

Cultivation of microalgae

Resource Efficient Microalgae Protein Production

Malene Lihme Olsen, DTI 27-6-19

Partly funded by the Innovation Fund Denmark (IFD) Oct 2018-dec 2022

Focus on the entire process, including storage, bio availability and safety

Integrated pilot facility at NatureEnergy Holsted

In 2019, a pilot scale cultivation system was established at DTI in Taastrup.

In 2021, a second system will be implemented at Nature Energy biogas plant in Holsted.

The final size of the systems will have a production capacity of about 180 kg and 900 kg algae protein/yr, respectively.

Pilot plant at DTI Tåstrup, phase 1

Balance between conventional agriculture and microalgae cultivation

Digestate pretreatment

- Digestate from thermophilic biogas production 52° C for 21 days
- Require separation, filtration and heat treatment 70° C

Bio prospecting

- Obtaining polycultures of local microalgae
- Isolating and screening single strains for protein production
- Working <u>with</u> the biology

Biomass productivity, summer 2019 preliminary results, DTI pilot june 2019

Biomass productivity ReMAPP strain Pbr R2: 0,207g/l/d dm 48 t dm/ha/yr 24 t protein/ha/yr Pbr R3: 0,197 g/l/d dm 46 t dm/ha/yr 23 t protein/ha/yr Yield 1 ha: 770.000 liter pbr, 300 days of cultivation.

Estimates based on cultivation during summer

Protein content vs. Protein quality

Amino acid profile ReMAPP algal protein vs. soy protein

Amino acids g/100g crude protein

*Soybean data adapted from Becker 2004 and Kong et al. 2014

Sourcol	Essential amino acids, %	Leucine, %	Lysine, %	Methionine, %
Source	total protein	total protein	total protein	total protein
Plant sources				
Spirulina ²	41	8.5	5.2	2.0
Mycoprotein ³	41	6.2	6.7	1.5
Lentil ²	40	7.9	7.6	0.9
Quinoa ²	39	7.2	6.5	2.6
Black bean ²	39	8.4	7.3	1.6
Maize ²	38	12.2	2.8	2.1
Soy ⁴	38	8.0	6.2	1.3
Pea ⁵	37	7.8	6.3	1.6
Rice ²	37	8.2	3.8	2.2
Oat ²	36	7.7	4.2	1.9
Hemp ⁶	34	6.9	4.1	2.3
Potato ²	33	5.2	5.7	1.7
Wheat ⁷	30	6.8	2.8	1.9
Animal sources				
Whey ⁸	52	13.6	10.6	2.3
Milk ⁸	49	10.9	8.6	2.7
Casein ⁸	48	10.2	8.1	2.7
Beef ⁸	44	8.8	8.9	2.5
Egg ⁹	44	8.5	7.1	3.0
Cod ¹⁰	40	8.1	8.8	3.0
Human muscle ⁸	45	9.4	8.7	2.2

ReMAPP microalgae					
average g/100g crude protein					
leucine	9,37				
lysine	5,78				
methionine	2,57				

Protein content and quality

■ N+ at harvest ■ N- at harvest

Protein content and quality

Amino acid content g/100g protein

N + (48% protein) N - (34,4 % protein)

Initial digestibility trial with rats

Four treatments:

- Untreated
- Mechanically treated
- Enzyme treated 1
- Enzyme treated 2

Next

- Further enzymatic and mechanical treatments
- Chemical hydrolysis
- Fish feeding trials
- Chicken feeding trials
- Cultivation of a 2nd algae strain

Algae harvesting and water recycling

• Flocculation, sedimentation and centrifugation

Filtration – how often?

ReMAPP in brief

✓Focus on algae protein production for feed purposes

✓Utilizes nutrient side streams from biogas industry

✓Large protein yield (15-20 t/ha/yr) with excellent amino acid profile

✓Unique robust algae culture, working *with* the biology

✓Detaches protein production from arable land area

✓Minimal impact on nature and environment

✓ Focus on the entire process, including storage, bio availability and safety

Green transition or business as usual?

References

- Becker, Wolfgang. "18 microalgae in human and animal nutrition." *Handbook of microalgal culture: biotechnology and applied phycology*. Vol. 312. 2004.
- Kong, C., et al. "Ileal digestibility of amino acids in meat meal and soybean meal fed to growing pigs." *Asian-Australasian journal of animal sciences* 27.7 (2014): 990.
- van Vliet, Stephan, Nicholas A. Burd, and Luc JC van Loon. "The skeletal muscle anabolic response to plant-versus animalbased protein consumption." *The Journal of nutrition* 145.9 (2015): 1981-1991.