Leibniz rule. This shuffle
multiplication induces a quasimonad on the category of vector spaces. The notion of quasimonad, called
r-unital monad by Wisbauer, is slightly weaker than that of monad, but is still sufficient to define a sensible
notion of module with differentiation and integration.

In this paper, we demonstrate this quasimonad structure, show that its free modules have both differential
and integral operators satisfying the Leibniz and Rota-Baxter rules and satisfy the fundamental theorems
of calculus.

Keywords: Linear Logic, Differential Categories, Rota-Baxter Algebras

1 Introduction

The theory of differential linear logic as introduced by Ehrhard and Regnier [9,10]

extended Girard’s linear logic to include an inference rule which captured differenti-

ation syntactically. The corresponding categorical structure, differential categories

[1], extended the traditional notion of Seely category [26] to include a differential

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bagnol et. al.

combinator. The monads T that arise in models of linear logic 1 have the addi-

tional structure of a commutative, associative algebra associated to every object of

the form TV . Such monads are called algebra modalities. Given an algebra modal-

ity, we require a map d : TV → V ⊗TV satisfying naturality and as in the theory of

Kähler differentials [18,2], we require that the combinator satisfies the Leibniz rule

of differential calculus, viewing V ⊗ TV as a right TV -module. But the monadic

structure allows us to express other rules of calculus such as the chain rule. For

details see Section 2.

The research in this paper began with an attempt to carry out a similar program

for the integral calculus. The analogue of the Leibniz rule for integral calculus is the

Rota-Baxter equation. While not as well-known as the Leibniz rule and the theory

of derivations on an algebra, the equation has been an object of significant study

since the construction of the free Rota-Baxter algebra by Guo and Keigher [16] and

especially since this equation has been observed to be significant in renormalization

of perturbative quantum field theory. See [8] for an overview. For the history of

the subject, we refer the reader to the monograph by Guo [14]. An idea of the far-

reaching application of this equation can be found by considering [7,8,12,13,15,16,29]

as well as the webpage of Li Guo, which has a detailed bibliography.

The significance of the shuffle multiplication is clear from the Guo-Keigher con-

struction of the free commutative Rota-Baxter algebra. This operation is naturally

defined on the tensor algebra of a vector space, but surprisingly the algebraic struc-

ture so obtained does not yield a monad but only the slightly weaker notion of

quasimonad, which we denote by §. Quasimonads retain sufficient structure to de-

scribe the integral and differential structure we are interested in. In particular, one

can define the notion of algebra modality with respect to a quasimonad and we

show that the shuffle multiplication does give an algebra modality.

The notion for integral calculus corresponding to a module with differentiation

does not seem to have been explored as far as we have been able to find. Given a

commutative algebra A, we define a module with integration to be a right A-module

M with a map P : M → A satisfying a version of the Rota-Baxter equation. See

Section 6 for details. We show that for the shuffle quasimonad, there is a canonical

natural transformation P : V ⊗§V → §V , making V ⊗§V a module with integration,

and a map d : §V → V ⊗§V making V ⊗§V a module with differentiation. These two

maps together satisfy both the first and second fundamental theorems of calculus.

We call such modules FTC-modules.

Remark 1.1 The authors would like to thank NSERC for its generous support.

The first author also received funding from the Fields Institute.

2 Codifferential categories and algebra modalities

We now define the basic structures related to the theory of (co)differential categories.

Definition 2.1 An algebra modality on a symmetric monoidal category C consists

of a monad (T, µ, η) on C, and for each object C in C, a pair of morphisms (note we

1 Actually we are working in the dual setting to that of model of linear logic, where one has comonads and
associated coalgebras.

296

Bagnol et. al.

are denoting the tensor unit by k)

m : T (C)⊗ T (C) // T (C), e : k // T (C)

making T (C) a commutative algebra such that this family of associative algebra

structures satisfies evident naturality conditions [1].

Definition 2.2 An additive symmetric monoidal category with an algebra modal-

ity is a codifferential category if it is also equipped with a deriving transform 2 , i.e.

a transformation, natural in C

dT (C) : T (C) // C ⊗ T (C)

satisfying the following four equations 3 :

(d1) e; d = 0 (Derivative of a constant is 0.)

(d2) m; d = (d⊗1); (1⊗m)+(1⊗d); c; (1⊗m) (where c is the appropriate symmetry)

(Leibniz Rule)

(d3) η; d = 1⊗ e (Derivative of a linear function is constant.)

(d4) µ; d = d; d⊗ µ; 1⊗m (Chain Rule)

Remark 2.3 For us, an additive category is simply one enriched over abelian

monoids. For the remainder of the paper, we will assume we are working over

an additive category, although some of the definitions do not require it.

The fundamental example of a codifferential category is the category of (discrete)

vector spaces and linear maps. The monad is given by the symmetric algebra

construction and the deriving transform is the usual differentiation of polynomials.

We refer to [1] for further details. A topological example is given by the category

of convenient vector spaces and continuous linear maps, which forms a differential

category [3].

3 Quasimonads

We give an exposition of the idea of weakening the definition of monad. We follow

the presentation of Wisbauer [28] which is based in part on the work of Böhm [5].

This weaker notion will be more relevant in the study of the shuffle multiplication.

Remark 3.1 We have chosen to use the term quasimonad for what Wisbauer calls

an r-unital monad. We note that this is different than what Wisbauer and Böhm

call a weak monad. It is also different than what Hoofman and Moerdijk call a

semimonad [21].

We begin with the following preliminary definitions.

Definition 3.2 • Let C be a category, a pair (F, µ) is a functor with multiplication

if F : C → C and µ : F 2 → F is a natural transformation with Fµ;µ = µF ;µ.

2 We use the terminology of a deriving transform in both differential and codifferential categories.
3 For simplicity, we write as if the monoidal structure is strict.

297

Bagnol et. al.

• A triple (F, µ, η) is a q-unital monad if (F, µ) is a functor with multiplication

and η : idC → F is a natural transformation, called the quasi-unit. (No equations

required.)

• The quasi-unit is regular if η is equal to the composite:

idC
η

−−−−→ F
Fη

−−−−→ F 2
µ

−−−−→ F

• The multiplication µ is compatible if µ is equal to the composite

FF
FηF
−−−−→ FFF

µF
−−−−→ FF

µ
−−−−→ F

We can now define the notion of quasimonad as follows:

Definition 3.3 A triple (F, µ, η) is a quasimonad if it is a q-unital monad and:

• η is regular.

• µ is compatible.

Just as a monad is always induced by an adjunction, quasimonads are always

induced by a pairing of functors, defined as follows. Let C and D be categories and

suppose we have a pair of functors, as follows

L : C −→ D R : D −→ C
A pairing between L and R is a pair of maps, natural in both variables, of the form:

α : HomD(LA,B) −→ HomC(A,RB) β : HomC(A,RB) −→ HomD(LA,B)

Given such a pairing, as in the case of an adjunction, we get natural transformations:

ηA : A −→ LR(A) εB : RL(B) −→ B

We then define F : C → C by F = L;R, and µ =: F 2 → F by µ = εL;R.

Definition 3.4 A pairing is regular if

α;β;α = α and β;α;β = β

Given a q-unital monad (F, η, µ), one defines a category of F -algebras similarly

to the case of monads and we get a pairing (αF , βF) just as one obtains an adjunction

in the case of a monad.

Theorem 3.5 (Wisbauer [28]) The following are equivalent:

• (F, µ, η) is a quasimonad.

• The pairing (αF , βF) is regular.

Remark 3.6 In the case of a q-unital monad, the Kleisli construction yields an

associative composition, but no identity maps. In the shuffle structure defined

below, one in fact obtains a one-sided unit for the Kleisli construction.

298

Bagnol et. al.

4 Shuffling

We describe a quasimonad structure which will be fundamental in our definition

and examples. We were led to consider this operation by the fundamental work of

Guo and Keigher [15,16]. We work in the category of vector spaces over an arbitrary

field k. So let

§(V) = k ⊕ V ⊕ V ⊗ V ⊕ V ⊗ V ⊗ V · · ·
This has a well-known monad structure as it is the free tensor algebra. But it also

has a quasimonad structure which we describe now. We will work with homogeneous

elements. See [24], Chapter 16.7. Denote the length of a homogeneous element w

by |w|.
We have the evident free multiplication on §(V), but we also have the shuffle

multiplication � : §(V) ⊗ §(V) → §(V) described as follows. We first remind the

reader of the following preliminaries:

Definition 4.1 • The generalized binomial coefficients are defined by(
n1 + n2 · · ·+ nm
n1, n2 · · · , nm

)
=

(n1 + n2 · · ·+ nm)!

n1!n2! · · ·nm!

with each ni a non-negative integer. These coefficients satisfy evident equations

which will be of use in verifying associativity of multiplication, among other

things.

• If w1 and w2 are words in some alphabet, a shuffle of w1 and w2 is a permutation

of the concatenated word w1w2 such that the internal order of the two words is

maintained.

If w1, w2 are homogeneous elements of §V , then define

w1�w2 =
1(|w1|+|w2|

|w1|,|w2|
) ∑
w∈Sh(w1,w2)

w

Here the sum is over all w which are the shuffle of the two words. (We will find

it convenient to denote the shuffle multiplication without the leading coefficient by

w1 ∗ w2.)

So for example, the product of w1 = a1 ⊗ b1 and w2 = a2 ⊗ b2 is

w1�w2 =
1

6
[a1 ⊗ b1 ⊗ a2 ⊗ b2 + a1 ⊗ a2 ⊗ b1 ⊗ b2 + a1 ⊗ b1 ⊗ b2 ⊗ a2

+b1 ⊗ a1 ⊗ b2 ⊗ a2 + b1 ⊗ a1 ⊗ a2 ⊗ b2 + b1 ⊗ b2 ⊗ a1 ⊗ a2]

=
1

6
w1 ∗ w2

We also note that the multiplication ∗ can be defined recursively as follows [14].

If w1 = aw′1 and w2 = bw′2, then:

w1 ∗ w2 = a(w′1 ∗ w2) + b(w1 ∗ w′2)

299

Bagnol et. al.

Due to basic combinatorial identities of the binomial coefficients, the �-operation is

a commutative, unital associative multiplication on §(V) and so induces a series of

maps:

§(V)⊗n −→ §(V)

These maps can be defined directly via the formula:

w1�w2� · · · �wn =
1(|w1|+|w2|+···+|wn|

|w1|,|w2|,··· ,|wn|
) ∑
w∈Sh(w1,w2,...,wn)

w

The multiplication � induces a natural transformation µ : §§ → §. There is also an

evident natural transformation η : Id→ §, which is the usual inclusion of generators

function.

Theorem 4.2 This makes § a quasimonad.

Proof. We prove the result in steps.

• (§, µ) is a functor with multiplication.

We need to establish some notation for the homogeneous elements of the various

iterates §nV :

· We write the elements of V as {xi}i∈I .
· We write the (homogeneous) elements of §V as (x1x2 . . . xn). In particular

xi ∈ V and (xi) ∈ §V . So (xi) is the word of length one. We also have the

empty word ε in all §nV , and note for example that (ε) 6= ε in §2(V).

· We write the elements of §2V as

[(x11x12 . . . x1n1)(x21x22 . . . x2n2) . . . (xm1xm2 . . . xmnm)].

We will also write an element of this form as [w1w2 . . . wm].

· We write the elements of §3V as [w11w12 . . . w1m1] . . . [wp1wp2 . . . wpmp]

Now calculate as follows:

§µ([w11w12 . . . w1m1] . . . [wp1wp2 . . . wpmp]) =

[w11�w12� . . . �w1m1] . . . [wp1�wp2� . . . �wpmp] =

1(|w11|+|w12|+...+|w1m1 |
|w11|,|w12|,...,|w1m1 |

) . . . 1(|wp1|+|wp2|+...+|wpm1 |
|wp1|,|w12|,...,|wpmp |

) [w11 ∗ w12 ∗ . . .

∗w1m1] . . . [wp1 ∗ wp2 ∗ . . . ∗ wpmp]

Applying µ to this element and using combinatorial identities, we get:

300

Bagnol et. al.

1(|w11|+|w12|+...+|w1m1 |+...+|wp1|+|wp2|+...+|wpm1 |
|w11|,|w12|,...,|w1m1 |,...,|wp1|,|w12|,...,|wpmp |

)w11 ∗ w12 . . . ∗ w1m1 ∗ . . .

∗wp1 ∗ wp2 . . . ∗ wpmp =

w11�w12� . . . �w1m1� . . . �wp1�wp2� . . . �wpmp

On the other hand, we have

µ§([w11w12 . . . w1m1] . . . [wp1wp2 . . . wpmp]) =

[w11w12 . . . w1m1]� . . . �[wp1wp2 . . . wpmp] =

1(
m1+...+mp

m1,m2,...,mp

) [w11w12 . . . w1m1] ∗ . . . ∗ [wp1wp2 . . . wpmp]

Note that in this multiplication we are viewing the w’s as letters. Now note

µ([w11w12 . . . w1m1] ∗ . . . ∗ [wp1wp2 . . . wpmp]) is:(
m1 + . . .+mp

m1,m2, . . . ,mp

)
[w11�w12� . . . �w1m1� . . . �wp1�wp2� . . . �wpmp]

since we have
(
m1+...+mp

m1,m2,...,mp

)
terms in the product [w11w12 . . . w1m1] ∗ . . . ∗

[wp1wp2 . . . wpmp] each of which gives w11�w12� . . . �w1m1� . . . �wp1�wp2� . . . �wpmp

when we apply µ.

Thus we have a functor with multiplication.

• η is regular.

We note that §η is just id ⊕ η ⊕ (η ⊗ η) ⊕ So η; §η is just the map v 7→ (v),

viewing v as a word of length 1. Then µ((v)) = v.

• µ is compatible.

We consider a typical element of §2V given by:

[(x11x12 . . . x1n1)(x21x22 . . . x2n2) . . . (xm1xm2 . . . xmn2)]

We also denote this by [w1w2 . . . wm]. The action of the map FηF on this element

is to send it to [w1][w2] . . . [wm], where each (wi) is a word of length one in §2V
Applying µ§ to this element gives:

1

m!
[Σm([(w1)(w2) . . . (wm)])]

where Σm indicates the sum over the action of the permutation group Sm on the

list [(w1)(w2) . . . (wm)]. Applying µ to [Σm([(w1)(w2) . . . (wm)]), we get m! copies

of w1�w2� . . . �wm, and we are done.

This completes the proof that (§, µ, η) is a quasimonad.

2

301

Bagnol et. al.

Definition 4.3 A q-unital monad or quasimonad § is an algebra modality if for each

object V , there is an associative algebra structure:

� : §V ⊗ §V → §V e : I → §V
which is natural in V and the following two additional equations hold:

§§V ⊗ §§V
�
��

µ⊗µ // §V ⊗ §V
�
��

§§V µ
// §V

I e //

e
 A

AA
AA

AA
A §§V

µ

��
§V

These equations say the µ is an algebra homomorphism.

Lemma 4.4 The shuffle multiplication makes § an algebra modality.

Proof. The second equation is straightforward. For the first equation, we proceed

very much as in the case of the proof that we have a functor with multiplication. So

we consider an expression of the form [w1w2 . . . wm]⊗ [u1u2 . . . un]. Applying µ⊗ µ
and then �, we get

[w1w2 . . . wm]⊗ [u1u2 . . . un] 7→ [w1�w2� . . . �wm]⊗ [u1�u2� . . . �un]

7→ w1�w2� . . . �wm�u1�u2� . . . �un

Applying � then µ gives

[w1w2 . . . wm]⊗ [u1u2 . . . un] 7→ 1(
m+n
m,n

)(w1w2 . . . wm) ∗ (u1u2 . . . un) 7→

1(
m+n
m,n

)(m+ n

m, n

)
w1�w2� . . . �wm�u1�u2� . . . �un

and the result follows.

2

5 The Rota-Baxter equation

We now introduce the Rota-Baxter equation and give examples. All of the material

of this section can be found in [14].

302

Bagnol et. al.

Definition 5.1 Let A be a k-algebra, where k is the underlying field. A is a Rota-

Baxter algebra if equipped with a k-linear map P : A→ A such that for all x, y ∈ A

P (x)P (y) = P (xP (y)) + P (P (x)y)

The map P is called a Rota-Baxter operator or RB-operator 4 .

We just mention a few examples. A much more extensive list can be found for

example in [14].

• Let C(R) denote the ring of continuous functions from the reals to the reals under

pointwise operations. Define P (f)(x) =
∫ x

0 f(t)dt. Then P is an RB-operator.

The Rota-Baxter equation becomes the usual integration by parts formula.

• Consider R[x] with multiplication given by xm · xn =
(
m
n

)
xm+n. Then P (xn) =

xn+1 is an RB-operator.

• Let V be an arbitrary k-vector space. Let T (V) = k⊕V ⊕V ⊗V . . ., but equipped

with the shuffle algebra multiplication. Then if v ∈ V , we have an operator

Pv : T (V)→ T (V) defined by Pv(w) = v ⊗ w. Then Pv is an RB-operator.

6 Modules with differentiation and integration

The notion of derivation has long been fundamental in algebraic geometry and

commutative algebra [18,25] and more recently extending the idea to the noncom-

mutative setting has also been of importance [23]. We begin with the classical

notion:

Definition 6.1 Let A be a commutative k-algebra. Let M be a (left) A-module.

A derivation on M is a k-linear map ∂ : A→M such that for all x, y ∈ A

∂(xy) = x∂(y) + y∂(x)

We will also refer to (M,∂) as a module with differentiation.

We now introduce the corresponding integral structure. As far as we have been

able to see, this precise definition does not exist in the literature despite the intense

study of the Rota-Baxter equation. It is certainly implicit in that work though.

Definition 6.2 Let A be a commutative k-algebra. Let M be a right A-module.

An integration on M is a k-linear map π : M → A such that for all x, y ∈M

π(x)π(y) = π(xπ(y)) + π(yπ(x))

The pair (M,π) is called a module with integration.

Remark 6.3 Note that the multiplication on the lefthand side of the equation is

the multiplication of A, while on the right, the multiplication is the action of A on

M .

4 In this paper, we only consider the operators of weight 0.

303

Bagnol et. al.

We note that every Rota-Baxter algebra is a module with integration over itself

with its evident right-module structure.The shuffle quasimonad will give us a much

broader class of examples. Indeed it is expected that when a complete theory of

integral linear logic is established, we will have an even greater source of examples.

Definition 6.4 Let A be a commutative algebra. An FTC-module over A is an

A-module M together with maps P : M → A and d : A→M such that

• (M,d) is a module with differentiation.

• (M,P) is a module with integration.

and

• (First Fundamental Theorem of Calculus) P ; d = id

We write the FTC-module as (M,P, d).

6.1 Additional structure in the presence of a (quasi)monad

As already indicated, one can express additional differential structure in the presence

of a monad with an algebra modality. This is seen in the definition of codifferential

category above. We now introduce some additional structure for the integral case.

Definition 6.5 In what follows, let (T, µ, η) be a q-unital monad and a natural

transformation of the form s : id⊗ T → T

• The natural transformation s satisfies the U-substitution rule if for all f : X →
X ⊗ TX, the composite

X ⊗ TX
s

−−−−→ TX
Tf

−−−−→ T (X ⊗ TX)
Ts

−−−−→ TTX
µ

−−−−→ TX

is equal to the composite

X ⊗ TX
id⊗Tf
−−−−→ X ⊗ T (X ⊗ TX)

id⊗Ts
−−−−→ X ⊗ TTX

f⊗µ
−−−−→ X ⊗ TX ⊗ TX

id⊗�
−−−−→ X ⊗ TX

s
−−−−→ TX

• A natural transformation of the form s : id ⊗ T → T satisfies the integration of

constants rule if η : X → TX is equal to the composite

X ∼= X ⊗ I
id⊗e
−−−−→ X ⊗ TX

s
−−−−→ TX

We note that these equations are not necessarily satisfied in the case of the

shuffle quasimonad and it will be of interest to characterize those cases in which

these additional equations hold.

If we also have differential structure in the presence of a quasimonad, we can

also state the Second Fundamental Theorem of Calculus.

Definition 6.6 Suppose we have an algebra modality (T, µ, η,m, e) and an FTC-

module (M,P, d) over T (V). Then we say that M satisfies the Second Fundamental

Theorem of Calculus if:

304

Bagnol et. al.

d;P + T (0) = idT (V)

where 0: V → V .

If the algebra modality is equipped with natural transformations P : id⊗T → T

and d : T → id⊗ T making each TV an FTC-module, then we say that the algebra

modality satisfies the second fundamental theorem if these natural transformations

satisfy the same equation.

Remark 6.7 We note that unlike the first fundamental theorem of calculus, this

one can only be defined in the presence of additional quasimonadic structure.

7 Differential and integral structure in the shuffle
quasimonad

Lemma 7.1 The operator P : V ⊗ §V → §V defined by P (v ⊗ w) = 1
|w|+1vw (the

concatenated word) satisfies:

• The Rota-Baxter equation, where V ⊗ §V is the free right §V -module generated

by V .

• The integration of constants rule.

Proof. We note that the integration of constants rule is trivial.

We suppose v, v′ ∈ V and w,w′ ∈ X∗, with |w| = n and |w′| = m. We must

show

P (v ⊗ w)P (v′ ⊗ w′) = P ((v ⊗ w)P (v′ ⊗ w′)) + P ((v′ ⊗ w′)P (v ⊗ w))

The lefthand side of this equation is given by:

1

n+ 1

1

m+ 1
[vw�v′w′] =

1

n+ 1

1

m+ 1

1(
n+m+2
n+1,m+1

)(vw ∗ v′w′) =

1(
n+m+2
n,1,m,1

)(vw ∗ v′w′)

The righthand side is given by:

P (v ⊗ (
1

m+ 1
)w�v′w′) + P (v′ ⊗ (

1

n+ 1
)w′�vw) =

1

m+ 1

1(
n+m+1
n,m+1

) 1

n+m+ 2
v(w ∗ v′w′) +

1

n+ 1

1(
n+m+1
n+1,m

) 1

n+m+ 2
v′(w′ ∗ vw) =

1(
n+m+2
n,1,m,1

)v(w ∗ v′w′) +
1(

n+m+2
n,1,m,1

)v′(w′ ∗ vw)

The result now follows from the recursive definition of the ∗-operator.

2

305

Bagnol et. al.

Lemma 7.2 In the category of vector spaces equipped with the quasishuffle algebra

modality, for each algebra §V , the differential operator given by:

d : §V → V ⊗ §V vw 7→ (|w|+ 1)v ⊗ w
satisfies the Leibniz rule.

Proof. We must show that

d(vw�v′w′) = d(vw)�v′w′ + d(v′w′)�vw
Note we are using the � operation to also signify the action of §V on V ⊗ §V . We

let |w| = n and |w′| = m.

For the lefthand side, we calculate:

d(vw�v′w′) = d[
1(

n+m+2
n+1,m+1

)(v(v′w′ ∗ w) + v′(vw ∗ w′))] =

1(
n+m+2
n+1,m+1

) [(n+m+ 2)(v ⊗ (w ∗ v′w′) + v′ ⊗ (vw ∗ w′)] =

(n+ 1)!(m+ 1)!

(n+m+ 1)!
[v ⊗ (w ∗ v′w′) + v′ ⊗ (vw ∗ w′)]

For the righthand side, we calculate:

d(vw)�v′w′ + d(v′w′)�vw = (n+ 1)v ⊗ (w�v′w′) + (m+ 1)v′ ⊗ (w′�vw) =

(n+ 1)
1(

n+m+1
n,m+1

)v ⊗ (w ∗ v′w′) + (m+ 1)
1(

n+m+1
n+1,m

)v′ ⊗ (w′ ∗ vw) =

(n+ 1)!(m+ 1)!

(n+m+ 1)!
[v ⊗ (w ∗ v′w′) + v′ ⊗ (vw ∗ w′)]

2

Finally we conclude:

Theorem 7.3 For the algebra modality §, the free §V module on V given by V ⊗§V
is an FTC-module which furthermore satisfies the second fundamental theorem of

calculus.

Proof. It remains to verify the two fundamental theorems. The first is straightfor-

ward.

We must consider the two cases of monomials V ⊗
n
, when n = 0 and n ≥ 1.

When n = 0, k ∈ K, recall that d(1) = 0 and P is linear:

P (d(k)) + §(0)(k) = P (0) + k = k

When n ≥ 1, then for vw ∈ V ⊗n
(where v ∈ V and w ∈ §(V) of length |w| = n−1):

P (d(vw)) + §(0)(vw) = P ((|w|+ 1)v ⊗ w) =
(|w|+ 1)

(|w|+ 1)
vw = vw

306

Bagnol et. al.

This establishes the second FTC.

2

We now consider the possibility of other §V modules satisfying the second fun-

damental theorem. We will show that requiring the second fundamental theorem is

in fact a significant restriction.

Lemma 7.4 Let (M,P, d) be an FTC-module over §V which satisfies the Second

Fundamental Theorem of calculus. Then the following equality holds:

P ; §(0) = 0

Proof.

P ; §(0) = P + P ; §(0)− P
= P ; d;P + P ; §(0)− P
= P (d;P + §(0))− P
= P − P
= 0

2

Proposition 7.5 For the algebra §V , we consider the FTC-module (V ⊗ §V, P, d)

as above. Suppose I also have another FTC-module (M,R, d) over §V which also

satisfies the second fundamental theorem. Then there is a k-linear isomorphism

between M and V ⊗ §V given by

P ;D : V ⊗ §V −→M R; d : M −→ V ⊗ §V

Furthermore, if P ;D satisfies the following for all a⊗ w ∈ V ⊗ §V :

D(P (a⊗ w)) = wD(a)

then P ;D is a module map, implying V ⊗§V and M are isomorphic as §V -modules.

Proof.

By the above lemma, R; §(0) = 0 and P ; §(0) = 0, and so we get the following

equalities:

R = R(dP+§(0)) = RdP+R§(0) = RdP P = P (DR+§(0)) = PDR+P §(0) = PDR

So calculate as follows:

P ;D;R; d = P ; d = idV⊗§V

R; d;P ;D = R;D = idM

307

Bagnol et. al.

So PD and Rd are K-linear isomorphisms.

Now suppose that for all a⊗ w ∈ V ⊗ §V : D(P (a⊗ w)) = wD(a). By a simple

calculation we have that for all v ∈ §(V):

D(P (v(a⊗ w))) = D(P (a⊗ v � w))

= (v � w)D(a)

= v(wD(a))

= v(D(P (a⊗ w)))

Which proves that P ;D is a module map.

2

8 Conclusion

This work originated with the goal of developing a theory of integral linear logic and

integral categories to parallel the corresponding differential theories. This work is

ongoing but we believe the shuffle structure provides a key towards understanding

the integral theory. But furthermore it is of interest even in its own right. The idea

of weakening the notion of monad to quasimonad is new for linear logic and deserves

further exploration. (We do note that a different version of weaker structure was

introduced in [20,21].) Also, we find the combinatorics of shuffling and its variants

fascinating and wonder what other structure is to be found there and what it would

have to say about linear logic.

We also note that one can still consider T -algebras when T is just a quasimonad.

See [28]. An extension of the theory of universal derivations established in [2] for

general T -algebras was carried out by O’Neill in [27]. This theory was subsequently

subsumed in [4] where the general notion of a T -derivation with respect to an algebra

modality was introduced. It will be interesting to see the extent to which the work

there lifts to the quasimonad setting.

The notion of Rota-Baxter algebra as studied in [14] and the references therein

is in fact much more general than the definition presented here. In particular, they

have the notion of Rota-Baxter algebra of weight λ. The definition is as follows:

Definition 8.1 Let A be a k-algebra. A is a Rota-Baxter algebra of weight λ if

equipped with a k-linear map P : A→ A such that for all x, y ∈ A

P (x)P (y) = P (xP (y)) + P (P (x)y) + λP (xy)

Our notion of module with integration only captures the weight 0 case. But there

is an evident notion of module with integration of weight λ. The logical significance

of this is likely quite interesting. At the same time, Guo and Keigher have also

developed a corresponding notion of differential algebra of weight λ, defined as

follows:

Definition 8.2 Let A be a k-algebra. A is a differential algebra of weight λ if

equipped with a k-linear map d : A→ A such that for all x, y ∈ A

308

Bagnol et. al.

d(xy) = xd(y) + d(x)y + λd(x)d(y)

They combine the two structures in [16]. The paper [17] studies the corresponding

monadic and comonadic structures. Obviously there is a great deal of structure

here to be studied.

We also note that there is a corresponding theory of Rota-Baxter coalgebras

[22]. So many of the structures defined here could be redefined in the coalge-

braic/comonadic setting. Of course, it remains to find as compelling an example as

the shuffle structures considered here.

Two further ideas for future work are as follows. First it is important to develop

the above theories in the noncommutative case. This work for the differential setting

was begun in the preprint [6]. Free Rota-Baxter algebras in the noncommutative

case are constructed by Ebrahimi-Fard and Guo using operations on rooted trees in

[7]. It is this construction that arises in renormalization of perturbative quantum

field theory [8].

We would also like to construct free FTC-modules in both the weight 0 and

weight λ cases. Obviously these will be related to the structures found in [16,17].

This generalized notion of shuffle is also related to the quasishuffle of Hoffman [19].

References

[1] R. Blute, J.R.B. Cockett, R.A.G. Seely. Differential categories. Mathematical Structures in Computer
Science 16, pp. 1049-1083, (2006).

[2] R. Blute, R. Cockett, T. Porter, R. Seely. Kähler categories. Cahiers de Topologie et Geometrie
Differentielle 52, pp. 253-268, (2011).

[3] R. Blute, T. Ehrhard and C. Tasson. A Convenient Differential Category. Cahiers de Topologie et
Geometrie Differentielle 53. pp. 211-233, (2012).

[4] R. Blute, R.B.B. Lucyshyn-Wright, K. O’Neill. Derivations in codifferential categories. to appear in
Cahiers de Topologie et Geometrie Differentielle, (2016).

[5] G. Böhm. The weak theory of monads. Adv. Math. 225 pp. 1-32, (2010).

[6] R. Cockett. Lectures on noncommutative Kähler categories. Preprint (2014).

[7] K. Ebrahimi-Fard, L. Guo. Free Rota-Baxter algebras and rooted trees. J. Algebra and Its Applications
7, pp. 167-194 (2008).

[8] K. Ebrahimi-Fard, L. Guo. Rota-Baxter Algebras in Renormalization of Perturbative Quantum Field
Theory. in Universality and Renormalization, edited by I. Binder and D. Kreimer, (2007).

[9] T. Ehrhard, L. Regnier The differential λ-calculus. Theoretical Computer Science, 309(1-3) (2003) 1–41.

[10] T. Ehrhard, L. Regnier Differential interaction nets. Workshop on Logic, Language, Information and
Computation (WoLLIC), invited paper. Electronic Notes in Theoretical Computer Science, vol. 123,
March 2005, Elsevier.

[11] J.-Y. Girard Linear logic. Theoretical Computer Science 50 (1987) 1–102.

[12] L. Guo. Properties of free Baxter algebras, Adv. Math. 151, pp. 346– 374, (2000).

[13] L. Guo. Baxter algebra and differential algebra, in Differential Algebra and Related Topics, World
Scientific Publishing Company, 2002.

[14] L. Guo. An Introduction to Rota-Baxter algebra. Surveys of Modern Mathematics 4, (2012).

[15] L. Guo, W. Keigher. Baxter algebras and shuffle algebras. Advances in Mathematics 150, pp. 117-149,
(2000).

309

Bagnol et. al.

[16] L. Guo, W. Keigher. On differential Rota-Baxter algebras, J. Pure Appl. Algebra 212, pp. 522-540,
(2008).

[17] L. Guo, W. Keigher, S. Zhang. Monads and distributive laws for Rota-Baxter and differential algebras,
preprint, (2014).

[18] R. Hartshorne, Algebraic Geometry. Springer-Verlag, (1977).

[19] M.E. Hoffman. Quasi-shuffle products. J. Algebraic Combinatorics , pp. 49-68, (2000).

[20] R. Hoofman. Non-stable models of linear logic. Logical Foundations of Computer Science, Lecture Notes
in Computer Science 605, pp. 209-220, (2005).

[21] R. Hoofman, I. Moerdijk. A remark on the theory of semifunctors. Mathematical Structures in Computer
Science 5, pp. 1-8, (1995).

[22] R. Jian, J. Zhang. Rota-Baxter coalgebras, (preprint), (2014).

[23] G. Landi. An introduction to noncommutative spaces and their geometries. Lecture Notes in Physics,
Springer-Verlag, (1997).

[24] S. Lang. Algebra, Third Edition, Springer Graduate Texts in Mathematics, Springer-Verlag, (2005).

[25] H. Matsumura. Commutative Ring Theory, Cambridge University Press, (1986).

[26] P.-A. Mellies. Categorical semantics of linear logic. Panoramas et Syntheses 27, Societe Mathematique
de France, (2009).

[27] T. O’Neill. Differential Forms for T-Algebras in Kähler Categories. M.Sc. Thesis, (2013).

[28] R. Wisbauer. Regular pairings of functors and weak (co)monads. Algebra & Discrete Math 15, pp.
127-154, (2013).

[29] S. Zheng, L. Guo, M. Rosenkranz. Rota-Baxter operators on the polynomial algebra, integration and
averaging operators. Pacific Journal of Mathematics 275, pp. 481-506, (2015).

310

	Introduction
	The CSP language
	Priority

	Example: the failures model
	The traces and failures models
	Model shifting for the failures model

	Semantic models
	Finite observations
	Finite observational models
	The traces model
	Failures
	Revivals
	Acceptances
	Refusal testing

	Rational models

	Model shifting
	Model shifting for FL
	Model shifting for rational observational models

	Implementation
	Testing
	Performance
	Example: Conflict detection

	Conclusions
	References
	Introduction
	PROPs
	PROP operations
	A presentation of equivalence relations
	A presentation of partial equivalence relations
	Conclusions
	References
	Omitted Proofs
	Introduction
	Contributions
	Preliminaries

	A Graded Monad for Differential Privacy
	Graded Monads
	A Graded Relational Lifting of Giry Monad for Differential Privacy

	The Continuous apRHL
	The Language pWHILE
	Judgements of apRHL
	Proof Rules
	Soundness
	Mechanisms

	An Example: The Above Threshold Algorithm
	Acknowledgement
	References
	Introduction
	Minimization of deterministic automata
	Minimization by equivalence of states
	Minimization by equivalence of words

	Preliminaries
	Minimization
	Reachability
	Minimization via reachability
	Relating minimization and reachability
	Branching systems
	Future work
	References
	Proofs of Section 4
	Proofs of Section 5
	Proofs of Section 6
	Proofs of Section 7
	Proofs of Section 8
	Introduction
	Backward and forward inference, abstractly
	Inference with discrete probability
	Inference in a Bayesian network

	Inference with continuous probability
	Quantum inference
	References
	Introduction
	Preliminaries
	Bilattices
	D-frames

	Nd-frames
	Logic of nd-frames
	Implications and a cut rule

	Stone duality for nd-frames
	Spectra of nd-frames
	Nd-frames from bispaces
	Sobriety, spatiality and the adjunction

	Canonical (p,m)
	Spectra and comparison with the interior operations
	Maximality of (pr, mr)
	Proof-theoretic negation

	References
	Appendix: Proofs omitted from the main text
	Proofs related to Remark 4.3
	Proofs of the main theorems in Section 5

	Introduction
	Categorical preliminaries
	Monad preliminaries
	Monad examples
	The probabilistic powerdomain monad V on Dcpo
	The Radon monad R on CH

	Monad requirements
	The Kleisli category is an effectus
	The monad examples revisited
	The probabilistic powerdomain V
	The Radon monad R

	Conclusions and outlook
	References
	Introduction
	SF-calculus
	Compounds
	Star Abstraction
	Components
	Confluence
	Normal Forms

	Definable Equality
	Extensionality
	Homomorphisms
	Programs as Normal Forms
	Extensional Conversion to Combinators
	Program Analysis and Optimisation
	Intensional Conversion to Combinators
	Fresh Approaches
	Conclusions
	References
	Introduction
	Background
	Domain Theory
	Category Theory
	Monads
	Powerdomains
	Randomized Computation

	The Functor
	Motivation for the Functor
	The Functor Definition

	The RC Monad
	Motivation for the Kleisli extension
	Kleisli Extension of the Monad

	Distributive Laws and Extending the Monad
	Distributive Law With the Lower Powerdomain
	Extending the Monad
	Distributive Law With the Convex Powerdomain

	Relation to Scott's Stochastic Lambda Calculus
	Summary and Future Work
	Acknowledgements
	References
	Introduction
	Preliminaries: Nominal Sets
	Binding Operators
	Examples
	Generalized Name Abstraction
	Name Restriction
	Mutually Recursive Definitions
	An Obstacle: Binder Scope

	Binding Functions
	Atom Scope and Freshening
	Independence
	Local Equivariance and Binding Operators
	Elimination Principles
	Multiple Quotients

	Functorial Properties
	Strengthening Quotients
	Preservation of Colimits and Initial Algebras

	Conclusion and Related Work
	References
	Introduction
	Overview
	The sum-based representation of iteration
	The ``De Bruijn index'' problem with the sum-based representation
	The solution: Labelled iteration
	Contributions

	Sum-based iteration
	Labelled iteration with pure function types
	Introduction
	Denotational semantics
	Operational semantics
	Translation from sum-based iteration

	Discussion and related work
	Conclusion
	References
	Appendix: proofs
	Adequacy of FGCBV without iteration
	Adequacy of FGCBV + sum-based iteration
	Adequacy of the language with labelled iteration

	Introduction
	Notations
	The structure of Pol
	The Machine
	Feeding the Machine
	Rigidity
	Applications
	Outlook
	References
	Construction of the multiset functor B
	Properties of the functors B and V
	Introduction
	Preliminaries
	Complete Elgot Monads for Iteration
	Parametrized Monads for Complete Elgot Algebras
	Complete Elgot Algebras as Algebras for a Monad
	Algebras of Complete Elgot Monads
	Conclusions and Further Work
	References
	Introduction
	Related work

	The CPS target language
	Realizability
	Classical realizability triposes

	Conjunction as intersection type
	Boolean (pre)algebras and Boolean triposes
	References
	Introduction
	The Lambda-Calculus
	Syntax of the Lambda-calculus
	Total Turing categories with canonical codes
	Interpreting the Lambda-calculus
	Reflexive objects

	The additive Lambda-calculus
	Syntax of the additive Lambda-calculus
	Additive universal objects
	Left-additive Turing categories
	Interpreting the additive Lambda-calculus
	Additive reflexive objects

	The Differential Lambda-calculus
	Syntax of the differential Lambda-calculus
	Differential universal objects
	Differential Turing categories
	Interpreting the differential Lambda-calculus
	Differential reflexive objects

	References
	Introduction
	Codifferential categories and algebra modalities
	Quasimonads
	Shuffling
	The Rota-Baxter equation
	Modules with differentiation and integration
	Additional structure in the presence of a (quasi)monad

	Differential and integral structure in the shuffle quasimonad
	Conclusion
	References

