
Graphene under ultrahigh pressure: Local tuning of its electronic properties

<u>Cristina Díaz^{1,2,3}</u>, Pablo Ares⁴, Michele Pisarra⁵, Pilar Segovia^{2,4}, Fernando Martín^{1,2,5} Enrique G. Michel^{2,4}, Felix Zamora^{2,3,5,6}, Cristina Navarro^{2,4}, Julio Gómez-Herrero^{2,4}

¹Dept. Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain ² Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain.

Controlling graphene electronic properties is critical to promote its use in a variety of electronic devices. In this context, it is known, for example, that the degree of graphene coupling to the substrate is an important factor controlling graphene doping [1,2]. Very recently, it has been shown that graphene electronic properties can by locally tuning by applying ultrahigh pressures (> 10 GPa) using Atomic Force Microscopy (AFM). Graphene is modified in such a way that specific areas can be irreversible flattened against an amorphous SiO₂ substrate, creating p-doped graphene regions. Furthermore, as proved by Raman Spectroscopy, Kelvin Probe Force Microscopy and Scanning X-ray Photoelectron Microscopy, the strength of the doping depends monotonically on the applied pressure [3]

AFM topographic image showing 600x600 nm2 ares modifed under different pressures. Inset: chemisorbed configuration found by means of PBS-DFT simulations.

Aiming to understand these experimental findings, we have studied the binding mechanism between graphene and several SiO_2 surfaces by means of periodic boundary conditions (PBC) calculations based on density functional theory (DFT). Our results reveal that, for the four SiO_2 surfaces considered in this study, it exits a stable configuration in which the graphene is physisorbed, i.e., it is bound, by weak dispersion forces, at a distance ~ 3 Å. In addition, for some particular SiO_2 surfaces, we have found several configurations in which one or more C atoms are chemically bound to either the O or the Si atoms of the surface. Among these configurations, the ones retaining the honeycomb lattice are of special interest. Focusing on these later configurations, we have run PBC-DFT calculations on coordinate path connecting the physisorbed and the chemisorbed configurations. Our simulations reveal that these two minima are connected by a pressure barrier of the order of 10-20 GPa, in agreement with experimental findings [3].

References:

- [1] J. Nicolle et al Nano Lett. 11, 3564 (2011)
- [2] S. Ryu et al Nano Lett. 10, 4944 (2010)
- [3] P. Ares et al to be published

³ Institute for Advances Research in Chemical Sciences (IAdChem). Universidad Auónoma de Madrid 28049 Madrid, Spain.

⁴ Dept. de Física de la Materia Condensada, Universidad Auónoma de Madrid, 28049 Madrid, Spain.

⁵ Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049, Madrid, Spain.

⁶ Dept. de Química Inorgánica, Universidad Auónoma de Madrid, 28049 Madrid, Spain. cristina.diaz@uam.es