Use of microalgae in salmon diets

M. Sørensen. K. Viswanath

Circular Bio-economy days 2019, June 27th.

mette.sorensen@nord.no

Content of the presentation

- Background for the commercial interest in microalgae
- Challenges related to (nutritional) quality issues
- How do we try to resolve these issues?
- How far are the new protein from the market?

World fish production from wild fisheries and Aquaculutre (FAO, 2018)

Aquaculture production in Norway

Estimated future growth of commercial aquafeed production (MMT)

Norwegian salmon farmers used 1.64 MMT of feed in 2017

Tacon and Metian. 2015

Microalgae is sustainable alternatives

SCIENTIFIC REPORTS

OPEN Marine microalgae commercial production improves sustainability of global fisheries and aquaculture

Colin M. Beal^{1,2}, Léda N. Gerber², Supis Thongrod³, Wutiporn Phromkunthong⁴, Viswanath Kiron⁵, Joe Granados², Ian Archibald^{2,6}, Charles H. Greene^{2,7} & Mark E. Huntley^{2,8}

Received: 29 November 2017

Accepted: 26 September 2018 Published online: 10 October 2018

Microalgae will become important

- PwC Seafood Barometer 2017
- Sustainable growth towards 2050
- Algae most important ingredient in salmon feed in the future

The government has a vision of Norway becoming the world's leading seafood nation

Verdiskapning basert på produktive hav i 2050 In 2012, notable scientists,

researchers and opinion leaders published a report called "value creation based on productive oceans in 2050". They have estimated that it is possible to have a six-fold increase in sales value of Norwegian marine production, by

2050. This requires, among other things, a production of salmon and trout of 5 million tonnes - almost a five-fold from today's level.1

In 2013, the Norwegian Ministry of Fisheries and Coastal Affairs released parliament report no. 22 (Meld. St. 22), where the government's vision for Norway, as a seafood nation, is detailed. The government wants Norway to be the world's leading seafood nation, and adopts the

view and vision that seafood production can be increased six-fold by 2050.2

Verdens fremste sjømatnasjon

Meld. St. 16

Historically, regulations and policies for growth, and changing governments, have shown nothing but predictability. The allocation of new licenses has been termed a "beauty contest" by the press. The government, therefore, suggested a predictable system for sustainable growth based on environmental indicators. This framework has been named «The Traffic Light System» where Norway is divided into 13 production areas and gives each area a green, yellow or red light. The new system came into effect in October 2017.3

Havbruksmeldingen

In 2014, the Norwegian Ministry of Fisheries and Coastal Affairs published parliament report no. 16 (Meld. St. 16), presenting their view on how vision 2050 can be reached. Global demand for salmon increases, but production growth has stagnated due to sustainability challenges.

55.6% of leaders in the industry believe algae will be the most important ingredient in salmon

feed in the future.

PwC's Point of View:

After solving the short term issues regarding lice and lice treatment. the next big challenge to overcome is where and how to find sustainable feed ingredients with the for salmon.

We believe that the salmon feed in 2050 will still have a high share of plant based ingredients, but with a significant share of algae and a small share of by-products. The share of traditional fish oil and meal will continue to fall

Fish oil alternatives:

DOCTOR FUN

9 Nov

Yet another unauthorized experiment in genetically-modified food

Microalgae research at Nord University

2009-2011: Defatted microalgae from biorefinery as aquafeeds

2012-2015: Large-Scale Production ofFuels & Feed from Marine Microalgae2017-2020: Marine Algae IndustrialisationConsortium

2014-2018: Bioteknologi - en framtidsrettet næring

cellana

2016-2020: Alger4laks

2017-2021: Algae to Future

Funding

S

At Nord University we perform research to investigate the potential of different microalgae – both whole cells as well as defatted biomass as fish meal replacer in diets for Atlantic salmon

Challenge 1: Chemical composition vary among microalgae

The most abundant microalgae divisions: Chlorophyta (green algae), Bacillariophyta (diatoms), and Chrysophyta (golden algae).

Universitv

Microalgae can be
good sources of protein and lipids

Protein: >60% (e.g. *Chlorella, Spirulina*) Lipid: >50% (e.g. *Nannochloropsis, Schizochytrium*)

Microalgae also contain functional or bioactive components that have potential to provide an additional health benefit in aquafeeds

Microalgae	Moisture	Protein	Lipid	References
Nannochloropsis oceanica	5.1	45.3	8	Skrede et al. (2011)
Nannochloropsis	9.1	29	51.3	Ju et al. (2009)
Nannochloropsis gaditana	3	52.5	15.5	Teuling et al. (2017)
Phaeodactylum tricornutum	3	47.5	7.2	Skrede et al. (2011)
Isochrysis galbana	11.2	17.8	14.4	Skrede et al. (2011)
Nannochloropsis + Isochrysis	9.2	42.1	18.2	Walker and Berlinsky (2011)
Scenedesmus dimorphus	5.1	40.7	8.1	Teuling et al. (2017)
Nanofrustulum sp. (defatted)	3.15	11.9	3.1	Kiron et al. (2012)
Thalassiosira weissflogii	15.2	18.3	12.9	Ju et al. (2009)
Tetraselmis sp.	10.8	27.9	3.8	Kiron et al. (2012)
Tetraselmis suecica	5.9	45.8	7.5	Cardinaletti et al. (2018)
Tisochrysis lutea	10	41.7	23.4	Cardinaletti et al. (2018)
Spirulina sp.*	17.8	61.3	5.5	Sarker et al. (2016)
Spirulina sp.*	9.9	53.5	2.6	Safari et al. (2016)
Arthrospira maxima*	9.6	72	5.6	Teuling et al. (2017)
Chlorella vulgaris	5.9	63.5	10.3	Teuling et al. (2017)
Chlorella sp.	5	54.5	9.4	Sarker et al. (2016)
Chlorella sp.	7.4	47.4	7	Shi et al. (2017)
Schizochytrium sp.*	3.5	11.9	54.1	Sarker et al. (2016)
Schizochytrium sp.*	1.6	13.2	61.4	Kousoulaki et al. (2016)
Haematococcus pluvialis	-	10	42	Barros et al. (2012) University

Chemical composition (in DM) for some microalgae (own research)

Ingredient	Protein, %	Lipid, %	Carbohydrates, %	ash, %	Gross energy, Mj/g
Fish meal	70	9.7	-	14.7	20.1
Whole cell					
Scenedesmus sp.	45.7	9.1	15.6	8.3	14.9
Tetraselmis	23.7	6.4	17.4	33.1	n.a.
Nannochlorpsis	37.7	14.7	9.7	23.5	n.a
Phaeodactylum tricornutum	49.0	7.37	24.8	15.8	n.a
Defatted biomass					
Nannochlorpsis sp.	43.1	2.6	n.a	23.5	19.0
Desmodesmus sp.	30.4	1.1	n.a	18.0	18.7

Amino acid composition of some microalgae

g/100 g protein	Fishmeal	Isochrysis	Nanofrust ulum	Nanno- chloropsis	Phaed- actylum	Scene- desmus	Tetrea- selmis	Schizo- chytrium
Arg	3.7	2-6	6	2-8	6	6-7	6-9	1-12
His	1.4	1-3	1	1-3	2	2	1-2	1-3
lsoL	2.5	1-5	4	1-6	5	4-5	3-4	1-3
Leu	4.5	3-9	7	5-11	7	9	7	1-6
Lys	4.7	2-6	7	3-8	6	5-6	6-7	1-4
Met	1.8	1-3	2	1-3	3	2	2	1-10
Phe	2.4	2-6	4	2-6	5	5-7	5	1-3
Thr	2.5	2-5	5	4-6	5	6	4-5	1-3
Тгур	0.7	1-3	1	1-4	3	1-2	1-2	1-2
VAI	2.7	2-6	5	3-7	5	6	5	1-5
								Unive

Potential of defatted biomass of *Nannochlorpsis* sp. and *Desmodesmus* Sp.

Investigate effects of different inclusion level on

- Digestibility of biomass
- Growth performance
- Digestibility of feeds
- Health and welfare

Principles for formulation of experimental diets to calculate ingredient digestibilities

➤The reference diet (basal diet) was a fish meal-based diet formulated to meet or exceed nutritional requirements of Atlantic salmon (NRC 2011).

Digestibility of defatted microalgae

Note: * means significant differences (P < 0.05), NS means no significant differences

Results are published in Gong et al., 2018. Aquacult. Nutr.

Apparent digestibility of feeds with Nannochlorpsis sp.

NORD University

Results are published in Sørensen et al., 2017 PLOS ONE

Growth performance replacing fish meal with Nannochloropsis (defatted)

Nannocloropsis in fish feed has a positive effect on pigmentation

The potential of *Scenedesmus* sp. to supply both protein and lipid in the diet

Protein mix: Soy protein concentrate, pea protein concentrate, potato protein concentrate, wheat gluten, corn gluten

em ana npra	ALL AND	Min Contraction		
	Control	SCE 10	SCE 20	
	Cont	SCE 10	SCE 20	
Fishmeal	10.00	5.00	2.50	
Scenedesmus sp.	0.00	10.00	20.00	
Protein mix	51.50	50.40	46.75	
Wheat meal	14.50	11.00	7.65	
Fish oil	10.00	9.80	9.55	
Rapeseed oil	10.00	9.80	9.55	
Vitamin & Mineral Premix	1.00	1.00	1.00	
Amino acids + additives	3.98	3.98	3.98	
Yttrium oxide	0.02	0.02	0.02	
			University	

Protein and energy digestibility

University

Results

Whole body fatty acid composition

	Cont	SCE10	SCE20	Р
n-6 FAs				
C18:2n-6	13.95 ± 0.17^{a}	14.54 ± 0.42^{b}	14.28 ± 0.21^{ab}	0.010
Σn-6 FAs	14.26 ± 0.26^{a}	$14.88 \pm \mathbf{0.38^{b}}$	14.64 ± 0.21^{ab}	0.008
n-3 FAs				
C18:3n-3	$4.48\pm0.29^{\rm a}$	5.18 ± 0.71^{b}	4.88 ± 0.25^{ab}	0.050
C20:5n-3 EPA	2.91 ± 0.15	3.58 ± 0.76	3.24 ± 0.21	0.070
C22:6n-3 DHA	8.19 ± 0.30	8.22 ± 0.34	8.65 ± 0.48	0.097
Σn-3 FAs	$15.58 \pm 0.55^{\mathrm{a}}$	16.97 ± 1.22^{b}	16.77 ± 0.89^{ab}	0.041

Challenge 2: Rigid cell walls

Main challange for utilization of microalgae in carnivore fish: Rigid indigestible cell walls

ANIMAL VS. PLANT CELLS:

No Cell wall

No Chloroplasts

Plant cell

Cell wall

Chloroplasts

Scalable effective methods for improving digestibility and utilization of microalge in carnivore fish diets?

Scalable effective methods for improving digestibility and utilization of microalge in carnivore fish diets?

- Pelleting vs Extrusion
 - Addressed in project Large-Scale Production of Fuels & Feed from Marine Microalgae. Published in Gong et al. 2017
- Extrusion vs double extrusion
 - Addressed in the COFASP/NRC funded Alger4laks. Publication in progress
- Bead milling as pre-treatment
 - Addressed in the NRC funded project Algae to future (A2F)

How far is the new protein from the market?

MDPI

Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand

Douglas R Tocher ¹,*, Monica B Betancor ¹, Matthew Sprague ¹^(D), Rolf E Olsen ² and Johnathan A Napier ³

Nutrients 2019, 11, 89

					C	Compositio	n ^a		
							Total n-3 LC-PUFA		
Product	Development Partners	Source	Туре	Lipid Content ^b	EPA °	DHA °	% of TFA ^d	% of Product	R
AlgaPrime [™] DHA	Corbion (TerraVia/Bunge) ^e	Microalgae	Algal biomass	60	0	48	48	28	
DHAgold™	DSM Nutritional Products	Microalgae	Algal biomass	49	1.0	44.4	45.8	22.5	
DHA Natur™	ADM Animal Nutrition	Microalgae	Algal biomass	50-60	0.25	34	34.3	17.2-20.6	
ForPlus TM	Alltech Coppens ^f	Microalgae	Algal biomass	61	0.3	29	29.3	17.9	
Nymega™	Heliae Development ^g	Microalgae	Algal biomass	65	~0.1	20	~31	21	
Veramaris [®] Oil	Veramaris ^h	Microalgae	Oil	100	~16	~34	~54	~54	
Camelina sativa	Rothamsted Research/UoS	GM camelina	Oil	100	20	0	24	24	
Camelina sativa	Rothamsted Research/UoS	GM camelina	Oil	100	9	11	28	28	
Latitude™	BASF/Cargill	GM canola	Oil	100	7	1	12	12	
Aquaterra [™] /Nutriterra ^{™ i}	CSIRO/Nuseed/GRDC	GM canola	Oil	100	0.5	10	12	12	
Yarrowia lipolytica ^j	DuPont	GM yeast	Yeast biomass	~50	~50	0	50	25	

Table 1. Summary of the origins and compositions of some potential new sources of EPA and DHA.

To summarize

- Challenges related to (nutritional) quality
 - Low or variable nutrient composition
 - Cell walls reduce digestibiilty
- How do we try to resolve these issues?
 - Disruption of cell walls
- How far are the new protein from the market?
 - Some microalgae are already being used
 - Low quantity
 - Expensive

Thank's for your attention

Picture Source: ProAlgae project: Industrial production of marine microalgae as a source of EPA and DHA rich material in fish feed – Basis. knowlege status and possibilities

