SO₂ adsorption on rutile TiO₂(110): An infrared reflectionabsorption spectroscopy and density functional theory study

<u>David Langhammer</u>¹, Jolla Kullgren², Pavlin Mitev², Lars Österlund¹

¹Depertment of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden

²Department of Chemistry, The Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden

David.Langhammer@angstrom.uu.se

The removal of sulfur oxide gasses from emissions is of great environmental concern. Here TiO_2 has shown to be an effective catalyst in desulfurization reactions [1]. Furthermore, the photochemistry of TiO_2 provides alternative routes for low-temperature surface reactions, and ways to modify its surface properties [2,3]. These applications all require fundamental insight into the basic surface science of the SO_2/TiO_2 system. We will present, for the first time, a study of the interaction between SO_2 and $TiO_2(110)$ using Infrared Reflection-Absorption Spectroscopy (IRRAS). DFT calculations of various binding configurations have also been carried out and the corresponding IRRAS spectra from these configurations have been obtained through simulation. This has enabled a unique interpretation of the experimental results, where a specific SO_3 -like adsorption structure has been identified. It also enables a re-interpretation of previously reported findings.

The figure below illustrates the method by which polarized IRRAS measurements can be used in combination with theoretical simulations to not only determine the chemical state of an adsorbate, but also determine its geometrical orientation and atomic coordination to the surface. This type of measurement can only be performed on single crystals in ultrahigh vacuum, which is a system that is particularly well suited for DFT modeling.

References:

- [1] Liantang Li, Jisong Zhang, Chun Shen, Yujun Wang, and Guangsheng Luo, Fuel 167, 9-16 (2016).
- [2] Zareh Topalian, Gunnar Niklasson, Claes-Göran Granqvist, and Lars Österlund, ACS Appl Mater Interfaces **4**, 672-679 (2012).
- [3] Zareh Topalian, Bozhidar Stafanov, Claes-Göran Granqvist, and Lars Österlund, Journal of catalysis **307**, 265-274 (2013).