Control of active species in the afterglows of N₂ and N₂-O₂ microwave plasmas and the role of those active species in the selective surface nitridation of TiO₂ nanocrystals

Yu Kwon Kim¹, Byungwook Jeon¹, Andre Ricard² and Jean-Philippe Sarrette²

¹Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea

² Université de Toulouse, UPS, INP, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse, France email yukwonkim@ajou.ac.kr

TiO₂ is widely used as a catalyst in various applications including photocatalysis, photovoltaics and sensors. However, the performance of TiO₂ is strongly determined by the detailed chemical structure of surfaces. So, the selective control of surface structure can be a good choice for the control of activities associated with it. As a one way to achieve such a goal, plasma treatments are widely used as in the case of enhancing the photoresponse of TiO₂ materials. Plasma treatments of TiO₂ have been used to enhance the visible light absorption for enhanced photocatalytic activity [1]. To understand the origin of enhancement, it is necessary to study the chemical states and bonding structure of the surface-modified TiO₂ materials.

In this study, anatase TiO₂ nanocrystals was exposed to the post-discharge region of N₂ microwave plasma and the chemical bonding states of surface nitrogen species on the surface-modified TiO₂ were carefully evaluated using X-ray photoemission spectroscopy (XPS) [2]. We observed that the surface treatments in the afterglows can induce stable nitrogen species which are formed at or near the surface of TiO₂. However, the detailed bonding configuration of N species can vary strongly depending on the type of active species present in the afterglow. Fig. 1 shows an example of N 1s core level spectra taken from the TiO₂ sample treated in the afterglows with N₂-O₂ microwave plasma. Here, it shows two distinct N species induced by the interaction of TiO₂ surface with the active species in the afterglow region. The high concentrations of O or NO in the afterglows of N₂-O2 plasmas can induce the formation of nitrate species in addition to the interstitial N species. In addition, a prolonged exposure in the early afterglow was found to induce addition N species at lower binding energies which is attributed to substitutional N species.

Fig. 1. N 1s core level spectrum of TiO₂ nanocrystals treated in the afterglow of N₂-O₂ microwave plasma showing different N species induced by different active species in the afterglow.

References:

[1] B. Li, Z. Zhao, Q. Zhou, B. Meng, X. Meng, J. Qiu, Chem.Eur. J. 20, 14763 (2014).

[2] B. Jeon, A. Kim, A. Ricard, J.-P. Sarrette, X. Yu and Y.K. Kim, Appl. Surf. Sci. 432, 163 (2018).