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INTRODUCTION TO THE PROCEEDINGS OF ICTMT 15 

Raimundo Elicer1, Uffe Thomas Jankvist1, Alison Clark-Wilson2, Hans-Georg Weigand3 and 
Marianne Thomsen1,4 

1Aarhus University, Danish School of Education; raimundo@edu.au.dk, utj@edu.au.dk 
2University College London; a.clark-wilson@ucl.ac.uk 

3Julius-Maximilians-Universität of Würzburg; weigand@mathematik.uni-wuerzburg.de 
4University College Copenhagen; mart@kp.dk 

FACTS AND FIGURES 
The Fifteenth International Conference on Technology in Mathematics Teaching (ICTMT 15) took 
place on September 13–16, 2022, in the Danish School of Education, Aarhus University, located on 
campus Emdrup, in the Northwestern district of Copenhagen, Denmark. There were a total of 66 
participants from 15 different countries. 

The scientific programme consisted of plenary lectures, paper sessions, a poster session and hands-
on workshops. The four plenary lectures related to each of the four themes of the conference. Thirty-
one papers were presented and discussed throughout the week. The poster session included eight 
contributions. Furthermore, participants had the chance to join one or two of the 11 workshop 
activities. 

The conference also included a rich social programme in the city of Copenhagen. On Monday, 13 
September, the poster session was accompanied by a wine reception sponsored by Maplesoft. On 
Tuesday, 14 September afternoon, participants went for a walk-and-talk near campus, leading to a 
visit to Grundtvig’s Church. The conference excursion was a bus and ferry tour combo throughout 
the streets and canals of Copenhagen on Wednesday, 15 September. The trip’s last stop was 
Christianshavn, within walking distance of the conference dinner venue, namely the restaurant 
Spiseloppen, located in the free town Christiania. 

CONNECTIONS AND CONNECTIVITY 
ICTMT 15 certainly focused on the impacts that the coronavirus pandemic has had on global 
mathematics education. However, it looked at the impacts of digital technology from a much wider 
perspective. In particular, the conference aimed to highlight how technology facilitates the multiple 
“Connections and Connectivity” between us all to achieve the goals of purposeful mathematics 
education in the early 21st century. 

By “Connections” we mean the interrelationships between researchers, teachers, students, parents, 
policymakers, and industry (big and small). “Connectivity” includes oral, aural, textual and gestural 
communications as mediated by the internet, learning environments and classroom activities. 
Together, “Connections and Connectivity” describes the relationships between people, between 
different ideas and strategies to teach, and between people and environments. It offers a frame through 
which to interpret assessment in mathematics education as a more formative process from the point 
of view of both teachers and students. 

Within the overarching frame of “Connections and Connectivity”, the conference concerned four 
themes that give structure to these proceedings and which we describe in the following paragraphs. 
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Designing technology 
The first theme addressed the design of technology for mathematical learning and its assessment—a 
focus on theoretical or actual ‘designs’ with contributions from researchers, industry and teachers. 

Chronis Kynigos gave his plenary lecture situating concrete digital tool designs within strong 
theoretical underpinnings of post-normal science. He challenges the role of mathematics and 
mathematics education in a world surrounded by wicked problems. As a response, his talk focuses on 
“Choices with consequences” (ChoiCo), a digital tool where students have the chance to grapple with 
mathematical aspects inside socio-scientific games. 

Some contributions to this theme reported students’ experiences as part of the design of digital 
learning environments for engaging with mathematical ideas. Some examples are: the case of an 
algebraic modelling web tool for relational thinking (Oldenburg), a computer-based learning 
environment for mathematical modelling (Frenken), metaphor-based animations for algebra (Bos & 
Renkema) outdoors and home versions of an applet for math trails (Jablonski et al.; Larmann et al.), 
an applet for preformal proving (Platz), and error-inducing interactive videos (Schirmer et al.). Some 
had a particular focus on feedback, by making sense of it in a multimodal algebra learning system 
(Reid et al.) and producing it semi-automatically for handwritten tasks (Moons & Vandervieren). 

Others focused on designs of mathematical tasks making use of digital tools. These included tasks 
using GeoGebra’s algebra view (Gregersen), silent video tasks (Kristinsdóttir et al.), tasks for 
integrating programming and computational thinking (Elicer & Tamborg), and creative tasks with 
digital-media (Diamantidis & Kynigos). 

Making sense of ‘classroom’ practice 
The second theme aimed at making sense of ‘classroom’ practices with and through technology—a 
focus on the work of teachers and lecturers, where the classroom might be geographically located or 
mobile. Again, contributions could be both theoretical and practical. 

In her plenary lecture, Anna Baccaglini-Frank set the scene in the distance-teaching context in Italy 
resulting from the Covid-19 pandemic. She re-examined Ruthven’s (2012) claim that technologies 
“are not strongly framed in didactic terms (…); nevertheless, in practice, they are often appropriated 
to a reproductive didactic” (p. 629). In that sense, she challenged the theme by advocating for a shift 
from teaching mathematics with technology to teaching mathematics through technology. 

In this theme, most contributions focused on the role of digital technologies for different purposes of 
students’ development, including the mathematical thinking competency (Thomsen & Jankvist; 
Pedersen), the notion of STEAM (Ferrara et al.) and Allgemeinbildung (Johansen). 

Some authors looked at how technologies can prompt issues of classroom practice, such the effect of 
digital textbooks in the gender gap (Brnic & Greefrath), graphing calculators in connecting geometry 
and functions (Subtil et al.) and computer algebra systems in conjecturing and proving theorems 
(Szücs). 

Another group of contributions focused on mathematics teachers’ interactions with new technologies. 
Two studies took a professional development perspective concerning the inclusion of computational 
thinking (Nøhr et al.) and pre-service teachers’ experiences at an online school (Tunç-Pekkan et al.). 
Another two studies zoomed into the orchestrating role of teachers mediated by a videogame (Vilchez 
& Lemmo) and a distance learning context (Faggiano & Mennuni). 



 

ICTMT 15 Copenhagen 9 

 

Fostering mathematical collaborations 
The third theme was concerned with the fostering of mathematical collaborations with and through 
technology—a focus on the communications aspect of technology, including assessment strategies. 

Shai Olsher positioned his plenary talk as a concrete application of topic-specific learning analytics 
to foster collaborations between students through technology. By focusing on geometrical example-
eliciting tasks, his research group defined automatic assessment-based recommendations for grouping 
students with different pedagogical purposes. His study displays content-informed group categories 
and implications for teaching. 

Some contributions focused on connectivity issues, such as a platform for online teacher education 
(Tunç-Pekkan et al.), modularised mathematics courses for engineering (Kiliç et al.) and heuristic 
worked example videos in a collaborative setting (Wirth & Greefrath). Other contributions were 
centred on particular mathematical communicative aspects mediated by digital tools, including 
handwriting in tablet-computers with smartpens (Schüler-Meyer), and digital geometry environments 
(Bach & Bikner-Ahsbahs). 

Innovating with technologies 
The fourth theme dove into innovating with technologies for mathematical learning—a focus on 
highly innovative approaches in the early stages of development for constructive critique by the 
community. 

As a sharp example of such innovations was given by Dan Meyer in his plenary presentation entitled 
“Pixels are pedagogy”. Joining us virtually from California, he introduced the platform Desmos as a 
way of questioning two common beliefs; namely, that mathematics is a purely objective discipline 
and that technology is a morally neutral actor. The speaker described the pedagogical decisions that 
underpinned the design of the platform by enabling the audience to experience it first-hand. 

Some contributions to this theme focused on digital learning environments for mathematical 
modelling (Frenken & Greefrath), linear functions (Barana) and deductive geometry (Ballin & 
Kouropatov). Others discussed how state-of-the-art technologies and constructs intertwine with 
mathematics teaching and learning, here among mobile devices (Ludwig et al.), virtual and mixed 
reality (Dilling & Sommer), data science (Podworny & Fleischer), machine learning (Fleischer & 
Podworny), computer-aided assessment (Fahlgren et al.; Klingbeil et al.), and programming and 
computational thinking (Tamborg et al.). 

THE ICTMT SERIES 
This biennial conference began in Birmingham, UK, in 1993, under the influential enterprise of Bert 
Waits from Ohio State University. The previous instance was held in Essen, Germany, in 2019. 
ICTMT 16 is set out to be organised and take place at the National and Kapodistrian University of 
Athens, Greece. 

REFERENCES 
Ruthven, K. (2012). The didactical tetrahedron as a heuristic for analysing the incorporation of digital 

technologies into classroom practice in support of investigative approaches to teaching 
mathematics. ZDM Mathematics Education, 44(5), 627–640. https://doi.org/10.1007/s11858-011-
0376-8 
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Theme 1: Designing Technology 
for mathematical learning and its assessment 
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EMBEDDING MATHEMATICS IN SOCIO-SCIENTIFIC GAMES: THE 
CASE OF THE MATHEMATICAL IN GRAPPLING WITH WICKED 

PROBLEMS 

Chronis Kynigos  

Educational Technology Lab, Dept. of Educational Studies, School of Philosophy, National and 
Kapodistrian University of Athens and Linnaeus University; http://etl.eds.uoa.gr; 

kynigos@eds.uoa.gr   

This paper discusses the ways in which digitally enabled transformation in mathematics education 
could envisage a role for rationality in post-normal science and wicked problems. The scene is set 
firstly by reviewing the ways in which digital media have been designed and used in transformative 
mathematics education as a rationale for thinking about such media for wicked problem education. 
The problem is set in epistemological terms, can normal science approaches contribute to post-
normal science. Taking into account the basic arguments regarding wicked problem education, I 
focus on the discussion of a specific constructionist digital tool called ‘ChoiCo: Choices with 
Consequences’, designed to embed mathematical ideas, facilitate mathematical reasoning, yet be 
about grappling with wicked problems. The final section discusses student discourse to set the scene 
for what such reasoning might look like in the context of grappling with wicked problems. 

Keywords: Digital media, post-normal science, wicked problems. 

WICKED PROBLEMS AS A CHALLENGE FOR TRANSFORMATION IN 
MATHEMATICS EDUCATION 

In recent times, every one of us feels exposed to wicked problems, those universal ill-defined, 
controversial, complex, value-laden socio-scientific issues such as the pandemic and climate change. 
Our society is replete with individual and shared stress, denial and inertia, ultimately leading to 
exponential augmentation of risk for wide-ranging consequences. In Europe, at least, there is a push 
for educational transformation aiming to provide students with experience in grappling with such 
issues in a knowledgeable contributory way. In this paper, I discuss the potential role for using digital 
media to engage in rationality and mathematical thinking as a means of grappling with such issues. 
Pedagogical transformation is not new to mathematics education, albeit in different ways. So, could 
mathematical rationality in handling wicked problems be one of the transformation avenues worth 
addressing in mathematics education? 

It has now been 50 years since Papert introduced the idea of fundamentally changing students’ 
experiences with mathematical reasoning through the use of digital media to express, explore and 
generate mathematical meaning (Papert, 1972). The need for transformation in mathematics 
education has since then been widely argued from many angles beyond the advent of digital 
technologies. It has been generally portrayed as a need to move away from overbearing ‘visiting the 
works’ paradigms, as Chevallard (2012) would put it, where students are typically exposed to abstract 
mathematical truths in a rigid, control-oriented, time-bound setting aiming to strengthen their ability 
to respond to specially pre-designed tasks (Riling, 2020). Instead, the push has been to find ways to 
provide students with agency (Andersson & Norén, 2011), with experiences in mathematical 
reasoning for themselves, for meaning-making in personally relevant individual and discursive 
settings and digital media have been perceived as powerful tools to that end (Noss & Hoyles, 1996) 

[1]. This powerful way in which learners use digital media to structure mathematical knowledge-in-
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use has been well researched and established as a goal and a challenge for transformation in 
mathematics education (Noss & Hoyles, 2017).  

From an epistemological point of view, it is not the nature of mathematics that has been challenged 
but rather the ways in which the practice of mathematicians has been understood and communicated. 
Mathematical epistemology has not been fundamentally debated. Mathematics has been deservedly 
perceived as the ultimate scientific endeavor; it is the field where reasoning comes from, where rigor 
comes from, where the ability to make connections, to deduce and to prove, to generalize, to be 
certain, or to gain accuracy and develop a sophisticated language about uncertainty. This is a science 
where we know when something is true, and we question whether something is true in very rigorous 
ways (Davis & Hersh, 1981).  

The transformation sought has thus to do with education, not the scientific paradigm. It is to provide 
learners with the opportunity to experience what it means to do mathematics, the same kind of 
experience mathematicians themselves go through. Mathematicians expose ideas and propositions to 
peer scrutiny and refutation attempts. They thus perceive mathematical ideas to be fallible, and only 
the ones which survive this scrutiny remain as mathematical certainty (Davis & Hersch, 1981; 
Lakatos, 1976). This means that most of the time they spend scrutinizing ideas by others or having 
their own ideas put in the frying pan so to speak. The scrutiny process is a fundamental part of doing 
mathematics, and transformational approaches in mathematics education argue that learners should 
be given much more space to engage in this kind of process.  

Recently, however, and importantly highlighted by the era of the pandemic, we have realized that 
what has hit each of us in our society and everyday life is the engagement, pre-occupation and 
involvement at a personal level not with clean, potentially solvable, mathematical problems but with 
very complex issues and problems that are around us: climate crisis, sustainability, sustainable cities, 
pandemics, personal diet combining health and well-being. These kinds of issues do not really have 
a solution in them, and there is not any clever way in which we can find the way to deal with them, 
nor can we find how to cope with them and get rid of them in the end. Even though mathematicians 
produce endless models of such complex situations, none of them really explains the respective 
phenomenon in any comprehensive, resolving way. So, at the individual and social citizen level, what 
is required is that we become a little less stressed about these issues. How can we learn, as citizens, 
to grapple with them in order to survive within contexts where these issues apply. And how can 
mathematical reasoning and scrutiny maintain and enhance its perceived value in situations where it 
could play an important yet not primary role regarding the issues at hand.  

In this paper, I address a question which I believe should be put to the mathematics education 
community: 

• Is there a role for mathematics and mathematical thinking in coping with complex, 
contentious, socio-scientific issues?  

• If yes, how can digital media be designed and used to introduce mathematical thinking and 
rationality in addressing and grappling with such issues? 

• How can we think of pedagogical mathematical transformation with digital media to include 
grappling with wicked problems?  

Such issues have played a central role in creating big currents pushing for change that affect 
educational systems in Europe and around the world. They have been connected to the ideas of 
cultivating 21st-century skills and action competence. Mathematics education researchers have 
connected those kinds of skills—such as creativity, computational thinking, collaboration and 
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communication, problem posing and solving—to mathematical reasoning. At the same time, however, 
the push for educational reform has originated from much wider educational and societal perspectives 
and is a part of the European strategy for education and equity. The EU strategic plan for 2021–2024 
is oriented towards the twin green and digital transitions for a sustainable, fair and more resilient 
economy and society (European Commission [EC], 2021). The development of a high-performing 
education ecosystem through the digital transformation of educational paradigms is also one of the 
core goals of the EU Education Action Plan for 2021–2027 (EC, 2020) and of UNESCO’s Education 
2030 Framework for action. 

So, is there a role for us as a mathematics education community to contribute to this wave of change, 
or is it better that we stay on the side in the hope that our siloed domain of mathematics and its beauty 
will remain and be respected as in the previous century? In other words, is there a role for 
mathematical thinking and rationality in post-normal science? If yes, what kind of digital media can 
be used for expressing mathematical reasoning while grappling with wicked problems? How can we 
design for added pedagogical value based on their use? 

The following three sections provide a background to carefully address these questions. First, the 
ways in which digital media have been designed and used in transformative mathematics education 
are analyzed as a rationale for thinking about such media for wicked problem education. The next 
two sections set the ground with respect to epistemology, how can normal science approaches 
contribute to post-normal science. The third then sets the scene and basic arguments regarding wicked 
problem education. What follows is the description of a specific constructionist digital tool called 
‘ChoiCo: Choices with Consequences’, designed to embed mathematical ideas, facilitate 
mathematical reasoning, yet be about grappling with wicked problems. The final section discusses 
student discourse to set the scene for what such reasoning might look like in the context of grappling 
with wicked problems. 

DIGITAL MEDIA AS TOOLS TO TRANSFORM MATHEMATICS EDUCATION  
Let us, in this section, look a little more deeply at the ways in which digital media have been perceived 
and designed to bring added pedagogical value in transforming mathematics education paradigms to 
cultivate mathematical reasoning (Bray & Tangney, 2017). Researchers seem to agree that there is 
particular value in digital media being used by students as tools with which to engage in mathematical 
reasoning, in putting mathematical concepts and ideas to use, in mathematical discourse and 
expressivity. When we have classrooms where students are given space to develop their own ideas 
and to work with these tools, we can see that the mathematical meanings that they develop and 
construct are unavoidably connected to the tools that they use. Researchers have witnessed this kind 
of reciprocal shaping of meanings and tools when mathematics is put to use to create and change 
mathematical models and representations (Noss & Hoyles, 2017; Artigue, 2012). The pedagogical 
value in meaning-making has been considered as important enough so as to address the connection 
between those meanings and the abstract curricular mathematical concepts as a necessary educational 
task in the context of students having built a positive disposition towards and experience with 
mathematical reasoning. 

As learners create models and representations with these tools, they progressively create ‘schemes of 
action’ as Vergnaud (2009) would put it, i.e. individual and shared meanings of a tool’s functionality 
and kinds of use together with the kinds of mathematics cultivated during such use. Thus the key 
aspects of focus in designing such tools and envisaging their usage are:  

• Mathematical expression, augmenting the representational repertoire and interdependencies  



 

ICTMT 15 Copenhagen 14 

 

• Engagement with mathematical thinking 

• Putting concepts to use  

• Reciprocal shaping, instrumentalization, constructionism and creativity  

 
The task is to generate environments that are rich in opportunities for meaning-making, to perceive 
digital artifacts as media for expressing mathematical meaning, to access powerful mathematical 
ideas that are otherwise difficult or obscure with pencil and paper or with other representations and 
to engage teachers in taking part in the design of pedagogically added-value activities. The main 
concern in looking for pedagogical added value is thus connected to designing for innovation to adopt 
a transformative stance to education. The main thrust in this approach questions the way that 
mathematics is perceived and taught and the way that curricula are structured and looks for ways in 
which we can use technology within a transformation process. As researchers, we focus on 
technology for expression and meaning-making and we are developing theory on meaning-making 
processes and on teachers’ knowledge and teachers’ practices. Our main concerns have thus been to: 

• generate environments rich in opportunities for mathematical meaning-making (Papert, 
1972); 

• perceive digital artefacts as expressive media for mathematical meaning-making, a new 
literacy (Noss & Hoyles, 1996); 

• access powerful mathematical ideas otherwise obscured by traditional methods of expression 
(diSessa, 2000; Willensky & Papert, 2010); 

• engage teachers in designing added-value media and activities and dealing with professional, 
institutional and societal traditions so as to generate such environments in the classroom 
(Ruthven, 2014); and 

• develop media that is specially designed for questioning traditional practices and doing 
something different.   

 
At the Educational Technology Lab we have been adopting a transformational approach by designing 
and using media for teachers and students to in turn design and tinker with models and 
representations. Over a period of more than 25 years, we have been engaged in design research to 
illuminate mathematical processes in respective educational practices and to contribute to the 
development of a ‘framework for action’ theory helping to both design and understand meaning-
making (diSessa, & Cobb, 2004). In this venture, we found it most useful to combine and integrate 
diverse theoretical constructs, having been greatly influenced by our participation in the TELMA, 
ReMATH and M C Squared European Research projects whose main aim was precisely to forge 
connectivities amongst constructs lying in fragmentation on a ‘theoretical landscape’, to use Artigue’s 
terms (Artigue & Mariotti, 2014). Our particular objective was not the practice of creating such 
connections per se but instead of considering how to best try to make sense of the environments we 
designed and studied. So, we found these particular four constructs, albeit widely diverse, to be 
pivotal in our approach. 

1. Conceptual fields (Vergnaud, 2009) 

2. Restructurations (Willensky & Papert, 2010) 
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3. Half-baked artefacts (Kynigos, 2008) 

4. Reciprocal shaping of meaning and tool (Hoyles et al., 2004) 
 

We found Vergnaud’s idea of conceptual fields centrally useful in the sense that, for mathematics 
education, it diverts priority from a mathematical concept to be ‘learned’, to all that makes it useable 
and communicable. To think, i.e., of a concept in educational design, it is necessary to place it in the 
center of a dense circle of related concepts and a set of representations that become the basis for 
resolving a set of problem situations. So, in education, this is the way we should be thinking. We 
should not be thinking of whether students learn how to factorize or learn how to solve a quadratic 
equation, but rather of situations resolvable by dense sets of concepts around a central one.  

Restructurations is the exercise of questioning the structure of the curriculum and the kinds of 
mathematics to best approach mathematical problems. The current curriculum structures have been 
decided, established and fixed in historical time before the advent of digital media and even before 
the advent of mathematics education research, for that matter. But mathematics is the discipline 
characterized by fluidity in the ways in which it makes sense to build structures; its nature is such 
that you can portray mathematical concepts in a very large number of different alternative structures. 
So now that we have technologies and we live in the technology world, it is time to rethink about 
what kind of structure of mathematical concepts is now amenable for children to engage in 
mathematical thinking with these tools. Imagine, for instance, a section on ‘curvature’, on periodicity, 
on rate of change, inflation, compound interest and approximation combined, on mathematical 
complexity, on gaming theory. Ask the question: which mathematical structures are good spaces for 
students to engage in meaning-making and mathematical reasoning, given digital media?   

Half-baked artifacts; well, this is didactical design, or rather, engineering. It is when, from a 
pedagogical point of view, students are given problems, models or representations that are incomplete 
or have faults in them and then invited to identify and correct them. Behind this, there is the 
epistemological idea of fallibility, the idea of questioning and the idea of not perceiving mathematics 
as a game of absolute truths but perceiving mathematics as a field where reasoning and questioning 
prevails. 

So, the main concerns of the research community at large, and of our Educational Technology Lab, 
have seen mathematics as useable intellectual processes and traits in diverse situations. Educational 
transformation in mathematics education has perceived digital media as a pivotal tool and digital 
transformation in society as the global situation in which this educational transformation may start to 
materialize. In this wake, mathematics curricula and curricular structures have come into scrutiny, 
asking the question: what kinds of structures can operate as fertile fields within which learners can 
develop mathematical reasoning. With respect to digital media, mathematical reasoning has been 
connected to constructionism, a kind of discursive low-stakes tinkering-style engineering co-evolving 
with computational thinking skills and competences. However, still in all cases, the mathematics 
education research community has understandably perceived mathematics as the priority and the end 
target. The situations, the tools and the restructurations have been a means to an end.  

NORMAL VS POST-NORMAL SCIENCE 
The problem is with normal science. Scientists are perceived by the wider society with diminishing 
credibility and relevance, as people who will give you facts and truths that are not so relevant when 
you think of the issues at hand. So what happens? So how else can we think of science? Well, recently, 
there has been a movement termed ‘post-normal science’. It addresses complex issues of our time 
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where disciplinary fragmentation and traditional scientific conduct appear to lack the necessary 
capacity to allow an integrated understanding of the issues. Transmitting simple truths does not help 
policy makers, and that does not help citizens and the individuals. We need to draw on 
epistemological principles that recognize uncertainty and develop ways of dealing within uncertainty, 
within value-laden agency. 

Most current science thinking and research, centrally including mathematics, has been built on 
epistemological assumptions developed along the deliberate aim to moderate complexity and 
minimize uncertainties in the world so that problems and issues can be ultimately modeled. These 
‘normal science’ paradigms (Kuhn, 1962), supported by appropriate conceptual modes of 
representing reality and specialized codes for studying it, narrow down the focus of their enquiry 
within the boundaries of specialized disciplinary fields such as mathematics to address attentively 
defined (but eventually simplified) ‘problems’, with the intent to generate valid and generalizable 
evidence-based knowledge to feed decision-making. However, when it comes to complex issues of 
our time, disciplinary fragmentation and traditional scientific conduct as encouraged by ‘normal 
science’ seem to be lacking the necessary capacity to allow an integrated understanding of the issues. 
Moreover, transmitting simple truths to policy making is rather inadequate when dealing with multi-
faceted issues carrying a great degree of uncertainty (Heazle, 2012). There are many open questions 
as to how science can contribute to fostering social innovation and change in as many social groups 
as possible, rather than providing only expert-based knowledge to policy makers. This is particularly 
the case with, for example, current crisis and sustainability challenges, recognized as complex, 
controversial, and value-laden issues by nature and, therefore, difficult to be dealt with in mono-
disciplinary ways. Complexity stems from their multi-faceted character and the requirement to apply 
various perspectives to grasp them more holistically. Different interpretations may lead to different 
implementations based on the context and the situation. These features render such wicked problems 
difficult for normal scientific practice to address and deal with. To counteract these shortcomings, 
‘post-normal science’ has emerged as an alternative paradigm of scientific enquiry and knowledge 
(Funtowicz & Ravetz, 1993). Drawing on epistemological principles that recognize uncertainty, 
value-laden agency, and context-specificity as intrinsic attributes of the contemporary, post-normal 
science promotes transdisciplinary approaches to framing and studying current complex issues and 
gaining an understanding of the world. Global crises, pandemics and sustainability issues are among 
those most characteristic examples the understanding of what necessitates the application of post-
normal lenses and processes, such as the co-creation of diverse types of knowledge, the employment 
of participatory methods, designs, and tools, that facilitate the emergence of multiple representations 
and reflection to take place. 

WICKED PROBLEMS AND WICKED PROBLEM EDUCATION 
Consider the role of schooling to inspire lifelong citizen engagement with ‘wicked’ problems that can 
contribute to a democratic, socially engaging sustainable development practice, where experts and 
various groups of citizens with different perspectives engage in a dialogical inquiry on a complex, 
fuzzy, multi-faceted, contentious issue, such as sustainable living. This kind of issue has been called 
‘a wicked problem’, i.e., a dysfunctionality within a complex system (Conklin, 2006). Wicked 
problems are difficult to contain and structure, are interconnected and interdependent, are ill-defined 
and dynamic as their parameters are continually in flux (Rittel & Webber, 1973; Coyne, 2005). 
Individuals often feel overwhelmed, develop denial and resignation to such a problem, followed by 
inertia due to a sense of determinism, which permeates societies (Lazarus, 2009; Hulme, 2009). Yet 
wicked problems need action at many levels, present inertia risks and exponential growth of the 
problem and its consequences at high stakes (Brown et al., 2010). For the individual, it is important 



 

ICTMT 15 Copenhagen 17 

 

to engage in becoming sensitive and knowledgeable on the problem and to also engage in actions 
such as taking care of individual footprint, challenging own actions, beliefs and habits, being 
interested not only in individual action but also in contributing to collective action at a level of the 
city or municipality (Cantor et al., 2015). A paradigm shift is needed, from solving well-defined siloed 
problems to a post-normal science approach (Lehtonen et al., 2019). So, consider a transformational 
stance to schooling in an attempt to integrate such a post-normal science approach in teaching and 
learning, addressing and perceiving students as young citizens (McLaren, 2013). Consider the 
challenge of harnessing wicked problem education to become syntonic and integrated with the 
innovative educational push towards cultivating the eight key competences for lifelong learning.  

• Agency, ability to make own decision, challenge not set by another (Kynigos & Diamantidis, 
2021)  

• Action-in-context, when the context is not necessarily about mathematics in school  

• Beyond silo disciplinary approaches 

• Beyond timed, solvable, regulated challenges 

• Beyond integration: a competency (Geraniou & Jankvist, 2019) in the service of another   

So what is a wicked problem exactly? It is a problem impossible to solve, and that is because it is not 
well defined. It is contradictory. Different people have different views on it. It changes all the time. 
It connects to different things. Conklin (2006) called it a dysfunctionality within a complex system. 
Such problems are difficult to contain and structure; they are interconnected, interdependent and ill-
defined. And their parameters are continually in flux. Some examples of wicked problems are 
poverty; urban renewal; school curriculum design; education, environmental and natural resources 
policy; healthcare; climate change challenges; sustainable cities; diet; individual and social 
challenges in times of world crisis.  

So, these wicked problems cause problems to the individual. They often develop a denial about the 
problem. Assertions such as ‘come on, pandemic corona-virus! It’s easy, it’s just a flu!’. They create 
resignation of the individual regarding the acknowledgment of the existence of the problem. We see 
such a point argued all over the media, ‘there’s no point in vaccinating since if you’re vaccinated you 
can still catch it’. Resignation is followed by inertia; ‘I’ll wait, I’ll wait for everybody else to get 
vaccinated and then see what happens’. But wicked problems need action at many levels because the 
inertia is a risk, and there is an exponential growth of the problem if people do not realize and do not 
start developing strategies. And the consequences are high stakes. So, for the individual, it is 
important to become sensitive and knowledgeable not to find a solution and also to engage in actions 
such as taking care of the individual footprint, but also perceiving that they are a member of societies 
at different levels who are collectively addressing the problem.  

To date, transformation in mathematics education has hardly addressed the role of mathematics and 
mathematical thinking in post-normal science. What can a normal science such as mathematics 
provide to empower and support post-normal perspectives aiming to address controversial ill-defined, 
complex socio-scientific and value-laden issues? Fallibility in mathematics has been perceived in the 
context of the process to look for truth, for certainty, in a normal science setting. In post-normal 
science, however, the focus is not on the process of producing mathematical truth but could 
potentially be on the role such truth can play in, say, wicked problems. In this paper, I suggest that 
mathematical thinking and mathematical concepts do and should have a secondary but no less 
important role to play in post-normal science and that mathematics educators need to consider their 
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involvement in the recent pedagogical wave demanding schooling to afford wicked problem 
education. 

DIGITAL MEDIA TO GRAPPLE WITH WICKED PROBLEMS: THE CASE OF CHOICO 
The first section in this paper contains a discussion of how digital media have been designed as tools 
to help with the pedagogical wave of transforming the mathematics education paradigm from what 
Chevallard (2012) calls a ‘visiting the works’ paradigm to an experiential, questioning the world, 
creative and discursive paradigm. The transformations, however, have so far maintained mathematics 
as the primary educational objective of the enterprise where the focus is on the modeling of 
mathematical objects and representations outright or at most the modeling of objects and behaviors 
directly and importantly embedding mathematical concepts (Artigue, 2002; Kynigos, 2018; Sarama 
& Clements, 2002; Kaput et al., 2002; Sinclair & Freitas, 2014). Even in the case of media which is 
primarily focused on computational thinking and creativity to create games such as scratch, 
mathematics educators have shaped microworlds and modeling exercises with a focus on the 
mathematical concepts inherent within (Benton et al., 2016; Cader, 2018). The most well-known 
attempt to design a medium for students to engage with complex issues is NETLOGO (Willensky, 
2020). Even there, however, the focus is on mathematics as a means to fully understand the 
phenomenon by modeling it, based on an albeit diverse kind of mathematics calling for a 
restructuration of our perception of mathematical curricula (Willensky & Papert, 2010). In this paper, 
the attempt is to consider digital media primarily in the role of tools to help grapple with wicked 
problems, yet, at the same time, embedding mathematical ideas and designed to cultivate rationality 
in such an enterprise. 

It is in this context that we introduce a constructionist tool which we call ‘ChoiCo’, a digital medium 
specially designed for post-normal science education. ChoiCo is an acronym for ‘Choices with 
Consequences’ (Kynigos & Grizioti, 2020). It is a system for authoring games embedding socio-
scientific issues. The system leaves the choice and definition of such an issue up to the user. It is 
based on the gaming idea that there is a single gamer making choices amongst objects placed on a 
geo-coded map. Every choice has consequences across a pre-set range of fields, yet there is no clean 
choice, i.e. one which has only positive or negative consequences. The game ends when the player 
crosses some pre-set value in one of the fields, i.e. crosses a ‘red line’. So the gamer needs to navigate 
through a field of choices, the point of the game being to stay on the game as long as they can, 
avoiding ‘red liness’. The more choices made, the better the player. Sustainability is key; the more 
the player can sustain making choices, the better. But most importantly, ChoiCo affords important 
transparency, leaving users, in the role of game creators or modifiers, to name as many fields as they 
wish, to set values for every choice, to program the starting values, the ‘red lines’ and a number of 
‘warning messages’ and other rules via a block-based programming language. Field values can be 
numerical fixed or random, visible or hidden from the player (they can make the player need to infer 
the consequence of the field by observing some text, a video or a picture).  

ChoiCo is thus not just about designing or playing a game, it affords the user to take on the role of a 
prosumer, someone who engages in-game modding as well as design and play, interchangeably. Each 
game can be considered as a ‘living document’ to use the term coined by Trouche and his colleagues 
in their theory of addressing educational practice through the continual re-design of educational 
resources (Guin & Trouche, 1998). The main features of ChoiCo are based on the following design 
principles.  

• Constructionist games, games affording access to the content and rules of the game and 
providing tools to define and to change them 
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• Free climate – alternative reality, low stakes, so that users find a safe space to try out risk-free 
solutions to wicked problems and consider the consequences  

• A framework – reference for discussion and debate, the idea is that pairs or groups of students 
engage in the modding process 

• Rules and content of a game open to modding  

• Gaming rules: sustainability, i.e. stay on the game as long as you can  

• Interchangeable gameplay and game modding, i.e. the practice of adopting a binary role of 
player and designer of a game 

So, let us start with an example of a game that was actually designed by postdoc researchers at the 
Lab (Grizioti et al., 2021). Consider a user in the role of the player; let us give her a name, ‘Mary’. 
Mary is a citizen, and she lives in the covid pandemic era. She has some choices to make on what to 
do in her day. For instance, she can consider running. If she does choose to run, the game tells her 
what the consequences will be along a line of values. The values are ‘physical capacity’, ‘it’s fun’, 
‘social’, ‘money’ and ‘risk of covid infection’. So the game tells Mary what is going to happen if she 
makes a choice before she decides to make it. If she chooses to engage in running, then the covid risk 
would be a random number from minus 15 to minus 20, i.e. an equal probability in the respective 
range of values. So it would not be much of a risk, but still, Mary would not be certain of what is 
going to happen. The ‘physical condition’ consequence is a function of how much physical condition 
Mary would have if she was walking. And the others are just numbers. So, upon clicking on the 
selection of the choice to go running, Mary observes the change of aggregate values in a respective 
panel on the screen. Then, she can try doing something else. For example, she can try going to the 
local store (Figure 1).  

 

Figure 1. The consequences of going to the local store 

That choice would result in a much larger covid infection risk, 15 to 25, and would result in spending 
money (-30). On the positive side, it would up the social and physical condition, a lot of walking up 
and down the isles you see. If she then chooses to go to the mall, she would be in danger of being 
thrown out of the game since the covid risk there would be immense. So maybe she might decide 
going to her home instead. Clicking on that choice brings up a different plane with things to do at 
home, e.g. work from home, shop online etc. For instance, if she decides to sleep and continues to 
select that choice effectively to sleep through the pandemic, the game quickly sends a warning sign 
‘You’re unhappy. You need to do something.’ and then if she continues, throws her out since the 
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‘fun’ value crosses the line and the game reports that she has become depressed. So the idea of the 
game is to stay on the game as long as possible, and there is no choice that has only positive or only 
negative consequences. Mary needs to find a way to navigate in order to stay in the game as long as 
possible. This is a game about a citizen dealing with a wicked problem.  

And now about modding a game, taking on the role of a hacker. In the example of the covid game, 
everything mentioned so far can be changed by the player changing roles and becoming a game 
modder. A button click switches to the editing page where Mary herself or anyone else can make 
changes at all levels. Change the picture. Add new choices. A new choice appears on the map and 
also on a tabular representation of a relational database as a new record. Mary can give it a name and 
start putting values on the consequence fields. She can observe that there are diverse kinds of values 
she can allow for each of the field columns. For instance, the covid risk field has been defined as 
containing random values in a range set by Mary. There are other formulas she can use to define field 
values, simple functions or just straight numerical values. Mary can also easily change or add fields 
(Figure 2). Finally, she can switch to a Blockly programming feature in order to write programs to 
set the initial values, set the ‘red lines’, put up warning texts or sounds when a certain value gets close 
to a red line and anything else regarding the game rules. (Figure 3).  

 
Figure 2. Making changes to map, choices and their consequences 

All of these affordances have been designed to allow users to engage with a larger and more complex 
set of concepts, practices and values than one may find in like-minded authoring systems in education. 
There are three distinct but also interconnected areas for these. One is, of course, the socio-systemic 
issue embedded in a game; the other is the computational thinking, i.e. concepts and practices 
cultivated and employed, and the third one may involve mathematical concepts and rationale. Before 
we elaborate on the latter, it is important to say a few words about computational thinking since this 
too can be connected to mathematical thinking in various ways (Barr et al., 2011). ChoiCo affords 
the use of functionalities to do with geo-coded data with relational databases and with block-based 
programming giving some emphasis on event handling and boolean logic. This enables the main 
characteristics of computational thinking as originally defined by Wing (2006).  
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Figure 3. Changing the rules, initial values, warnings and red lines 

In a study of students using ChoiCo in such a way (Kynigos & Grizioti, 2020), we analyzed their 
progressive process of exploration (play the game), deconstruction (break down the game structure), 
analysis (analyze the game elements), synthesis and construction. The process involved the 
integration of interacting with various affordances  (graphics, story, rules, characters, etc.) and with 
the use and understanding of Blockly programming concepts such as conditionals, boolean logic, 
event handling, but also programming processes such as developing high thinking skills like iteration 
and refinement, debugging, error prediction, etc. (El-Nasr & Brian, 2006; Moshirinia, 2007; Salen 
2007). 

THE MATHEMATICAL IN GRAPPLING WITH WICKED PROBLEMS 
So how can we think of the use of ChoiCo to develop dispositions to use rationality and mathematical 
thinking in order to grapple with wicked problems such as the consequences of the covid pandemic? 
Let us first consider the Covid game—and ChoiCo more widely—as a mathematical microworld 
(Healy & Kynigos, 2010). What mathematical concepts are or could be embedded in a game? And 
when students change the game, what mathematical reasoning could they engage in as they identify, 
question and modify values and relations between them? As implicitly discussed in the previous 
section, the Covid game embeds proportional thinking, functions, probability, mathematical issues 
related to programming. But, of course, these mathematical ideas adopt the status of affordances. 
When the game is put to use by learners, the identification of these ideas and the ways they may or 
may not be put to use is a process of instrumentation and instrumentalization (Artigue, 2012). 

Game modding in education has mainly been connected to computational thinking, but if the games 
have embedded mathematical ideas, then this computational thinking becomes connected to thinking 
mathematically. ChoiCo games are thus seen as productions; they are artifacts designed to be used 
by somebody else. They are fun and have many different kinds of connections: connections to real 
issue debates, connections to gaming, connections to entrepreneurship. They could therefore be 
considered as useful resources in this new era of 21st-century skills and equity and wanting to change 
this silo domain structure of the education system. And they still retain some of the benefits that we 
have from teaching students domains and mathematics in specific.  

ChoiCo games can be resources for learners to engage and to grapple with socio-scientific issues in 
the context of post-normal science and they can be specifically designed to invite students to make 
changes. They need not be designed for changes to be difficult and for students to be terribly savvy. 
They can be designed for students to find it easy to engage in modding. From a pedagogical point of 
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view, rather than resources designed to enhance student responsiveness to pure mathematical tasks, 
they can be considered as tools to cultivate mathematical disposition and competence, perceiving 
students as young citizens. Modding with games such as ChoiCo can then help students to recognize 
the value of mathematization, modelling, tinkering with models, using rationality to grapple with 
wicked problems  

There are a number of freely available games already up there on the ChoiCo site, 
http://etl.ppp.uoa.gr/choico. Furthermore, a hitherto small number of ChoiCo games designed for 
more focus on mathematical ideas around shopping in a supermarket reside in a space with large-
scale visibility and use in the Greek Education system (http://photodendro.edu.gr). This is an 
infrastructure based at the Ministry of Education called ‘the digital school’, which contains a large 
portal of digital artefacts for students to use in all subjects and at the same time has links to these 
artefacts residing inside the online version of the curriculum books from year 3 to 11. There are 
around 1600 such artefacts in mathematics, 1200 built with GeoGebra, 220 built with an ETL grown 
3D dynamic programmable modeller called MaLT2 (http://etl.ppp.uoa.gr/malt2). There are six 
versions of the Supermarket ChoiCo game spread at the end of primary and beginning of secondary 
year books.  

The links to ChoiCo games in the curriculum book is in a section about mathematical problems. 
Clicking onto the ChoiCo micro-experiment (Kynigos, 2020) gets you directly into the game, which 
is about doing things in a supermarket. Your values are a number of items, how much money you 
have, health and pleasure (Figure 4).   

So if you buy chocolate then you get: price is 7E, number of items is 7 times more than honey, health 
is -5, pleasure is 4. So if you keep eating only chocolate, the game will warn you when your health is 
below 10 and throw you out when it is below zero on the grounds of poor health. If, instead, you buy 
yogurt or broccoli, your health gets better, but your pleasure is reduced. The idea here is that 
consequences do not only have direct values. Sometimes values need to be considered in connection 
to other things, so students need to think about units of measure and proportional relations and 
operations. The Supermarket game is an example of shaping the design of a game to fit the 
mathematics more directly within a silo mathematics curriculum. But still, even now, there are 
important value-laden issues such as taste, health, pleasure eating, balanced spending etc.  

 

Figure 4. The Supermarket Game 

The idea behind ChoiCo is what we at the Lab call ‘black and white box design’ (Kynigos, 2004). So 
there are some digital objects and functionalities that are black boxes to the user, such as the database. 
ChoiCo has not been designed to get users to reprogram a relational database. It is unlikely for a piece 
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of technology to contain programming and databases and a GIS at the same time. The design 
principle, however, is to prioritize a pedagogical perspective irrespective of whether it's easy to find 
the technological infrastructure. This is dealt with by finding available components keeping the 
development part mainly in gluing them together, and then building whatever else is needed on top 
(Kynigos, 2004).  

WHEN MATHEMATICAL REASONING AND VALUES CO-EXIST 
So what does mathematical reasoning in the context of grappling with wicked problems sound like? 
In the example elaborated here, a group of three 13-year-olds are jointly modding a ChoiCo game 
designed by the researchers to include questionable perceptions about what it means for a citizen to 
live a life-supporting sustainability in their city. The students played the game to start with and then 
began to discuss the ideas embedded within. R is the researcher, S(x) is a student.  

R: So who is the winner? 

S(8): We all are! We all finished the game. 

S(1): We won because we have the largest amount of money: 1200. 

S(8): Who said that money was most important for the game? All you did was to go from 
work to home and vice versa. 

S(5): I think we won ‘cause we have the highest energy levels and the highest social 
status. 

S(11): Wait, wait. The winner is the one who has the highest values in all these: money, 
energy, fun, social status, health, hygiene. 

R: What kind of life do you have to live in order to achieve that? 

S(16): You have to do a lot of everything: have a lot of fun, have a lot of money, do not 
neglect your social life… This is all too much. 

S(3): You have to be a freak to live like this; you won’t have a moment of peace. 

In the above dialogue generated by the researcher, the students discussed over a gaming idea—what 
does it mean to win—connecting it primarily to the wicked problem at hand, is a citizen's life worth 
living if they go for high achievement in all aspects all the time. Within this cycle, the students 
considered numerical values and their aggregates, implicitly keeping in mind that each of the 
available choices had at least one undesirable value, a negative number in this respect. The underlying 
problem was how to increase the values of all the fields even though every choice would unavoidably 
bring a decrease in at least one of them. 

S1) I am not sure about not having cars in the city. 

S(2) I am telling you it has been done in Freiburg. Cars are related to pollution.  

S(1) Yes, but imagine how much more time you need if you go to work by bicycle. You 
need to wake up at least one hour earlier. 

S(3) Ok then, we will add time in the indicators. Taking the bicycle should have reduced 
pollution but raised time. 

In discussing the pros and cons of ways to go to work, the students identified that pollution and time 
were conversely dependent and thus decided to insert another field, time. Here again, their focus was 
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on the pollution problem primarily, and the inverse proportion idea was a tool with which to think 
about and argue for the citizen's choice to take the car or the bicycle to work.   

DISCUSSION 
Admittedly this paper has opened up many issues simultaneously; can mathematics as a normal 
science be considered as a tool, skill and competence in situations better understood through post-
normal science, such as individuals and collectives against up against wicked problems? How can the 
design of digital media for wicked problem education incorporate agendas from transformative 
mathematics education, such as those mentioned in the first section? What kinds of skills, 
competences and dispositions can be cultivated with the help of mathematical reasoning? Can 
mathematical reasoning be cultivated in the context of making one's own decisions, being creative 
and adopting an individual and social active stance to wicked problems?  

The ChoiCo ‘citizen in the Covid-19 Era’ game example and the short excerpts from students 
modding a ‘citizen in a sustainable city’ game were used as contexts with which to bring some 
elaboration of potential educational and research endeavors. The mathematical ideas embedded in the 
two example games ranged from simple operations to proportions and linear functional relationships 
to probability. The range of ideas that may be useful in wicked problem education has yet to be 
understood, but most of all, the interesting question is what kind of rationality may grow using 
mathematical reasoning and, in particular, how can this rationality be used in the quest to understand 
and grapple with wicked problems. In the excerpts, we saw students reasoning at different levels, 
from articulating local arguments of aggregating or calculating values to re-considering the ‘big 
issues’ such as 'what is the value of being a high scorer in everything’. There is much more to be 
learned about how reasoning can be used in such situations and how and when mathematical ideas 
and concepts might become useful. The Covid ChoiCo game could embed a larger range of 
mathematical concepts such as quadratic or exponential or periodic functional relations, and a 
pendulant course could be designed with respect to attention and focus from citizen habits to the 
mathematics underlying the consequences. In any case, the paper aimed to call upon the mathematics 
education community to consider the role of mathematical reasoning for wicked problems and the 
challenge to develop an argument for cultivating such reasoning in this kind of transformative 
educational context. 

NOTES 

1. It is, of course, the case that diverse approaches and tools have been developed and tried out in mathematics education, 
some of them designed to maintain and enhance drill and practice effectiveness in a traditional exposition to abstract 
mathematics curricula. 
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METAPHOR-BASED ALGEBRA ANIMATION 

Rogier Bos and Winand Renkema 
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We investigated whether dynamical animations with visualizations based on metaphorical linking are 
more effective for grasping algebraic manipulations than static animations. The question is whether 
and how ideas from conceptual metaphor theory, in particular, embodied cognition, can be drawn to 
positively contribute to the design of effective animations for visualizing algebraic manipulations. In 
classroom tests, grade-7 students watched an animated video on algebraic manipulation, either with 
dynamic visualization, a visualized person dynamically performing the manipulations, or a more 
static video not based on those ideas. For higher-level students with some pre-knowledge of algebra, 
we found a small positive effect for dynamic and dynamic embodied videos. For lower-level students 
with no pre-knowledge of algebra, the embodied animation turned out to be adverse effective. 

Keywords: Dynamic visualization, embodied simulation, object collection metaphor. 

INTRODUCTION 
In the last few years, a revolution in informal mathematics education took place, to our best 
knowledge, ignored by the mathematics education community. Through his YouTube channel 
3Blue1Brown, mathematics educator Grant Sanderson reached tens of millions of students worldwide 
with dynamically animated videos covering a wide range of topics, including linear algebra, calculus, 
probability, and machine learning (3Blue1Brown, n.d.). The responses to those videos are jubilant – 
students claiming to “finally understand the topic”. A natural question is whether viewers are simply 
overawed by the smooth animations, or do animated effects really contribute to better learning 
outcome. In this study, we focus on one specific feature of these videos: Dynamically animated 
algebraic manipulations. If one encounters algebraic manipulations in a video, is it beneficial for these 
to be dynamically animated? We propose a theoretical basis for such animations and study the effect.  

Wittmann and collaborators (2013) observed students discussing algebraic manipulations as if the 
terms were physical objects moving in a landscape. As they explain using Conceptual Metaphor 
Theory, one might argue such metaphorical language is grounded in spatial embodied experiences 
(Lakoff & Núñez, 2000): Reasoning about moving physical objects is linked to reasoning about 
algebra through metaphors. Nicaud and Maffei (2013) explore how this theory leads to an interactive 
algebra environment where terms can be dragged across the screen. We study the same phenomenon 
in the non-interactive flat environment of animated video. 

No literature has brought such an approach in mathematics education, but recent inquiries by 
educational psychology researchers have explored the role of embodiment in educational videos 
(Castro-Alonso et al., 2018; De Koning & Tabbers, 2013; Pouw et al., 2016). More generally, the 
issue is whether dynamic animations are more effective than static animations, possibly using 
embodiment (Berney & Bétrancourt, 2016). Dynamic animations use continuous movement and 
deformation, whereas static animations are more like a traditional slide show portraying a discrete set 
of images.  

In this study, we compare in a quantitative way the effect of a short instruction video on the topic of 
elementary algebra with respect to three conditions: static animation, dynamic animation, and 
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embodied dynamic animation. The aim is to gain insight in whether these conditions have any 
quantitatively measurable difference in effect on the learning outcome.  

THEORETICAL BACKGROUND 
Abrahamson and Lindgren wonder whether “learning environments (can) be designed to foster 
grounded learning, in which students sustain a tacit sense of meaning from corporeal activity even as 
they are guided to re-think this activity formally” (Abrahamson & Lindgren, 2014, p.3). They state 
that “manipulating symbolic notation is cognitively quite similar to physically moving objects in 
space” (p.3). We consider an instruction video as such a learning environment in which moving the 
algebraic terms in the plane might support being able to follow and understand algebraic 
manipulations. 

Lakoff and Núñez’s theory states that mathematical cognition is organized through certain linking 
processes (Lakoff & Núñez, 2000). These linking processes, called metaphors, consist of mappings 
from one conceptual domain – the source domain – to another conceptual domain – the target domain, 
usually more concrete. For this study, the source-path-goal metaphor, the object collection arithmetic 
grounding metaphor, and the arithmetic-algebra linking metaphor are important. The source-path-
goal metaphor is in play when the changes of position of a term are mapped onto a path of the term 
as an object in the plane. Such a term is interpreted to have a source—the original position—to move 
along a path, and a goal—the final position in the equation. The arithmetic grounding metaphor 
interprets arithmetical operations as manipulations on a collection of objects. The cognitive schemas 
supporting object collection are image and motor schemas, in particular the hypothesized containment 
schema, that deals with the metaphorical use of “container” as an object that envelops a collection 
(Lakoff & Núñez, 2000). For example, addition is then mapped onto the experience of joining the 
content of two containers. A final metaphor of importance to this study is the arithmetic-algebra 
linking metaphor: a metaphor that links algebra to arithmetic. Algebraic rules map onto essential 
characteristics of arithmetic. The hypothesis central to Lakoff and Núñez’s theory is that a metaphor 
transfers the inferential structure of the source domain to the target domain. Applied to our case: the 
(aspiring) mathematician reasons about arithmetic by mapping reasoning in object collection onto the 
arithmetic domain; and likewise, they reason about algebraic manipulation by mapping reasoning and 
experiences in arithmetic computations onto the algebra domain, and about the repositioning of terms 
as those terms traveling along paths. These metaphors and the way they transfer reasoning inspired a 
dynamical visual “language” for animating the algebraic manipulation in the dynamic and embodied-
dynamic condition. 

In a recent meta-analysis of 140 pair-wise comparisons, Berney and Bétrancourt (2016) found a 
significant advantage for dynamic animations over static in learning outcome. However, in only 31% 
of the studies dynamic animation was superior, compared to 10% where static was superior, and 59% 
with no significant difference. For the eleven studies on mathematics videos in their meta-analysis, 
they found a small negative effect for dynamic animation, but this did not include the topic of algebra. 
Ayres and Paas find advantages and disadvantages for learning through dynamic animation (2007). 
An advantage of dynamic animation is that movement and changes can be visualized in a life-like 
way. Being able to see instead of having to infer the motion and changes helps students follow 
reasoning steps. Another advantage is that dynamic animation facilitates cueing: movement can be 
used to direct students’ attention. A disadvantage is that information tends to be transient: Information 
comes and goes, and remembering and integrating it all is a challenge. 

Our research question is what the effect is of dynamic videos—where animations are based on the 
discussed metaphors—on learning outcome, compared to static visualization, showing the algebraic 
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manipulations line by line. The next question is what the effect on learning outcome is of showing a 
part of the body performing the dynamically animated manipulations. 

METHOD AND MATERIALS 
We performed a pilot study, a first experiment, and a second experiment. The dynamics and 
embodiment might influence both the retention and the understanding of the information in the video 
(Pouw et al., 2016). The retention of information influences the performance on reproductive tasks, 
whereas processing and understanding the information influences performance on more challenging 
tasks. In the second experiment, we measured performance on reproductive and on more challenging 
tasks separately. Pouw et al. (2016) show that embodied animation can be more effective for students 
with a lower level of achievement in the subject of the video. Therefore, we performed the experiment 
on two populations: Higher-level mathematics students with little prior knowledge of algebra in the 
first experiment; lower-level mathematics students with no prior knowledge of algebra in the second 
experiment. The level was assessed by the teachers of the students. 

For the experiments, there were two experimental groups and a control group. We designed three 
versions of the same video (see https://tinyurl.com/anialg). For each 92 seconds video, we used the 
same audio, as well as the same algebraic expressions, fonts and font size, colours, timing, outlay and 
design. The video shows five worked examples about basic manipulations in algebra: Scalar 
multiplication by a positive integer as repeated addition: 𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎 + 𝑎𝑎 = 5𝑎𝑎; addition of similar 
terms: 5𝑎𝑎 + 3𝑎𝑎 = 8𝑎𝑎; commutativity: 5𝑎𝑎 + 3𝑏𝑏 = 3𝑏𝑏 + 5𝑎𝑎; a combination of those: 5𝑎𝑎 + 3𝑏𝑏 +
3𝑎𝑎 = 8𝑎𝑎 + 3𝑏𝑏; distributivity: 3(5𝑎𝑎 + 3𝑏𝑏) = 15𝑎𝑎 + 9𝑏𝑏. In Table 1, we present screenshots from the 
three versions of the intervention video. In the Static video, the algebraic expressions appear line by 
line at the moment they are addressed in the audio. The Dynamic video and the Embodied dynamic 
video use dynamic animations based on the discussed metaphors for algebra. The difference between 
Dynamic and Embodied dynamic is that, in the embodied dynamic version, a person is visualized 
performing the manipulations (upper body in examples 1, 2 and 3 and only the hands in examples 4 
and 5). 

Table 1. Comparing visualization in intervention videos 

Time Static Dynamic Embodied dynamic 
0:17 

   
0:45 

   
1:05 

   
1:27 

   

https://tinyurl.com/anialg
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Table 2 explains for each algebraic manipulation how the metaphorical mappings lead to a choice of 
dynamical visualization. The first column contains the algebraic manipulation rule, the second 
column the linking metaphor of the algebraic rule in arithmetic, the third column the two grounding 
metaphors, and the fourth the choice of visualization based on these grounding metaphors. We discuss 
here the reasoning behind the visualization of commutativity: The rule states that the algebraic terms 
in a sum can be interchanged, e.g., 5𝑎𝑎 + 2𝑏𝑏 = 2𝑏𝑏 + 5𝑎𝑎. This rule is an abstraction of the experience 
in arithmetic that numbers in a sum can be exchanged, e.g., 7 + 8 = 8 + 7. These experiences and 
the rule are related by a linking metaphor, where the algebraic rule represents an essential property 
of arithmetic (so-called metonymy). The arithmetic can metaphorically be linked to the physical 
model of heaps of objects. The containment scheme allows one to interpret a heap of objects as one 
unit, a container, with an individual position. This can also be seen as a form of metonymy: the heap 
itself is not contained in an object, but one has a natural notion of in the heap and not in the heap. 
Inspired on the source-path-goal schema, commutativity is hence linked to moving heaps of objects 
as a whole: Interchanging the positions of the heaps does not influence the result of joining them. 
Therefore, in the dynamic visualization of commutativity, the terms 5𝑎𝑎 and 2𝑏𝑏 are treated as 
containers with a position that can interchange position by moving. To refer to these schemes more 
directly, the embodied dynamic animation presents a person moving the terms as if they were physical 
containers. 

Table 2. How algebraic rules are visualized based on metaphorical mappings 

Algebra over 
positive 
integers 

Arithmetic Object collection and 
source-path-goal 
metaphor 

Dynamic visualization 

Scalar 
multiplication 

Multiplication 
as repeated 
addition 

Swiping the similar 
objects on a heap 

Or the other way 
around: spreading the 
similar object on a heap 
out over space. 

In a swiping gesture, the same variables in 
the summation together join into a number-
times-variable expression 

In a spreading gesture away from the 
number-times-variable expression, the 
separate occurrences of the variable appear 

Adding similar 
terms 

Addition  

(distributivity:  
3a + 2a =
(2 + 3)a)) 

Swiping heaps of similar 
objects together on a 
new heap 

In a swiping gesture, the similar number-
times-variable terms are joined together and 
there appears a new number-times-variable 
expression where the number is the sum of 
the previous numbers  

Commutativity Commutativity 
of number 
addition 

Moving heaps of objects 
(in a container) around 
to make them 
interchange position 

Hands move the number-times-variable 
terms around the plus sign to make them 
interchange position. 

Distributivity Distributivity 
in arithmetic 

Reorganizing heaps of 
objects. More precisely: 
one has a number of 
heaps of two different 
object types and joins all 
objects of same type 
together on heaps 

In a spreading gesture, the scalar 
multiplication of the terms between the 
brackets separates into occurrences of these 
terms (as in scalar multiplication) Then a 
swiping gesture joins the similar number-
times-variable terms (as in adding similar 
terms) 
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The design included a pilot study in two classes, the first experiment in five classes and the second 
experiment in four classes. For each class, the teacher divided the students into three levels, based on 
their own assessment: below average, average, above average. The division of students over the 
conditions was such that each condition has about the same number of students of each math level.  
The pilot study took place in two 7th grade classes of a Dutch pre-university level secondary school 
to test the set-up and have indicative results. In one of the pilot classes—like the classes in our first 
experiment of pre-university level—we found an effect of 𝑑𝑑 = 0.81 (Cohen’s 𝑑𝑑) of the embodied 
dynamical condition. A power analysis suggested the size for each group in the first experiment to be 
38 for a power of 1 − 𝛽𝛽 = 0.8. After that, we performed the first experiment, involving 132 seventh 
graders (boys and girls, age 12 - 13) of a Dutch pre-university level secondary school. The students 
had prior knowledge of what a variable is and had had a very limited primer on algebraic 
manipulation. The second experiment involved 42 seventh graders (age 12 -13) of one Dutch pre-
vocational secondary school (VMBO) and 49 seventh graders (age 12 -13) of another Dutch pre-
vocational secondary school (VMBO). These students had no prior knowledge of algebra.  

In the first experiment, the written pre-test and post-test consisted of three items in line with the 
worked examples, e.g., simplify 3𝑎𝑎 + 2𝑏𝑏 + 2𝑎𝑎. For the second experiment, the tests had sixteen 
instead of three items: eight reproductive items and eight more challenging items: an improvement 
implemented to avoid the ceiling effect that could have played a role in the first experiment. In the 
first tests, students had as much time as they needed, whereas, in the second, they had precisely five 
minutes to complete as many of the sixteen items as they could. All tests were hand-marked by the 
researchers using a complete and strict marking model. In the first experiment, maximally 7 points 
could be scored. In the second experiment, 2 points per item could be scored, which leads to a 
maximum of 32 points. These pre- and post-test scores were taken as variables and analyzed 
statistically using SPSS version 25. For the first experiment we conducted an ANCOVA test to 
determine a statistically significant difference between the control, dynamical and embodied 
dynamical conditions on the post-test score controlling for the pre-test score. For the second 
experiment, we conducted one-way ANOVA tests to compare the post-test results on the reproductive 
and challenging items between control, dynamical and embodied dynamical conditions 

RESULTS 
For the first experiment, we carried out Levene’s test and normality checks on the post-test data and 
the assumptions were met. The ANCOVA test revealed no significant effect of video-type on the 
post-test controlling for the pre-test score (𝐹𝐹(2, 128) = 0.459, 𝑝𝑝 = 0.633). Estimates of the means, 
standard errors and 95% confidence intervals are presented in Table 3 and Figure 1. 

Table 3. Estimates for the post-test scores in the first experiment (maximum score is 7) 

 
The effect of the dynamic condition (compared to control) was small, 𝑑𝑑 = 0,15; and for the embodied 
condition also small, 𝑑𝑑 = 0,20. 

 Condition N Mean Std. error Lower bound Upper bound 
 Control 43 5.607 0.274 5.065 6.148 
 Dynamic 45 5.887 0.268 5.357 6.416 
 Embodied 44 5.955 0.271 5.419 6.491 
 Note: the covariate pre-test score was evaluated at 1.659 
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In the second experiment, the pre-test scores were zero for all candidates; not surprisingly, since they 
had no prior knowledge of algebra. The ANOVA test revealed no statistically significant difference 
between groups (𝐹𝐹(2, 88) = 0.824,𝑝𝑝 =  0.442). The means, standard errors and 95% confidence 
intervals are presented in Table 4. 

 

Figure 1. Estimates for the post-test scores in the first experiment (maximum score is 7) 

 

We conducted a one-way ANOVA test to compare the post-test result on the challenging (transfer) 
items between control, dynamical and embodied dynamical conditions. There was no statistically 
significant difference between groups (𝐹𝐹(2, 88) = 0.265,𝑝𝑝 =  0.768). The means, standard errors 
and 95% confidence intervals are presented in Table 5. 

Table 5. Post-test scores on the challenging items in the second experiment (maximum score is 16) 

 
Figure 2 presents the total scores for the post-test. There was no effect of the dynamic condition, 𝑑𝑑 =
0.01; and for the embodied condition, there was a small adverse effect, 𝑑𝑑 = −0.14. 

DISCUSSION 
From the ANCOVA and ANOVA tests, we may conclude that there are no significant effects of the 
dynamic and embodied dynamic condition on learning outcome as measured by the tests. This result 
adds to the 59% of no-significant-difference-results of Berney and Bétrancourt (2016). Even though 
this puts some weight in the scale in favor of “no added value of dynamics”, for us, there is a lesson 
in the methods used, since we believe there may have been an effect that we failed to pick up to a 
significant level. The power-analysis based on the pilot seems to have had an outcome too much in 

Table 4. Post-test scores on the reproductive items in the second experiment (maximum score is 16) 

 Condition N Mean Std. error Lower bound Upper bound 
 Control 31 6.419 0.772 4.843 7.996 
 Dynamic 29 6.828 0.878 5.030 8.626 
 Embodied 31 5.371 0.834 3.668 7.074 

 Condition N Mean Std. error Lower bound Upper bound 
 Control 31 1.790 0.423 0.927 2.654 
 Dynamic 29 1.414 0.354 0.688 2.140 
 Embodied 31 1.855 0.559 0.713 2.996 
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favor of the dynamic conditions leading to a rather small 𝑛𝑛. Moreover, a 91-second video is a very 
short intervention. Combined with a possible ceiling effect in the test, we feel a more precise method 
is needed to measure the effect in a significant way. 

 

Figure 2. Total post-test scores in the second experiment (maximum score is 32) 

Positive learning effects of embodied simulation, as observed in the first experiment, depend on 
whether the goal of the movement is understood (Van Gog et al., 2009). For the higher-level students 
of the first experiment (with a bit of prior knowledge of algebra), the goal of the algebraic 
manipulations, namely simplifying the expressions, was probably clear. On the contrary, the lower-
level students of the second experiment may have struggled to grasp this goal from the visualized 
manipulations. The local goal of the movements themselves must have been clear to all students, 
though since the voiceover explained, for example, “we now join these terms” or we now “switching 
these terms”. But possibly this is not enough: the global goal of where the algebraic manipulations 
are leading (i.e., a simplification) may have to be clear as well. The adverse effect found for the 
embodied condition in the second experiment (with lower-level students) is in line with the results of 
Castro-Alonso et al. (2018), who find that the effectiveness of dynamic animations reduces when 
showing hands. 

The animations in this study are based on a chain of metaphors, first, a linking metaphor linking 
arithmetic to algebra, and next to grounding metaphors: the source-path-goal metaphor and the object 
collection metaphor. We questioned whether these metaphors could be supportive in animated algebra 
instruction videos. The measured small effects give rise to some optimism, but in particular for 
higher-level students with some prior knowledge of algebra. Presumably, the arithmetic grounding 
metaphorical link needs to be well-understood by students for the fundamental metonymy of 
commutative algebra—that letters take the role of numbers—to be accepted and “recognized” in the 
video. There may also be concern about the transitivity of the two metaphorical links: the object 
collection metaphor supports arithmetic reasoning, and arithmetic reasoning may support algebraic 
reasoning, but does that imply that the object collection metaphor supports algebraic insight? In each 
metaphorical link, part of the inferential structure is preserved, and part is lost. We believe enough 
supportive inferential structure is maintained, but the outcome of this research might imply that reality 
is more complicated. 

A limitation of watching a video is that it is based on motor mirroring (embodied simulation) and not 
on motor execution (enactment). The motoric or bodily engagement is of low level (Duijzer et al., 
2019). Also, the level of immediacy is low: Students watching the dynamic and, in particular, the 
embodied dynamic video have to rely on embodied simulation of previously acquired sensorimotor 
experiences. Including enactment in the intervention may increase the effect of the video. 
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This study focused on the effect of dynamical animation on being able to grasp and follow algebraic 
manipulations. In many videos—like those of 3Blue1Brown—algebraic manipulative skills 
themselves do not form the learning goal, rather those skills form a prerequisite, applied in a step to 
reach an interesting result. To make another step in our understanding of dynamic animation of 
algebra in such videos, our follow-up study investigates whether, in those cases, animated algebra 
contributes to learning outcomes. 
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While most research on mathematical creativity focuses on students, in this paper, based on previous 
research, we move our focus from students to teachers. This is a case study of two teachers that 
adapted an online task that involved a digital medium for the learning of mathematics and made their 
own version of it, while a researcher, as a participant observer studied their discourse, trying to shed 
light on indicators of creativity and to elaborate the potential of this procedure. We used the 
framework of Social Creativity in a broader sense to draw connections between education design and 
creativity in this context. 

Keywords: Digital media, social creativity, teacher as designer. 

INTRODUCTION 

The potential of infrastructures like libraries and repositories of digital learning objects as expressive 
means for teachers to realize their pedagogical and didactical agendas has been discussed in previous 
research (Kynigos, 2017); where a teacher adapted online digital media embedded in the official 
educational resource portals for mathematics in Greece and transformed these to be suitable for use 
in his lessons. The analysis of the adapted resource and of incidents where students engaged in 
investigation using these media elaborated our view not only of the infrastructure’s affordances but 
of the teachers’ professional agenda as well. In the present paper, we focus on the procedure that leads 
to the adaptation of these resources, the purposeful transformation of the medium, which could be 
seen as teachers’ creative professional activity. According to Sriraman (2004, p. 4), design for 
mathematics teaching and learning can be a fruitful field for teachers’ mathematical creativity. While 
most research on creativity focuses on students, there are a few studies that make remarks on teachers’ 
creativity as part of their professional engagement–not explicitly mathematical creativity–focusing 
on the product of teachers’ instructional design, i.e. learning tasks that they give to their students 
(Vale et al., 2012; Vale & Barbosa, 2015). However, according to the literature on creativity, from 
Rhodes’ “Four Ps’” model (Rhodes, 1961) to Plucker et al.’s (2004) approach, there is a consensus 
on the critical role of the process that leads to a product. As we mentioned above, in our study, we 
focus on teachers’ adaptation of a task that exploits a digital resource; we are searching for aspects of 
creativity in teachers’ efforts to define the mathematical content that is relevant with this resource in 
order to use it in their teaching. Building on previous research (Kynigos & Daskolia, 2021; Kynigos 
& Kolovou, 2017) on teachers as designers with the use of digital media, we move our focus to 
teachers’ discourse during their collaborative adaptation design of a new digital medium for teaching 
mathematics. We aim to shed light on this process, in terms of creativity in general, as a first step to 
gain insight into the investigation of teachers’ creativity. Teachers in this study collaborated on 
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designing a task with a digital tool that required no special skills in the use of ICT and which affords 
instructional design within a specific area of mathematics. 

THEORETICAL FRAMEWORK 

In research on creativity, the focus is mostly on the achievements of the subjects with regards to the 
mathematical content and certain resources that provoke mathematical activity; e.g. Leikin used 
multiple solution tasks (MST), which students were explicitly asked to address using more than one 
solution, to ‘measure’ aspects of their creativity (Leikin, 2013). In this study, we move our focus from 
students to teachers. We built on the assumption that mathematical creativity may emerge through a 
teacher’s instructional design, especially through the reframing of the content in favor of a teaching 
and learning agenda (Sriraman 2004, p. 4). In other words, design for learning can be an aspect of 
mathematical creativity. With this approach, although instructional design mostly comes to an end 
and is realized through a product, we expected that creativity should be apparent in the process of 
design. So, we were interested in analyzing the process where teachers designed tasks for their 
students, perhaps using something analogous to MST as a means to provoke and analyze teachers’ 
creativity.  

In former studies about teachers designing digital artefacts for teaching and learning, creativity was 
evident in line with the Social Creativity (SC) framework (Fischer, 2004). This framework has been 
used to study the teachers as designers of educational resources through the lens of creativity 
(Kynigos & Kolovou, 2017). The SC framework creativity is compatible with the description of 
creative actions, procedures or products in a social context where people are working together using 
technology. According to SC, creative actions, procedures or products have characteristics of 
originality, are expressive, socially appreciated and socially evaluated by a group (Fischer, 2004); in 
the case of teachers, creativity emerges when they mutually take part actively in a process of 
designing or redesigning a product, e.g., a learning task, following their own agenda related to 
teaching and learning. SC was evident in cases where teachers engaged in boundary crossing 
(Akkerman & Bakker, 2011); teachers with different expertise modified their usual practices as they 
collaborated to design educational resources to provoke students’ creativity towards a shared practice 
that led to a mutually accepted, appreciated and feasible outcome. In some cases that these studies 
refer to, the resources that teachers designed aimed to promote and foster investigation of 
mathematical concepts following the approach of a ‘half-baked microworld’ (Kynigos, 2007). The 
purpose was to engage students in a meaning-making process while they used a digital medium, i.e. 
to fix a dynamic shape, which is ‘buggy by design’.  From this starting point, in this study, we focused 
on a case of teachers working together to redesign a ‘micro-experiment’; which includes a digital 
artefact that simulates the layout of an experiment addressing a challenge, provoking students to 
engage and be involved in inquiry (Kynigos & Grizioti, 2018). Micro-experiments are resources that 
involve a half-baked artifact that contains some closed questions readily matching equivalent 
questions from traditional curriculum exercises and one or two open-ended, constructionist or 
exploratory questions at the end (Kynigos, 2020). The layout focuses on a small set of concepts, e.g., 
related to ‘sums of numbers’ in Arithmetic, and the starting point of the challenge is a question, or a 
well-defined problem. Using the micro-experiment, students may pose their own questions, that lead 
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to further investigation. Based on previous research (Kynigos, 2017; Kynigos & Kolovou, 2017) and 
assuming that the adaptation of micro-experiments could be revealing for the teachers’ agenda, our 
question was about the creative aspects of this professional activity.  

In line with previous studies on creativity regarding the teacher’s role as a designer (Kynigos & 
Daskolia, 2021; Kynigos & Kolovou, 2017), we followed the principles of ‘meta-design’ (Fischer & 
Giaccardi, 2006), a component of the SC framework, to design our intervention. Meta-design 
describes the conditions that foster the emergence of creativity in terms of SC and refers to a process 
of co-design in a digital environment, i.e., a digital medium for teaching and learning mathematics. 
The medium should be accessible by the teachers, meaning that they do not need to be experts to use 
it and to adapt it. The teachers’ belief that the medium promotes their teaching agenda or that the 
medium is open to include it in their future teaching plans also provokes creativity. Moreover, the 
technical characteristics of the medium should facilitate the communication of ideas and support 
discourse among the teachers that co-design. Under these circumstances, SC is likely to emerge, while 
evidence for this emergence includes ways of using the medium for teaching and learning purposes, 
or versions of the medium which are ‘new’ for the teachers that took part in the process of design, 
with regards to their experiences and practices. This description of SC’s emergence could be related 
to situations that ‘everyday creativity’ is apparent. In this approach, our choice to use ‘meta-design’ 
was justified.  

THE DESIGN AND METHOD OF THE STUDY  

For our research, we employed a digital authoring tool for mathematics teachers to use ready-made 
or make their own micro-experiments, called ‘Abacus’, which, in our view, meets the description of 
‘meta-design’ framework. Abacus can be used by a teacher for task design focused on teaching and 
learning of numbers, their properties, and their representations in the decimal number system. It 
consists of a digital abacus simulation, where the user/designer can change the number of rods and 
put up to 9 beads in each rod to represent a number (Figure 1). There is also an option to use a decimal 
point so that some of the rods represent decimals like tenths, hundredths, etc. It is feasible to make 
new tasks/micro-experiments or to adapt existing ones by transforming them.  Abacus can be used as 
a medium for communicating ideas between teachers as they are exchanging or discussing on 
different versions of a task, which is crucial for the meta-design framework. Decisions such as how 
many rods should be visible, or whether students should have access to change the number of the rods 
or the position of a decimal point changing at the same time the place value of each rod could raise 
critical issues related to the teaching and learning agenda of the designers. 

There are 84 Abacus’ micro-experiments among a large number (over two thousand) of micro-
experiments that have been developed and are embedded in the digital textbooks of Mathematics in 
Greece (Kynigos, 2020). These micro-experiments are accessible online, provided by the Greek 
Ministry of Education in Photodentro (http://photodentro.edu.gr/lor/?locale=en), which is a 
repository, an institutionalised infrastructure available for all students and teachers in Greece, or 
anyone that is interested in education. The implementation of Photodentro’s redesigned digital tools 
have been studied in classroom settings, focusing on the provoked learning and the underlying 
teaching agenda of the teacher that redesigned it and used it (Kynigos, 2017). In this paper, we present 

http://photodentro.edu.gr/lor/?locale=en
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a case study (Yin, 2014) of two experienced teachers in Greece that frequently use digital artifacts in 
their lessons and, in this case, they collaborated to adapt one of Photodentro’s micro-experiments or 
to make a new one drawing ideas from Photodentro. We kept our focus before the implementation 
phase on the shared redesign of an Abacus micro-experiment by two teachers, which we assumed 
‘encountered’ Abacus as a legitimate medium to use in their classes. So, under these assumptions, we 
were interested in analyzing the discourse that took place in a co-design process between the two 
teachers, using the Abacus. M is a primary school teacher and D is a mathematics teacher in junior 
high school. They had three conversations about the micro-experiment that they designed, which we 
observed, around twenty minutes each. The first conversation took place before they started to design 
the micro-experiment, while the next two were conducted to make reviews of their first efforts and 
decide what should be the final product. The researcher had the role of the participant observer to the 
discussions, and the corpus of data consisted of notes taken and voice recordings of the conversation, 
emails and all the digital artefacts produced from their first to their last version. One methodological 
hypothesis was that the participants and the researcher shared some common views around the use of 
micro-experiments, which transfuses characteristics of ethnography to our methodology 
(Hammersley & Atkinson, 2010). From here onwards, we refer to the participant teachers as 
‘designers.’ Aiming for a concrete view of teachers’ design for teaching and learning as a creative 
process in the Abacus environment, our goal was to describe any visible connections of the design 
process with aspects of designers’ creativity and to shed light on the potential of the adaptation of 
digital media like the micro-experiments. 

   

Figure 1: The original micro-experiment, on the left-hand side. The rods and beads, as they appeared 
on a draft of the final version of the micro-experiment, on the right-hand side.  

RESULTS 

The task given to the designers, for the needs of the present study, was to ‘design a micro-experiment 
in Abacus, to make a good use of its affordances’ within a week. The only restriction given was that 
the researcher should be present during task discussions to collect all the data produced and that all 
their related email communication should be ‘cc’-ed to us. What follows are four extracts of interest 
from their three discussions. The first one is taken from their first discussion. 

1  D: So, what do you think, should we make a micro-experiment from scratch? 
2 M:  I think we should look at the 84 that are designed with the Abacus. 
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3 D:  Ok, you can take the first 40, and I will take the rest. I do not know much 
about them, anyway. 

4   M: I think I will take a look at all of them. I use most of them every year. 
Since all the 84 Abacus micro-experiments are intended for primary school students, M felt that it 
could be helpful if she took over an initial review of the Abacus micro-experiment. In the meantime, 
D, who needed a better overview of the Abacus’ micro-experiments, began ‘taking a tour’ to be ready 
for the next step. The next extract is from the first minutes of their second conversation. 

5  M: I think that most of the micro-experiments are not representative of the 
Abacus affordances.  

6 D:  Don’t you use them regularly? 
7 M:  Yes, but I make some modifications ‘on the fly’ to be more challenging. 
8   D: I have made one myself, to practice. It is about a divisibility rule. 

All the 84 micro-experiments designed with Abacus are related to addition and its properties. 
However, D tried to make one from scratch, incorporating divisibility rules, which on the one hand, 
is a subject related to Arithemtic, but on the other hand, is something unusual for the use of Abacus. 
The next extract is from the last minutes of the designers’ second conversation, where it seems that 
the idea of including divisibility rules in the repertoire of Abacus, was abandoned. 

9  D: You know, I think this is not the case for Abacus. 
10 M:  Yes, me too; I think that division is out of its range! 
11 D:  But, what about addition? Some of the micro-experiments are boring. I could 

make that addition, with paper and pencil, too. 
12 M: I agree; the point is not just on doing operations with Abacus. 

In the interim between the second and the final discussion, which was three days, there was a 
consensus on the kind of micro-experiment that they should use as a sparker. M sent an email to D, 
suggesting that they could use a micro-experiment about a fishing boat and the total weight of its 
haul. The student was supposed to add 3.6 tons to 0.42 tons and 792 kilos of different kinds of fish, 
to calculate their total amount (Figure 1). The given rods on the Abacus were those of Ones, Tens, 
Hundreds and Thousands. The key point, as M said, was that in this micro-experiment, the student 
should put the beads for 3.6 and 0.42 on these rods, so a transformation from tons to kilos had to take 
place beforehand. The following extract is from their final discussion, where D had a different 
approach.  

13  D: I think that the transformation from tons to kilos before putting the beads on 
the rods is not a good use of Abacus. Could we change the micro-experiment 
for the students to make the transformation on the Abacus? 

14 M:  Which way? 
15 D:  We could add two rods, one for Tenths, and another one for Hundreds so that 

students can put beads for 3.6 and 0.42 on the Abacus, and then move them 
three rods to the left to make the transformation and after that, the addition of 
792 with new beads. What do you think? 

16   M: I think that this is good! It is about place value, not addition! I tend to believe 
that even addition is irrelevant with Abacus! 
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Finally, after this discussion, designers completed the adaptation of the micro-experiment, with a 
transformation as described above. 

DISCUSSION 

Starting with one of our methodological assumptions, in the first extract, the designers seemed to 
think of Abacus as a legitimate tool for teaching, since they decided to select it among the existing 
micro-experiments. However, they initially failed to specify the domain of mathematics that Abacus’ 
affordances focus on; D was impulsive to go beyond the ‘boundaries’ of the 84 Abacus’ micro-
experiment, trying to make something new integrating divisibility (line 8) which could lead to a major 
modification of a micro-experiment, while he had no detailed view of these micro-experiments (line 
3). M was also supportive of major changes, since she seemed not too satisfied with the ready-made 
micro-experiments; she used to modify them to be in line with her teaching agenda (line 7). During 
the second discussion, it seemed that D changed his mind about divisibility (line 9), while M agreed 
with him, saying that Abacus has a limited ‘range’, referring to the mathematical content that Abacus 
is focused on (line 10). The agenda of their discourse was to define the Abacus’ added value as a 
learning object, which seemed to be an open issue, although they had used Abacus several times in 
the past. M’s expression that division was ‘out of range’ for the Abacus was indicative of her 
approach; the demarcation of Abacus’ range in terms of mathematical content based on pedagogical 
and technological arguments. In the same sense, D adopted an ‘empirical’ pedagogical view in 
relation to the affordances of Abacus (line 11), realizing that, in this case, the micro-experiment would 
not be interesting. In lines 13 and 15, D described possible ways of addressing the challenge that, in 
his opinion, could be important; he exploited that rods’ positions can be manipulated dynamically by 
giving this access to students. Later on, after adapting the micro-experiment on fish weight, in line 
16, M concluded that ‘addition is irrelevant’ of Abacus, not just ‘out of its range’ and that Abacus 
could be exploited in a task where students could master place value through Abacus’s affordances. 
The use of addition tasks with Abacus, like the original with the fish, even though feasible, it would 
not be a paradigm of Abacus’ exploitation in the classroom according to D & M’s agenda; Abacus 
affords this kind of micro-experiments technologically, and students all over Greece have addressed 
them several times possibly obtaining learning benefits through this engagement, since these kind of 
micro-experiments are available for all teachers and students in Photodentro. However, according to 
D and M, these micro-experiments were not fully deploying the added value of Abacus. So another 
criterion about task design choices that could exploit students’ learning with the Abacus became 
apparent through the discourse. Both range and exploitation criteria that emerged through D and M’s 
discourse did not raise and were not based on exclusively pedagogical issues in isolation to 
technology or mathematics and vice versa. We suggest that, with further data, a possible connection 
between the components of TPACK (Mishra & Koehler, 2006) and the formulation of these criteria 
could be apparent. 

D and M contributed to the collaboration without invoking certainties; they tried to define an 
appropriate use of Abacus with regards to their experiences and practices, being open to 
experimentation and reconsideration of task design. After D’s initial idea of more complicated 
mathematics (divisibility), he became more focused in terms of content and creativity since he came 
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up with a new idea. M also seemed to reconsider her view about Abacus’ teaching affordances (line 
16) in the conclusion of the design process. What we saw here was a ‘makers’ culture’ approach in 
the collaboration and the communication between D & M that possibly led to the new version of the 
micro-experiment. This new version was the realization of D & M’s ideas, a projection of their agenda 
as it became visible throughout their discourse. At the same time, although it was radically different 
from the original micro-experiment in terms of instructional design, it can be viewed as an extension 
of Photodentro’s infrastructure since the conversation and communication between the teachers was 
fed by their experience with the use of Abacus in Photodentro as a whole. This kind of production 
that has the potential to change the system as a whole can be an indicator of creativity in terms of SC.  

CONCLUSIONS 

In the present research, we tried to shed light on designers-teachers activity and draw connections 
between creativity and the design for learning with digital tools. In an environment that fosters 
creativity (Fischer & Giaccardi, 2006), we assumed that this connection would be apparent and 
evident. In this case, the environment to foster creativity was the infrastructure of Photodentro and 
the micro-experiments that teachers can use in their classes for teaching mathematics. Stimulated by 
previous research findings (Kynigos, 2017), we investigated the discourse between two designers 
looking for elements of their professional agenda. What became apparent was that via the adaptation 
of micro-experiments and co-design, the emergence of creativity in design and the professional 
agenda of the teachers involved can be mutually understood. The adaptation and co-design of micro-
experiments happened densely in this ecology where a ‘makers’ culture’ was stimulated and—
according to the SC framework—provided a fertile ground for creativity to emerge. Through the 
discourse in this setting, teachers’ professional agenda became clearer. We observed two facets of 
their agenda, the one nested to the other; the designer’s agenda that was apparent with the demarcation 
of Abacus’ potential and the ‘makers’ culture’ that emerged, and the teachers’ agenda that was 
apparent in the argumentation about the criteria (range and exploitation) of this demarcation. What 
we observed was their shared agenda, shaped through their interaction in order to communicate and 
to achieve a common goal, something that elaborated our view about their contribution to the new 
version of the micro-experiment. So, in short, design with Abacus provoked the emergence of 
creativity in terms of SC which made teachers’ professional agenda visible. Viceversa, the agenda 
provided a description of designers’ creative contribution to the original system/infrastructure of the 
Abacus’ micro-experiments; why it was useful for them, how it could be used with novelty in 
teaching, in such a way that they expressed their own teaching agendas through this adaptation, either 
they had already used it several times before (in the case of M), or it was rather novel for them as a 
tool for teaching (in the case of D).  In this sense, we may investigate if the adaptation of Abacus’ 
micro-experiments or other digital artifacts like the Abacus, could be used in the case of teachers like 
MSTs; as a research tool to observe teachers’ professional footprints on paths of creativity.  
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This study investigates tasks in 14 didactical sequences developed to connect mathematics and the 
new Danish subject called Technology Comprehension, which is currently being implemented at 46 
schools in a pilot project. The paper develops six categories that describe the different natures of the 
relations between programming and computational thinking (PCT) and mathematical competencies. 
These six categories are no mathematics involved, no PCT involved, mathematics as a context, PCT 
as a context, conceptual integration and operational integration and are defined by distinguishing 
between actions and concepts in both mathematics and PCT. We conclude the paper by reflecting on 
the usefulness of such categories beyond the national context from which they are developed.  

Keywords: Computational thinking, mathematical competencies, programming. 

INTRODUCTION 
In recent years, there has been renewed interest in programming and computational thinking (PCT) 
as subjects of relevance for general education. This has led to curriculum revisions in several 
countries, including France, Sweden and Norway. In the case of Denmark, there is an ongoing pilot 
project for implementing a subject called Technology Comprehension (TC). These initiatives have 
led to an increased number of available mathematics educational resources that, in various ways, 
bring together mathematics and PCT. Shute et al. (2017) define computational thinking (CT) as ‘the 
conceptual foundation required to solve problems effectively and efficiently (i.e., algorithmically, 
with or without the assistance of computers) with solutions that are reusable in different contexts’ (p. 
142). However, there is a debate as to whether CT is better characterised by a closed definition or its 
building blocks (Pérez, 2018). Moreover, given the openness of CT, not all CT frameworks include 
the technical skill of programming. For disambiguation’s sake, we focus on PCT in this paper. 

From the definition above and since Papert (1980) gave birth to the concept of CT, the similarities 
and potential synergies of bringing together PCT and mathematical competence have been evident. 
More recently, a body of research has emphasised these commonalities, indicating the many ways of 
establishing meaningful relations between PCT and mathematics from an educational perspective 
(e.g. Benton et al., 2016, 2017; Weintrop et al., 2016). As the number of mathematics educational 
resources involving PCT is proliferating these years, developing a vocabulary to understand the types 
of relations we can establish amongst these topics and how they vary across grade levels and national 
contexts has become increasingly important. Building on the resources designed in Denmark to 
support the integration of TC, this paper reports on the construction of analytical categories that 
articulate the nature of relations between PCT and mathematics in a Danish context. 

We organise the paper as follows. We begin by describing how PCT is embedded in TC in the Danish 
context, in which a pilot intervention-based research project is conducted. From here, we can focus 
on and state our research question. Next, we introduce existing research on the relations between PCT 
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and mathematics and argue how our work relates and contributes to this body of knowledge. We then 
describe the empirical foundation and the approach to data analysis that we use to address the research 
question. Finally, we introduce the analytical categories describing the different relations between 
PCT and mathematics and provide concrete examples of how these appear in the data. We conclude 
the paper by discussing the possible implications of our results. 

BACKGROUND 
Denmark is currently implementing TC as a pilot project in 46 different schools across the country. 
The pilot project is designed to inform subsequent decisions on a national scale and consists of 
implementing and evaluating two ways of carrying out TC: (1) as a subject in its own right and (2) 
integrated into other subjects. Prior to the implementation, a so-called advisory expert writing group 
consisting of researchers in computer science education and computer science, teachers and 
consultants from teacher training institutions, educational consultants from municipalities, teachers 
from compulsory schools and consultants from the Ministry of Education developed a curriculum for 
the new topic of TC (Børne- og Undervisningsministeriet [UVM], 2018). This curriculum includes 
four competencies: digital empowerment, digital design and design processes, technological agency 
and computational thinking (Smith et al., 2020). Each area defines a competency goal for students 
after grades 3, 6 and 9.  The curriculum describes the skills and knowledge that students need to 
acquire in four to five content areas. The content areas for CT are, for example, data, algorithms, 
structuring and modelling. Although programming is not amongst the four competency areas in CT, 
it is one of the content areas for the competency area of technological agency. In strategy (1) referred 
to above, this curriculum is implemented in its entirety as a new subject. In strategy (2), the elements 
of each competency area are added to the curriculum of the concerned subjects. No elements from 
these subjects’ previous curricula are removed. In this paper, we focus on TC as integrated into the 
mathematics curriculum. The Danish mathematics curriculum is organised around the Competencies 
and Mathematics Learning (KOM, in Danish) framework (Niss & Højgaard, 2019) and describes 
competency goals for three stages in Danish K-9 schooling—goals to achieve at the end of grades 3, 
6 and 9. These goals are described by a combination of competencies from the KOM framework and 
mathematical subject areas. TC is integrated into the mathematics curriculum by adding new 
competency areas, including TC subject areas described as skills and knowledge goals. 

A central part of the implementation strategy for the pilot project was to develop a collection of 
resources aligned with the new curricula for teachers to integrate into their teaching. These materials 
sought to develop meaningful exercises and tasks in longer, coherent, didactical sequences that 
included and meaningfully called for the integration of TC and the host subject for each grade level 
(1–9, students aged 6–15). In the case of mathematics and any of the other subjects in which TC is 
integrated, the didactical sequences explicitly state which mathematical and TC competency areas 
and subject areas they include. In this paper, we will investigate the nature of the relations between 
mathematics and the competency area of CT, as well as the subject area programming, as they unfold 
in the tasks and exercises included in the didactical sequences. We seek to answer the following 
research question: What is the nature of the relations between PCT and mathematics in Danish TC 
didactical sequences? 

In what follows, we summarise previous research concerning this and related matters. 

RELATED WORK 
Previous studies have already examined the interplay between CT and mathematics in both national 
curricula and textbook materials or similar resources. Amongst these studies is that of Misfeldt et al. 
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(2020), who compared the relations between CT and mathematics in England, Denmark and Sweden. 
Their work mainly focused on the extent of the relations at the curricular level, conceptualised as 
either specific, explicit, weak or non-existing (Misfeldt et al., 2019). Specific relations are when 
curricular documents state the relations between CT and a specific area of mathematics or a 
mathematical working process; explicit relations are when CT is related to mathematics, 
mathematical working processes and/or competencies; implicit relations are when a relation to 
mathematics can be inferred but is not directly mentioned; and weak or non-existing relations are 
when neither of the above is the case. These findings provide an important overview of differences 
in the prominence of mathematics in CT at a curricular level amongst different nations but do not 
address internal variations in how mathematics is specifically, explicitly or implicitly, related to CT. 
Whilst this study focuses on curricular documents, a recent study conducted a textbook analysis with 
a focus on activity types in tasks that include CT and mathematics developed for Swedish 
mathematics education (Bråting & Kilhamn, 2021). This study investigates the frequency of 
mathematics/programming concepts and actions and their co-occurrence (described as bridging) in 
Swedish mathematics textbooks. Similar to the work of Misfeldt et al. (2019), this study does not 
focus on variations in how programming and mathematics are bridged. Another recent study 
(Kilhamn et al., 2021), however, takes an explicit focus on investigating the nature of the relations 
between CT and mathematics. Based on interviews with Swedish mathematics teachers, this study 
finds different conceptions of the relations between programming and mathematics, including no 
relation, mathematics as a context for CT learning, programming as a tool and programming as a tool 
for exploration (Kilhamn et al., 2021). As noted in international overview reports (Bocconi et al., 
2018), there are significant differences across countries in terms of what content programming and 
CT curriculum revisions include and how they are implemented in the curriculum. These differences 
offer the possibility of investigating the potential synergies between mathematics and CT in different 
countries and by drawing on different types of data. In this paper, we seek to contribute to building 
such an overview by developing categories of the relations between CT and mathematics in a Danish 
context from resources developed to integrate TC in mathematics. In what follows, we describe our 
approach to collecting and analysing the data. 

DATA AND METHOD 
As said, several activities that combine TC and mathematics for grades 1–9 have been developed and 
are available on https://tekforsøget.dk/forlob/. These materials are characterised by an explicit 
combination of mathematical competencies, mathematical subject matter areas and TC competencies. 
A full overview of how these competencies are combined throughout the sequences is available here.  

A unique characteristic of the Danish TC curriculum is the emphasis given to design processes and 
critical thinking, which have been key components to ensure compatibility with the declared purpose 
of Danish compulsory schooling; it describes the role of schooling as to ‘prepare students for 
participation, co-responsibility, rights and duties in a society with freedom and democracy’ (§1, 
section 21). This characteristic of both the curriculum and the resources in Denmark is difficult to 
compare with those of other countries. To maximise subsequent comparison with another context, we 
have chosen to focus on the didactical sequences that include programming (which is a component 
of the area of technological agency) and CT (which is an area in itself). Together, these consist of 14 
of the didactical sequences. 

Such sequences are broad because they consist of semester courses and their titles indicate a general 
guiding challenge or inquiry to address. For example, the course ‘Next steps with micro:bit’ explores 
the capabilities and limitations of the micro:bit device as a reliable step counter. The end goal is to 

https://tekfors%C3%B8get.dk/forlob/
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construct a bicycle computer using collected and processed measurements as input for redesign. 
Along the way, students engage with mathematical ideas, such as bar charts, perimeter and data, and 
PCT ideas, such as programs, coding and algorithms. Therefore, a course too comprehensive to be a 
unit of analysis revealing possible fine-grained synergies between mathematics and PCT. 

The sequences are structured into three phases: introduction, construction and challenges, and outro. 
Within each phase, activities take the form of feedback and subject (faglige in Danish) loops (UVM 
2019). However, the materials signpost tasks with different names, such as activities and concrete 
challenges. We therefore designate the units of analysis as each task included in the 14 
aforementioned didactical sequences for a total of 193 tasks. 

Approach to the Analysis 
We analyse these resources by taking a grounded approach in which the goal goes ‘beyond creating 
rich descriptions of data to that of generating theory from data’ (Teppo, 2015, p. 3f, emphasis in the 
original). Our approach to the analysis included three stages corresponding to what in grounded 
theory is described as open coding, intermediate coding and theoretical saturation (Birks & Mills, 
2011). All three stages of the coding were driven by the question of investigating the relations 
between PCT and mathematics in the given exercises/tasks. In the first stage, we jointly coded tasks 
from two didactical sequences and developed an early set of categories based on negotiation and 
preliminary agreement. This process was thus inductive in nature, as we sought to synthesise general 
categories from particular instances in open coding. In the second stage, we individually analysed 
three didactical sequences in parallel to (1) code the tasks and (2) refine the analytical categories 
based on insights from the data. These individual and parallel analyses were followed up by meetings 
in which we again discussed and negotiated results, ultimately leading to refined versions of the 
categories. 

This process can be characterised as abductive in nature, as we explicated and drew consequences 
from our preliminary categories by applying them in the coding in (1) whilst still testing them in (2) 
in an intermediate coding. In the third stage, we applied the categories to the remaining didactical 
sequences to ensure that the tasks or exercises did not include relations that could not be adequately 
captured by our categories. We can describe this as a deductive approach seeking to saturate and 
validate the categories. This process led to a total of six categories with distinct ways in which PCT 
and mathematics relate to each other. Below, we describe these categories and provide an empirical 
example from the didactical sequences for each of them. 

RESULTS 
In what follows, we briefly describe and exemplify each of the resulting six categories. The first two 
trivial categories account for those tasks that relate only to either mathematical competencies or PCT 
competencies.  

No mathematics involved. The task exclusively includes PCT concepts or actions. 

Example: ‘What can a robot do?’ – 3.1.9. Wrap-up. The teacher asks pupils to reflect on why not all 
algorithms work, and introduces the notion of debugging, asking whether they can be revised. She 
ought to connect these to the unplugged introductory activity of giving and following simple 
instructions amongst pupils. In the task, the teacher defines algorithms roughly as sequences of 
precise steps, such as the pupils’ morning routines or the instructions given to a classmate to walk 
from one place to another. Debugging is the process of revising algorithms if they do not work. 
Overall, the task only includes PCT concepts and actions. 
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No PCT involved. The task exclusively includes mathematical concepts or actions.  

Example: ‘Statistics with bias’ – 3.1.4. Subject loop 3. Students are invited to follow a tutorial on 
making diagrams with GeoGebra. The tutorial uses numerical variables a, b and c, whose values can 
be controlled with sliders. The template positions them on the x-axis as 1, 2 and 3, respectively, and 
three segments should be drawn from the x-axis to the positions given by the variables’ values. The 
PCT learning goals invoked in the sequence refer to the use of data as representations of information 
from daily life situations. Therefore, the task does not include PCT concepts or actions. Making 
diagrams with GeoGebra activates mathematical tools and aids competency instead. 

The next two categories characterise those tasks in which one of the areas—mathematics or PCT—is 
operationally dominant over the other.  

Mathematics as a context. The mathematical concepts can be replaced with content from other 
contexts or subjects without changing the PCT operational task. In other words, the task is solved 
with PCT actions and involves mathematical concepts. This includes the case in which a mathematical 
concept is explored with PCT operations.  

Example: ‘Can you play yourself skilled in mathematics?’ – 3.2.2. Concrete challenges. The core of 
the didactical sequence is to program a game on Scratch, in which a player is confronted with 
sequential arithmetic exercises to gain or lose points. The task enacts unambiguously the PCT 
learning goal of icon programming. However, the mathematical aspect of the task could be replaced 
with any other trivia-type questions and solved by the same PCT concepts and actions. Although 
posing arithmetic exercises can be considered a mathematical action, the sequence is oriented to sixth-
grade pupils, whilst the target player should be between the fourth and fifth grades, implying no new 
mathematical learning by solving the task. The task is to program, mathematics is its context. 

PCT as a context. The PCT concepts can be replaced with concepts from other contexts or subjects 
without changing the mathematical operational task. This includes the case in which a PCT concept 
is explored with mathematical operations.  

Example: ‘Concept of chance’ – 3.2.4. Subject loop. Students download and use a built-in spreadsheet 
in GeoGebra to simulate dice rolling experiments and produce ad-hoc histograms automatically. 
Students do not make (program) or modify (debug) the code. However, the task enacts the stated 
learning goal of performing chance experiments and estimating intuitive probabilities.  

The final two categories refer to the symbiotic integration of mathematical competencies and PCT in 
the same task.  

Conceptual integration. The task in itself is not solved with mathematical or PCT actions, but it 
involves concepts in both math and PCT. This is the case with several scene-setting and wrap-up 
activities.  

Example: ‘Update dice’ – 3.1.4. Scene setting. The teacher begins by recalling the game of Yahtzee, 
its rules and its mechanisms. She then asks what would happen if they modified the dice involved in 
the game. The process and consequences of modifying dice involve mathematical concepts 
(probabilities, sample space) intertwined with PCT concepts (programming). However, the task does 
not involve actions stated in the learning goals, i.e. computing probabilities, defining a sample space 
or modifying or constructing a program.  

Operational integration. Mathematical and PCT competencies are interdependent. The task cannot 
be solved by replacing the concepts from one area or another. This is the case for tasks in which both 
mathematical and PCT competencies are operational in the same action.  
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Example: ‘Polygons’ geometrical characteristics’ – 3.3. BeeBot and polygons. Pupils are asked to 
explore the figures they can make with a BeeBot. Using their knowledge of polygons, pupils explore 
their affordances and constraints. The suggested open questions include the following: What can it 
do? How does it turn? How small and big of a rectangle can they make? What does an algorithm for 
a square looks like? For a rectangle? Hereby, programming a robot to describe a determined polygon 
is, at the same time, a mathematical and PCT action. 

Discussion 
At this stage, we do not take a quantitative strategy, but it is safe to say that a majority of the tasks 
enact either mathematical or PCT competencies, thus fitting into one of the first two categories. It 
may be tempting to deem these tasks uninteresting or even problematic. The impression may be the 
same where mathematics or PCT serves as a context by idealising the cases in which mathematics 
and PCT integrate. However, these tasks may play a significant role in pausing and crystalising 
specific concepts or actions to advance the overall inquiry. Each didactical sequence is set to be 
enacted in several weeks (UVM, 2019), and the units of analysis are pieces of a bigger puzzle. 
Overemphasising integration could be counterproductive in the sense of intimidating learners who 
struggle with either learning school mathematics or adopting PCT (Sach, 2019). 

Open and intermediate coding in grounded theory methods is based on constant comparative analysis 
(Birks & Mills, 2011) by asking whether different units belong to a same category. For example, in 
‘Polygons’ geometrical characteristics’, two different tasks deserve special attention. One of them 
asks students to program their BeeBot to land in determined geometric figures. Another asks them to 
program their BeeBot to describe a geometric figure with its trajectory. Available analytical 
frameworks (e.g. Benton et al., 2017; Bråting & Kilhamn, 2021) use the notion of bridging 
mathematics and PCT, in which both tasks may well fit. However, in the former, pupils need only to 
identify or recognise a figure (mathematical concept), whereas in the latter, they ought to construct 
the figure by enacting its characteristics (mathematical action). This subtlety gave birth to the distinct 
categories of mathematics as a context and operational integration. The code states that in the former, 
one can replace mathematical concepts with others (e.g. geometrical figures by animals or colours) 
and still be able to solve the PCT task. In the latter, this is not possible. 

The example taken from ‘Concept of chance’ is classified as PCT as a context, despite the activity 
being set up in a computerised environment. The GeoGebra spreadsheet not only contains 
programmed code, but the teacher is also encouraged to be more or less explicit about how it works. 
However, the action itself is mathematical, as it activates the tools and aids competency (Niss & 
Højgaard, 2019). It may still enact other competency areas of TC related to digital technologies 
(Jankvist et al., 2018), such as digital empowerment and technological agency. That is, the use of 
computer software is not a direct indication of PCT actions. Moreover, the task can be solved by 
doing physical chance experiments and collecting data by hand, thus replacing the PCT concepts with 
analogue mathematical tools and aids. 

CONCLUSION 
In this paper, we have investigated the nature of the relations between PCT and mathematics in the 
tasks of 14 didactical sequences developed to connect mathematics teaching and TC in Danish 
compulsory schools. By conducting grounded coding and analysis of each of the tasks in this material, 
we have developed six categories that conceptualise the different ways in which mathematics and 
PCT are related, and we have provided empirical examples of each of category. The categories 
included no mathematics involved, no PCT involved, mathematics as a context, CT as a context, 
conceptual integration and operational integration. To conceptualise clear distinctions of what 



 

ICTMT 15 Copenhagen 51 

 

immediately appeared as subtle differences amongst the tasks, we introduced a distinction between 
actions and concepts. This allowed us to more clearly articulate the differences between tasks in 
which students, for example, were to draw a specific geometrical figure with algorithms (actions in 
both PCT and mathematics) and tasks consisting of guiding a sprite onto a specific geometrical figure 
at a specific location.  

We developed these categories and their definitions on the basis of data restricted to a specific 
context—in this case, the resources in a Danish pilot project. In that respect, the categories can be 
considered a humble theory (Cobb et al., 2003), as they apply to a rather restricted situation. We 
nonetheless see contributions of this work beyond a narrow national context. For one, it provides 
insights into a Danish case, which is relevant for comparing against other contexts in which different 
approaches to implementing PCT are adopted. Many countries are currently implementing or 
experimenting with various ways of integrating CT and mathematics. To understand the differences 
in these approaches and systematically evaluate and discuss their applications and potentials in 
different levels of mathematics education, there is a need to develop a vocabulary to articulate 
differences in the nature of the relations between CT and mathematics. This paper can be thought of 
as a contribution along this line and can serve as a starting point for similar analyses conducted in 
other contexts. Moreover, although developed from a Danish context, the categories provide 
conceptual clarity that can inform design experiments by acting as part of the hypothetical learning 
trajectories, which can contribute to building a solid understanding of the potentials of different PCT 
and mathematics relations. 
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INTRODUCTION 
Innovative technologies can not only enrich mathematics education and competence development, 
but also offer new perspectives on empiricism and ways to analyse (cognitive) learning processes. 
Such perspectives, possibilities and enrichments should be explored as well as discussed in the 
workshop presented here. A digital learning environment for mathematical modelling developed 
within the project Modi – Modelling digitally at the University of Münster served as a focal point.  

In this project, a computer-based learning environment is understood as a pre-structured but open 
provision of learning materials, which are delivered computer- or web-based (Baker et al., 2010; 
Isaacs & Senge, 1992; Jedtke & Greefrath, 2019). Here it is possible to provide various digital tools. 
Accordingly, such an environment also allows to stimulate independent learning processes, to enable 
new forms of interaction of the learners with the content, as well as to see teachers as companions 
(Engelbrecht et al., 2020; Greene et al., 2011; Veenman, 2007). With regard to mathematical 
modelling, it has already been demonstrated in video-based studies that various digital media and 
tools can be meaningfully integrated into all sub-processes and are also used by learners (Geiger, 
2011; Greefrath et al., 2011).  

DESCRIPTION OF THE PROCEDURE IN THE WORKSHOP 
In this workshop, which was scheduled for a duration of 1.5 hours, a computer-based learning 
environment on mathematical modelling was explored from different perspectives and thus provided 
new incentives for participants. To this end, mathematical modelling and the potentials in connection 
with digital tools and media first were briefly introduced, as they served as the basis for the design of 
the learning environment, and thus, didactical principles could be identified. On this basis, the 
developed learning environment was presented, whereby the focus was on those didactical principles. 

The computer-based learning environment includes GeoGebra as well as videos, pictures, a notepad 
and a simple calculator and could be accessed via a web browser. The technical realization was also 
presented shortly. 

Afterwards, participants had time to explore the developed learning environment and solve the 
modelling tasks. Due to the quite small group, the participants worked individually. Different 
observation focal points were offered: how is the learning environment structured, how were digital 
tools integrated, how are the GeoGebra applets designed, or how is a self-directed and open learning 
process made possible? 

The last half hour of the workshop was intended to provide a brief outlook on the possibilities of 
process data analysis on the one hand and to provide space for discussion on the other. 

The possibilities of process data analysis and learning analytics were highlighted by taking a look at 
a log data file that was generated by the interaction of one randomly chosen participant and by 
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considering an R script using the log data generated in advance. The final discussion included 
technical, ethical, theoretical and practical aspects as well as an outlook concerning studies conducted 
with the presented digital learning environment. 

DISCUSSION AND CONCLUSION 
The workshop described here was able to provide a holistic view of the use of a digital learning 
environment for mathematical modelling. Especially the active work phase, in which the participants 
could use the learning environment themselves, was profitable and offered an interesting discussion. 
This discussion focused on the open tasks, the integration of the various tools, as well as the intuitive 
design. The second aspect of the discussion was related to the analysis of the data. Here, the focus 
was on explaining some of the analyses and making the interpretation of the results more valid. From 
this, approaches to further research were developed. Overall, the workshop was accordingly profitable 
and could set new impulses for future studies. 
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This paper reviews the existing literature for insights on how functionalities in the Algebra View in 
GeoGebra can be used in task design to activate lower secondary school students’ reasoning 
competency when working with variables. Through an extensive review, only a small number of 
studies were identified, indicating that this area of research so far has been neglected. Nevertheless, 
the studies included point towards the slider tool to be useful, as it allows students to test their 
conjectures about the mathematical relationship a variable represents and to experience if-and-only-
if statements. More specifically, typing in algebraic expressions containing variables in an input field 
can orient students’ reasoning towards the symbolic representations. 

Keywords: Algebra, GeoGebra, reasoning competency, task design, variable as a general number. 

INTRODUCTION 
In this paper, I consider the potentials of GeoGebra’s Algebra View to support students’ reasoning 
with expressions and variables as a generalized number by reviewing existing literature in the field 
of mathematics education, with a focus on lower secondary mathematics education.  

Within the last decade, the use of digital technologies in mathematics education has increased. In 
Denmark, this development has coexisted with the implementation of the idea of mathematical 
competencies (Niss & Højgaard, 2019) in the Danish mathematics programs, and both developments 
have been supported by the educational policies (UVM, 2019). This to such an extent that the 
interplay of digital tools and students’ mathematical competencies have become the subject of 
research (Geraniou & Jankvist, 2019), as new didactical potentials and possibilities emerge when new 
technological tools are introduced in educational practices (Artigue, 2002). 

In Denmark, Dynamic Geometry Systems (DGS), and in particular GeoGebra, have been 
implemented in mathematics education throughout primary and lower secondary education. 
GeoGebra holds the common features of a DGS but also differs by incorporating algebra, geometry, 
and calculus in the same dynamic software (Hohenwarter et al., 2009). What can be considered unique 
for GeoGebra is the so-called Algebra View (Wassie & Zergaw, 2018). All graphical objects are 
simultaneously expressed algebraically and numerically in this panel. Through an input field in this 
panel, objects can be constructed. This includes geometrical objects, but also algebraic objects such 
as variables (expressed by a slider), functions, groups, etc. It has functionalities such as measuring, 
counting objects, logical and boolean conditions, as well as functionalities similar to Computer 
Algebra Systems (CAS). Yet, it also holds functionalities that go far beyond, and the syntax is 
considerably different. That the Algebra View provides the option for students to work algebraically 
with mathematical objects seems in line with the developments of early algebra. Already in 1998, 
Kaput (1998) pleaded to algebra school mathematics across all ages, leading to an increasing number 
of studies and projects focusing on younger students’ early algebraization (e.g., Cai & Knuth, 2011). 
Yet, little research has focused on the development of algebraic reasoning in lower secondary school 
(Knuth et al., 2011). Variable in school mathematics is used as a symbol of an ‘unknown quantity’, 
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as a ‘general number’ for any indeterminate quantities or, in functional relationships as ‘covariation’. 
Generally, the research on the potentials of the use of DGS in mathematics teaching and learning has 
focused on conceptual development in Euclidean geometry as well as simple and complex functions 
(Wassie & Zergaw, 2018), including also the bridging of these two mathematical domains (Pedersen 
et al., 2021). Consequently, the research largely focused on either co-variance in functional 
relationships or invariants in geometric constructions. More specifically, the research focusing on the 
potential for DGS to support students’ reasoning and reasoning competency has largely focused on 
the teaching and learning of Euclidian geometry (e.g., Højsted, 2020). How DGS and GeoGebra 
specifically can be used to activate students’ reasoning competency when they are working with 
variables as a general number is less researched. In this paper, I attempt to draw out of the literature 
what has been researched in this matter. Hence, I ask What existing literature for which functionalities 
in GeoGebra’s Algebra View can be used in task design for activating lower secondary school 
students’ mathematical reasoning competency when working with variables as a general number?  

THE KOM-FRAMEWORK AND ITS REASONING COMPETENCY 
The Danish mathematics competency framework (KOM) (Niss & Højgaard, 2019) was initially 
developed for educational use and as such describes what mathematics as a disciple demands of 
cognitive processes in terms of competencies. One of the outsets for this endeavor was to overcome 
the understanding of school mathematics as only concerning the learning of the subject matter, but 
also to encompass a set of competencies that reflect what is distinctive for mathematics practice in 
the society. The framework constitutes eight competencies. KOM defines a mathematical 
competency as “someone’s insightful readiness to act appropriately in response to a specific sort of 
mathematical challenge in given situations” (Niss & Højgaard, 2019, p. 6). In this review, I will focus 
on the reasoning competency. The reasoning competency is associated with situations where students 
analyze or produce mathematical arguments. These can be oral or written arguments and in a range 
of justifications form from exemplifying to deductive and formal proof. An argument is considered 
to be a chain of statements linked by inference to justify mathematical claims or solutions to 
mathematical problems. To consider what are appropriate actions in a particular situation is also 
restrained by the mathematical topic and the problem posed. At the lower secondary school level, the 
curricular goals for the competency are that students should be able to distinguish between individual 
cases and generalizations, as well as develop and evaluate mathematical reasoning, including when 
working with digital tools (UVM, 2019). The reasoning that goes on in the classroom at this level is, 
however, informal, and only a few—or maybe even no—deductive proofs are dealt with in class. Yet, 
it is at this stage that students are expected to be able to put forward justifications of mathematical 
relations that to a higher degree rely on theoretical knowledge and, to a lesser extent, their intuition.  

METHOD 
The literature search was done in five stages. In stage one, relevant texts were found by database 
searches in ProQuest and Web of Science, limited to the educational databases and texts in English. 

In ProQuest (Hits=115) the following search string was used (10th August, 2020):  

• noft(GeoGebra) AND noft(Algebra* OR vari*) AND la.exact("English" OR "Danish") 
AND la.exact("ENG") NOT edlevel.exact("Higher Education" OR "Postsecondary 
Education" OR "Adult Education") AND PEER(yes),  

In Web of Science (Hits=50), two sets were created and combined (10th August, 2020): 

• Set #1 (GeoGebra) AND noft(Algebra* OR vari*) 
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• Set #2 NOT ("Higher Education" OR "Postsecondary Education" OR "Adult Education")  

20 duplicates were found using Jabref. All in all, 146 texts were identified. Also, the following 
conference proceedings were screened by searching for “GeoGebra” and then identifying any use of 
the Algebra View in the identified papers. This was done for CERME (N=8), ICTMT 10th- 14th (N=2), 
MEDA (n=0). All 156 texts were uploaded to Covidence, where another five duplicates were 
identified. The remaining 151 texts were then abstract-screened, and 48 were full text screened, 
following the inclusion/exclusion criteria seen in table 1. Studies that used other software in a manner 
that was highly similar to that of the Algebra View have also been included in the review. 

 
Inclusion criteria Exclusion criteria 

Tool use (1) Use of GeoGebra or highly similar 
software, where algebra features are 
explicitly used. 

Only use of geometric features. 
Not GeoGebra or software with highly 
similar features 

Age group of participants (2) Primary and lower secondary.  Kindergarten, adult students, in-service 
and preservice teachers, university or 
college students 

Types of students (3) 
 

Students with dyscalculia, deaf students, 
and students with special needs 

Types of studies (4) Empirical or theoretical. Studies without any documentation, or 
any description of or reflections about 
students’ interaction with algebra 
functionalities 

Mathematical Content (5) Variable as a general number. Co-variance/functions, statistics, 
programming, STEM 

Table 1. Inclusion and exclusion criteria  

Stage 1: 156 references imported for screening  
  5 duplicates removed 
Stage 2:  151 studies screened against title and abstract 
  103 studies excluded 
Stage 3: 48 studies assessed for full-text eligibility 

  44 studies excluded: 16 (criteria 1); 9 (criteria 2 ); 10 (criteria 4); 7(criteria 5); 2 (not 
English or Danish) 

Stage 4: 4 studies included 
                        1 study included from sources identified in reference list 
Stage 5: In all 5 studies included 

Table 2. Prisma of inclusion/exclusion process  

By snowballing references, “Future curricular trends in school algebra and geometry: Proceedings of 
a conference” was identified as a source, and after the screening, one study was added.  
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PRESENTATION OF STUDIES AND FUNCTIONALITIES IN THE STUDIES 
The five identified studies are all peer-reviewed but cannot be perceived at the same quality of a 
journal paper. This indicates that the research of the potentials of GeoGebra’s Algebra View, and its 
functionalities for mathematical tasks and processes other than functions, is still in a developing 
phase. Two of the papers are theoretical, while three present empirical results. Four of the five studies 
make use of GeoGebra, and one study by Lagrange and Psycharis (2011) makes use of a programming 
“turtle world” software, LOGO, which makes use of very similar affordances to that of the Algebra 
View in GeoGebra. The software makes use of programming language, whereas the Algebra View in 
GeoGebra uses standard algebra notations and commands specific to the program. 

 

Figure 1. GeoGebra Classic online. A slider along with an input box, varying the radius of the circle c 
and line segment f. All visible both on the Graphics View and the Algebra View 

The functionalities investigated in the five papers are the slider (in some cases also controlled by an 
input box) and typing expressions containing one or more variables in the input field. In the analysis 
of the studies, I distinguish between variables that appear explicitly and implicitly in the Algebra 
View. Please, refer to figure 1 for the following descriptions of functionalities. The explicit 
appearance is the slider tool is created by typing in the name or the letter of the variable in the input 
line, which produces a line segment with a dot on it (none of which are actual geometrical objects), a 
numerical value, and the numerical limit of the variable, which by default is -5 to +5. These limits 
are changeable. When dragging along the line segment, the numerical value changes accordingly. 
One can also adjust the increment by which the numerical value changes. A slider is visible in the 
Algebra View, and can also be displayed in the Graphics View. A slider can control any geometrical 
object in the Graphics View by defining the object by a variable. For example, in figure 1, the radius 
of circle c is defined by s, and hence also the length of segment f =AB, which is why both can be 
varied by the slider. The implicit appearance of variables happens through the construction of any 
dynamic geometrical object on the Graphics View, which then appears in the Algebra View with a 
name, definition, and value. For example, a line segment, as in figure 1, will appear with a name, e.g., 
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f (a variable), defined by its endpoints, AB, and its value in terms of length, which in this case can be 
varied by dragging the slider as point B is restricted to the circle.  

ANALYSIS OF STUDIES 
The two theoretical studies, Mackrell (2011) and Jawkin (2010), are critical towards the integration 
of geometry and algebra in GeoGebra. Jawkin (2010) does acknowledge that analytical geometry is 
an obvious connection between these two domains and agrees with the intentions of the software to 
tackle student resistance towards algebra. One major concern, however, is that much of analytical 
algebra is not within the scope of elementary school mathematics. Furthermore, he argues that the 
unification of algebra and geometry in GeoGebra poses a pedagogical issue in the infrastructure of 
representation. For example, what appears to be a circle in the Graphics View is actually a plotting 
of a quadratic function, which loses its circular shape if coordinate axes are changed. Mackrell (2011) 
experiences that the construction of geometrical objects in the Graphic View that produces implicit 
variables can result in discrepancies in the representations in the Algebra View. For example, if a 
circle is dragged, the equation for the circle varies, which is an algebraic representation, whereas if a 
segment is dragged, then it is the measurement of its length that varies, which is not an algebraic 
representation (notice f and c in figure 1). Mackrell (2011) exemplifies the difficulties of using the 
Algebra View to calculate the relationship between the area of the circle and the radius, not only 
because of the discrepancy in algebraic representations but because of the large amount of 
information. Jawkin (2010), on the other hand, defends this discrepancy by considering the 
complexity of the algebraic representation that students would have to face if a line segment was 
represented by its equation and limits. Despite Mackrell (2011) being critical, she points out that the 
slider “has the potential to be an important link between geometric and algebraic representations” (p. 
3), but she does not investigate the use of the slider any further. Mackrell (2011) and Jawkin (2010) 
both point out issues that must be considered when developing task design for GeoGebra, both in 
general and when designing tasks that aim at activating students’ reasoning competency when 
working with variables. Interestingly, none of the three empirical studies seems to encounter the 
issues that are described here, which might be explained by the fact that they all use variables 
explicitly through the slider and not implicitly. 

The first example of explicit use of variables is that of Lagrange and Psycharis (2011). In the task 
posed, they ask students to dilate an alphabet letter proportionally dependent on a single variable 
controlled by a slider, using LOGO. They describe how a slider provides a linkage between the 
algebraic and the geometrical representation by “providing a link between the graphical distortion 
and the symbolic aspect” (p. 199). They argue that by dragging a slider, the status of the physical 
system is connected to the status of the symbolic system. This allows students to conjecture about 
cause and effect between the numerical values and the visual variants depicted in the Graphics View. 
In the study by Lagrange and Psycharis (2011), the students’ only possibility to change the physical 
system is through the symbolic system. This supports that students’ reasoning about the relation 
between the symbolic and physical system is oriented towards the symbolic system, since students 
must produce conjectures about algebraic expressions and test them by dragging the slider. This 
explicit use of variables and students’ possibility to algebraically act in the system indicates that it is 
possible to direct students’ reasoning toward algebraic expressions. 

Using sliders to validate or refute conjectures about the relations between numeric values and 
geometrics relationships is also elaborated by Soldano and Arzarello (2017). The task design in this 
study only partly uses functionalities of the Algebra View. The Algebra View is hidden, but a slider 
and input boxes are depicted in the Graphics View. Their task is a so-called “Hinitikka Semantical 
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game”, where students must compete while investigating under which numerical circumstances two 
circles tangent. They do so by manipulating three sliders controlling the radius of each circle and the 
distance between the circles. The Graphics View also depicts the numeral value of three variables. 
The students must discover that these express the absolute value of the difference between the radii, 
the sum of the radii, and the distance between the centers of two circles. Soldano and Arzarello (2017) 
find that by dragging sliders to represent different generic states in the configurations in the Graphics 
View, or to consider different values of a variable, students challenge each other’s claims by 
producing examples and counterexamples, leading students to find and even appreciate ‘if-and-only-
if’ relationship. The task design supports students to reason about which geometrical relationships 
the variables resemble through two different uses of the sliders. Nevertheless, the students’ 
argumentations are not oriented towards algebraic expression, as we saw in Lagrange and Psycharis 
(2011). Possibly this is because the students cannot test algebraic expressions in the task. 

In Tanguay et al. (2013), the use of variables and sliders is oriented towards reasoning about 
arithmetical relationships. They conduct an apriori analysis of a task design that displays two sliders 
along with input boxes in the Graphics View, hiding the Algebra View as in Soldano and Arzarello 
(2017). One slider controls the n-number of isosceles triangles grouped around the center, and the 
second slider controls the angles in the center. Students are to identify cases of when an n-sided 
polygon is formed, which is when the sum of the angels in the center is 360 degrees. In the case that 
students calculate the angle, they can type it into the input box. The students are thus brought to 
examine, within a geometrical context, the list of divisors of 360. The instances (e.g., n = 7) that do 
not form an n-sided polygon approximation are then to be explored by increasing the number of 
decimals of the center angle, leading the students to experience rational numbers and the decimal 
limits of GeoGebra. Here the input box is utilized as the increment of the slider becomes very sensitive 
for a large number of decimals. We see the use of variables and sliders as a means of exploring and 
reasoning about arithmetical entities on geometric representations. Again, similar to Lagrange and 
Psycharis (2011), the students cannot test algebraic expressions.  

DISCUSSION  
Considering the two appearances of variables, the explicit use of variables is dominant in all three 
empirical studies, whereas the implicit use of variables is discussed in the two theoretical papers. 
Also, two out of the three empirical studies hide the Algebra View, and the study that does not hide 
it uses LOGO and not GeoGebra. The tool that we gain the most insight into is the slider, in two cases 
along with an input box and in one case along with the possibility to type in expressions. Several 
points can be drawn considering task design for activation of students’ mathematical reasoning 
competency. I will synthesize these in the following.  

To design tasks that support the students’ activation of their reasoning competency, the slider provides 
a link between the graphic representations, the algebraic representations and the numeric values. 
Dragging the slider represents the variation of a numeric value, which allows students to test 
conjectures about the mathematical relationship the variable influence or represent by testing and 
receiving feedback from the system. This can either be for different values of the variable(s) or 
different states of the objects depicted in the Graphics View. In Tanguay et al. (2013) and Soldano 
and Arzarello (2017), we see that using the sliders only in the Graphics View can support students to 
activate their reasoning competency, as they can explore mathematical relationships, form 
conjectures, and possibly experience ‘if-and-only-if” relationships. This can be related to the “cause 
and effect” of dragging the slider. However, leaving the variable as singular entities on the Graphics 
View without giving access to the Algebra View limits the students’ possibilities to test their 
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conjectures as algebraic expressions. Task designers and mathematics educators must be aware that 
there is a potential in GeoGebra for students to test conjectures about algebraic expressions, thus 
allowing students to engage further into reasoning with variables. In Lagrange and Psycharis (2011), 
we see students who engage in reasoning about algebraic relationships by testing if the typed algebraic 
expressions result in a successful dilation of a letter and who reflect upon the results.  

In the two studies, Tanguay et al. (2013) and Soldano and Arzarello (2017), input boxes are used 
along with the slider, allowing the students to easily test specific values of the variable, and this 
without struggling with positioning the slider. If there is no access to the Algebra View, task designers 
should be mindful of this possibility as it allows students to test exact values more easily.  

Despite GeoGebra being, at least in Denmark, one of the most used DGS in primary and lower 
secondary school, the review reveals that there is a surprisingly small amount of studies that make 
use of the functionalities of GeoGebra’s Algebra View in task designs that use variables as a general 
number. This makes one wonder if the Algebra View simply is too complex for younger students to 
manage. It is clear from Mackrell (2011) and Jawkin (2010) that the algebraic representations do 
impose challenges, not least in terms of discrepancies in the algebraic representations and the amount 
of information assessable in the Algebra View. Task designers and educators should keep these issues 
in mind when designing tasks using functionalities of the Algebra View. As in Tanguay et al. (2013) 
and Soldano and Arzarello (2017), designers can hide the Algebra View altogether, but there are also 
other possibilities to limit accessible information in the Algebra View. For example, pre-constructed 
objects can be hidden, or the Algebra View can be set to only show descriptions or values, making 
the information less complex. In addition, using the explicit appearance of variables instead of the 
implicit appearance of variables can ease these issues. Nevertheless, there is still much to be 
discovered about how functionalities in the Algebra View can be used in task design for activation of 
students’ reasoning competency when it comes to variables as a general number. In Lagrange and 
Psycharis (2011), we do get indications of how typing in expressions that contain a variable that is 
simultaneously influenced by graphic representation in LOGO can do exactly this. Will a similar 
design bring similar results if tried out in GeoGebra? And how can we design tasks drawing on these 
functionalities to engage lower secondary students in mathematical reasoning on core concepts and 
structures in algebra, such as generality, equality, additive, and multiplicative structures?  

CONCLUSION 
What can be concluded from this review is that, in general, very little has been researched about 
which functionalities in GeoGebra’s Algebra View for working with variables as a general number, 
as well as how to use the functionalities in task design for activating lower secondary students’ 
mathematical reasoning competency. Still, the review does indicate that using the slider for explicit 
variables can be used for this aim, and typing in expressions containing variables should be further 
explored in the context of GeoGebra. 
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During a math trail, students discover authentic mathematics problems in their environment. Studies 
have shown that this method has several advantages for learning outcomes. Nevertheless, it is a rarely 
used way to teach mathematics. By means of a Massive Open Online Course (MOOC), it is the aim 
of the MaSCE³ project to educate teachers in designing outdoor activities for their students and 
implement them into their regular teaching. A MOOC has several benefits and provides new 
possibilities in the design of a training session, with respect to “traditional” trainings. In this paper, 
we will focus on the outcomes of the MOOC with respect of the participating teachers. Moreover, in 
an interview-based comparison with our beforehand made training experiences, we highlight the 
benefits and challenges of online professional development via MOOC, taking also into account the 
coronavirus situation.  

Keywords: MathCityMap, MOOC, outdoor mathematics, teacher training. 

INTRODUCTION 
Teaching mathematics often seems to be artificial or embedded into quasi-realistic contexts (Vos, 
2015). It is questionable whether students can be motivated to understand mathematics in this way. 
Outdoor mathematics is an approach to let students discover mathematics in their environment by 
leaving the classroom. The environment is rich in objects and situations that have mathematics in it. 
One idea of doing mathematics outdoors is mathematics trails (also math trails). Along such a trail, 
students are led to solve math problems (or tasks) on real objects by measuring or counting (Shoaf et 
al., 2004). With the MathCityMap (MCM) system, the math trail idea is manifested into the 
educational context and supported by a digital component. This system was founded at Goethe 
University Frankfurt in 2012 and is currently available in 12 languages with more than 20.000 tasks. 
The system takes advantage of the following benefits: (i) The mathematical tasks are authentic and 
taken from the students’ everyday life; (ii) The smartphone is a relevant technical tool for the students 
and supports them in the solution process; (iii) Studies on the use of MCM show that students tend to 
remember the mathematical contents longer in comparison to concepts solely learnt inside the 
classroom if the method is used regularly (Gurjanow et al., 2019a). In addition, math trails have the 
potential to increase students’ motivation (Gurjanow et al., 2019a). Despite these advantages, our 
experiences show that math trails are often solely used for excursion days and that some teachers 
have concerns about the increased time exposure, supervision and outdoor task design while using 
outdoor mathematics in their teaching. Apart from the technical development of the system, it is 
therefore of high relevance to educating teachers in using outdoor mathematics regularly.  
In order to introduce teachers to MCM and its potential for the use in mathematics teaching/learning, 
we have held regular face-to-face training courses during the last years. Recently, the aim of educating 
an increasing number of teachers has been pursued within the Erasmus+ project MaSCE³ (Math Trails 
in School Curriculum and Educational Environments of Europe; 2019-2022; www.masce.eu), 
especially in the Intellectual Output “MOOC (Massive Open Online Course)”. Seven partners from 
five different countries, i.e. Estonia, France, Germany, Italy, Portugal and Spain, work together 
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hereby. This international collaboration and the partners’ experiences in teacher education and 
professional development allow the hypotheses that a MOOC might convince a huge amount of 
teachers in using math trails more regularly. To underline this potential, we focus on the following 
research question: What are the benefits of the MOOC in comparison to previous face-to-face 
mathematics teacher training experiences in MCM? 

THEORETICAL BACKGROUND 

Mathematics Teacher Education and Professional Development 
In professional development initiatives, teachers are engaged in activities that aimed at increasing 
their own knowledge of mathematics, either by looking more closely at particular topics or by 
learning about a new mathematical development (Matos et al., 2009). Teachers can choose from a 
big selection of professional development activities offered by universities, their own schools or 
educational systems, which often reflect current interests or trends within the system. These activities 
do not attend exclusively to mathematical content knowledge, but engage teachers in the process of 
acquiring new techniques for mathematical instruction (Liljedahl et al., 2009). Courses can focus, for 
example, on issues such as implementing new guidelines or standards, collaborative groups, or the 
use of particular resources to teach specific content topics. These professional development 
experiences are offered in formats such as workshops or seminars, providing teachers with 
“opportunities to connect with outside sources of knowledge in a focused, direct and intense way” 
(Loucks-Horsley et al., 1998, p. 87). Although the organization and duration of these initiatives vary, 
participating teachers often add something new to their knowledge or pedagogical stock, which they 
could take back to their classrooms.  

MOOCs for Mathematics Teacher Education 
MOOCs are courses offered openly to learners through the web, and appear as dynamic and 
diversified learning spaces with varying factors, such as flexible time frames, a massive number of 
participants from different geographic areas, motivation to continue learning, and opportunities for 
designers to implement novel pedagogies (Manathunga et al., 2017). The activities provided in these 
courses range from watching certain videos, posting on forums or blogs, sharing experiences on social 
media, responding to quizzes, doing learning tasks for individuals or workgroups, and/or conducting 
peer review activities (Taranto, 2020). Learners are involved to various degrees: many just want to 
check out the resources and the new educational model, while others are really motivated and follow 
every aspect of the course, often interacting with other MOOC participants. Likewise, educators’ 
involvement varies substantially: in some courses, the educators disappear when the course starts; in 
others, they are intensively involved, injecting dynamism to the proposed activities and providing 
their students with feedback (Daza et al., 2013). It is worth noting that the emergence and use of 
MOOCs for professional teacher development are still uncommon, especially in mathematics. In fact, 
although there is a wide choice of many different topics, when looking specifically for a MOOC 
aimed at mathematics teacher education, the range is limited (Aldon et al., 2017). Nevertheless, there 
is a growing interest in MOOCs involving mathematics teachers as participants. Therefore, MOOCs 
for teacher education are on the verge of gaining a foothold. In this stream of ideas, the University of 
Catania has designed, delivered and monitored a MOOC for teacher education on the MaSCE³ project 
issues, as an element of innovation. We will present the MOOC in “Results” section. First, we will 
give an overview of MCM as the main focus of the MOOC and the teacher training experiences 
gained with it so far. 
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THE MATHCITYMAP PROJECT  
MCM consists of two components (see Figure 1): a web portal for teachers to view, create and store 
outdoor tasks and trails and a mobile app to solve the tasks that belong to an outdoor trail. The mobile 
app guides the students on a map, provides hints, validates the solution and displays a sample solution 
(see also Ludwig and Jablonski (2019) for a detailed description). 

 

Figure 1. A math trail in the MCM web portal (left) and an example task the MCM app (right) 

During the last years, the MCM system has been developed and improved through new technical 
features. In the interface of web portal and app, the Digital Classroom helps teachers to organize a 
math trail with MCM. It is a temporary digital environment to see where the students are, which task 
they work on and how they perform. With the chat function, the teacher can communicate with the 
students in case of questions. All the inputs and events, such as opened tasks and used hints, are saved 
in an e-portfolio.  

METHODOLOGY 
In order to answer the research question, we used a mixed-methods approach. On a quantitative level, 
we have the answers of teachers participating in the MaSCE³ MOOC to a pre- and a post-
questionnaire. From the first, we deduce from which countries the teachers come from; from the 
second, limiting ourselves only to the answers of the teachers who have completed the MOOC, we 
analyse a question concerning the degree of agreement of the teachers on asynchronous 
communication. On a qualitative level, we analyse the benefits and disadvantages from the 
perspective of a trainer. For this purpose, we interviewed one of the MOOC instructors who has 
gained in addition experiences in face-to-face teacher training during the last years.  

RESULTS 

Face-to-face Teacher training on MCM 
The MaSCE³ MOOC is based on the experiences made from more than 50 teacher pieces of training 
on MCM all over the world. For that, a Short-Term Curriculum (STC) has been developed. It consists 
of five consecutive modules which are described in detail in Milicic, Jablonski and Ludwig (2020).  

As one example of how the STC can be used for teacher training, we will present a training course 
conducted by the University of Catania. The University of Catania organizes yearly training sessions 
for teachers of all school grades. For mathematics teacher training, both in 2018 and 2019, the training 
offer included a course on MCM, addressed to 20 teachers (for each year). In both editions, the course 
consisted of 3 meetings of 4 hours each, delivered at a certain time distance (every 2–3 weeks) from 
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each other (Figure 2), in order to allow the teachers to assimilate the topics explained and to have 
time to find measures and data on site, so as to create their own tasks. The aim of the course was to 
introduce the idea of mathematical trails for doing outdoor mathematics with MCM. 

 

Figure 2. MCM teacher training courses in Catania 

In the first meeting (Figure 2), teachers take the perspective of school students and run an outdoor 
trail using the MCM app. In the following meetings, teachers take the perspective of task and trail 
designers. Hereby, the teachers had to design 4 tasks (in the first course) and 6 tasks (in the second 
course) that would form a mathematics trail. The tasks could be located in their own city or, in 2019, 
also in their own school[1]. This choice made it easy for the teachers to find the necessary data on-
site, but since not everyone was from the same city, in the first year this led to the choice for some to 
work individually. In the second year, however, we preferred a methodology of working in groups, 
even though the members were not all from the same town. All the tasks were revised by the course 
teacher educator. All the teachers completed the teacher educator’s requests: in the first course, 7 
math trails were implemented, and in the second course, 6 math trails were implemented.     

The MaSCE³ MOOC  
As mentioned in the introduction, one of the Intellectual Outputs of the MaSCE3 project is an open 
and freely accessible MOOC to educate a wide range of teachers to use MCM and its new tools in 
their teaching. The MOOC title is “Task Design for Math Trails” and it is aimed at mathematics 
teachers of all school grades from all over Europe and the world. It is delivered from 8 March to 30 
May 2021 through the DI.MA. platform (http://dimamooc.unict.it/) managed by the University of 
Catania. 513 teachers enrolled in the MOOC, from 36 countries, including 18 European countries. 
The presence of qualified instructors from different countries (Estonia, France, Germany, Italy, 
Portugal and Spain) guarantees fruitful monitoring of the participants’ learning pace and prompt 
support in case of necessity. The aim of the MOOC is to raise the awareness of participants with 
regards to the potentials of the math trails tasks, and make them autonomous by showing them how 
to create tasks and use them with their own students. The MOOC is organized in 12 weeks in total as 
follows: the first week to enter the world of outdoor mathematics learning; four thematic modules of 
two weeks each, in which teachers will be guided in the creation of 8 math tasks of different types, 
located in their own environment, which will form a trail; three weeks in which the teachers will be 
able to accomplish the final homework, i.e. run their own math trail with their students and report 
back on this experience. Table 1 also gives an overview of the topics that will be covered during the 
MOOC. The teachers that completed the MOOC were 93 from 12 countries. They have created 911 
tasks and 105 trails.   
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Name of Module Topics 

Introduction Overview: outdoor mathematics; why use MCM; getting to know the 
instructors 

Module 1: Outdoor 
learning and Task 
Design 

- Organisational aspect for outdoor learning  
- Creating an account on the web portal 
- Overview of the web portal and how to create a task on it 
- Format and Criteria for Task Design (Exact Value, Multiple Choice) 

Module 2: Subtasks 
and Task Wizard 

-Use of subtasks 
-Functionality of the Wizard 

Module 3: Interval -Another format Task Design: the Interval 
-Choose an appropriate interval, errors and examples 

Module 4: Trail and 
app 

-Create trails  
-Introduction to the idea and the use of the Digital Classroom 
-How the app works and the narrative feature 

Final Experimentation: run the trail with your students using the Digital 
Classroom 

Table 1. MaSCE³ MOOC: structure and topics   

Comparison of the Different Training Formats 
After an exemplary description of the previously hold face-to-face trainings and the MaSCE³ MOOC, 
we compare the benefits of these training formats. The presentation is grounded on the questionnaire 
data from the MOOC participants as well as an interview with a MCM trainer that was involved in 
both, face-to-face trainings and the MOOC instructions. The first point we want to take into account 
is the target group for presenting innovations. The teachers who take part in the MOOC are a massive 
community spread all over the world. Our trainer summarizes in the interview that  

“a MOOC makes it much easier to train more participants and, of course, time flexibility is one 
of the best advantages.”.  

The availability of the MOOC materials in the digital format is therefore a strong benefit in reaching 
a worldwide community and spreading technical innovations of MCM produced within the MaSCE³ 
project. For example, the Digital Classroom (mentioned in the section “The MCM project”) meets 
many of the requirements that teachers made in face-to-face training, especially the possibility to see 
where students are geolocated and how they move, what tasks they are doing, and if they need some 
help; to be able to interact with them even if you are not physically close thanks to the chat function. 
By means of the MOOC, the innovation could be spread rapidly all over the world. In addition, the 
MOOC could be conducted despite the COVID-19 pandemic without travelling. Still, it is clear that 
the  

“materials [of the MOOC] must be prepared in advance, mainly videos because they take time 
to be prepared and as MCM goes very fast in its development, it is difficult to prepare the lastest 
novelties in the training. In this sense, face-to-face modality is more flexible to change the 
schedule or to adapt it to introduce something new.”  

The second point of our comparison focuses on the intensity of training. As the previous presentation 
shows, the MOOC training is spread over a larger number of weeks than face-to-face experiences. 
This allows teachers to gradually internalize the content and become more aware and autonomous in 
practicing mathematics outdoors. In face-to-face training, it has often been necessary to repeat 
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instructions on how to operate the web portal several times in different meetings. The MOOC videos 
overcome this obstacle [2]: they can be watched and reviewed. In addition, teachers have more time 
to design and create their own tasks. Still, the face-to-face training allows a common introduction to 
the MCM system which is especially highlighted in the expert interview as one benefit of face-to-
face trainings:  

“Regarding math trails, for me, the main difference between face-to-face training and the 
MOOC is the possibility of running a trail with the participants in the first case […] From my 
experience, running a trail with teachers as training is very beneficial as a starting point.”  

So we identify a gap between a common and intensive starting point in face-to-face trainings on the 
one hand and an intense work on task design over a longer period and in the teachers’ locations on 
the other hand. In a third aspect, we focus on language and communication. A main contrast between 
face-to-face trainings and the MOOC is that the first is normally in the native language of the 
participants and the second is in English. Still, the MOOC is supported with subtitled materials and 
the opportunity to design tasks in a chosen language, so our expert states that “language was not a 
barrier for participants.” 
Another main difference is the format of working. It is true that the task creation work in the MOOC 
is done individually, but teachers work in an environment where peer interaction is encouraged. In 
fact, there are specific spaces in the MOOC (forum and padlet) to encourage communication and 
sharing among participants in this learning experience. From the final questionnaire (here we only 
consider the answers of the 93 finalists), with a Likert scale question (from 1 = strongly disagree to 4 
= strongly agree), we asked the teachers to express how much they agreed with this statement: 
Communication message boards encouraged interactions with other participants. It turned out that 
82% (considering together items 3 and 4 of the Likert scale) agreed. This testifies to the fact that most 
of the finalists not only used the message boards, but also appreciated the opportunity to exchange 
views with their peers. Therefore, interaction in the MOOC is possible even though in a different 
form than in face-to-face trainings. 

CONCLUSION 
In the comparison of face-to-face teacher trainings and the MOOC, we identified several benefits of 
both formats which lead to the answer of our research question and future challenges in designing 
MOOCs. Through its online and long-term format, the MOOC has many benefits in comparison to 
“traditional” teacher pieces of training, e.g. the possibility to participate independently from the 
location, and even in times of a pandemic. Also, the number of participants in the MOOC is massive 
compared to the numbers hosted by previous face-to-face MCM training courses. Furthermore, it is 
true that the MOOC lasts a certain number of weeks and there is a lot of flexibility in both attendance 
and deliverables. The teachers that completed the MOOC were 93 from 12 countries. This gives an 
idea that the MOOC reaches more teachers than the previously conducted teacher events on MCM. 
On the same side, this results in a significantly higher number of produced material, i.e. tasks and 
trails, from which teachers not enrolled in the MOOC can also benefit, as these productions are public 
on the web portal. Through the international working space, the MOOC underlines the idea of MCM 
as an international tool for mathematics education immensely. Still in this setting, it remains a 
challenge to allow collaboration as in face-to-face training. The MOOC provides several possibilities 
for interaction among the participants, i.e. in forums and through the MCM community website. In 
addition, the review team consists of instructors from five different countries (Estonia, France, 
Germany, Italy, Portugal and Spain), fluent in English. Hereby, it can be guaranteed the teachers 
receive the necessary support and monitoring concerning their learning progress. The MOOC is 
therefore a merge of both: individual professional development, on the one hand, and the integration 
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into an online community, on the other hand. Still, or especially through the online format combined 
with individual outdoor activities, it seems to be an adequate approach to educate mathematics 
teachers in outdoor mathematics.  
Future research should investigate additional developments in MOOC designs. MOOCs generally 
encounter a high drop-out rate, which has never been the case in MCM face-to-face courses. Although 
the literature reports that the high drop-out rate is a physiological factor of MOOCs (Daza et al., 2013; 
Taranto, 2020), for future research it may be interesting to investigate how we can try to reduce its 
being so high. For example, we should take into consideration the benefits of face-to-face trainings 
(e.g. flexible in presenting innovations, common activities and direct communication) and try to adapt 
them to the digital training format. 
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NOTES 

1. During the first year, especially teachers of students in lower grades pointed out that it was not always easy to take the 
children out during curricular hours (both for safety and responsibility reasons). The following year, in agreement with 
the team in Frankfurt, the opportunity was given to also create trails within one’s own school (i.e. in places that are 
actually not accessible to everyone, but to the student population of that particular school). 

2. We specify that the videos are accompanied by subtitles in the instructors’ languages (this makes the training easy even 
for teachers who are not fluent in English). 
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Previous research indicated that silent video tasks might be useful for formative assessment practices. 
Thus, in a second data collection phase of a doctoral study on the development and design of silent 
video tasks, participants were selected to have some previous experience with formative assessment 
practices. Three teachers in two Icelandic upper secondary schools collaborated with the first author 
of this paper to develop silent video tasks’ instructional sequence. One teacher implemented three 
different silent video tasks with his low-achieving students in 11th grade and two teachers 
implemented one silent video task each with their groups of low-achieving 11th-grade students. The 
collaboration with teachers influenced the way feedback was given to students (immediate instead of 
delayed) and instead of the former practice of selecting a few student responses to discuss with the 
whole group, teachers went through all student responses with the group and reacted thereto. 

Keywords: Encouraging discussion, formative assessment, silent video task, teaching with new 
technologies. 

INTRODUCTION 
In a silent film or video, no commentary directs the viewer’s attention where to look. It requires a 
considerable amount of work from viewers to internalise and describe for others what captured their 
attention (Pimm, 1995). According to Pimm, spoken language is an important learning medium in 
mathematics, and we often grasp concepts by talking about them in our own words (Pimm, 1987). 
When learners get asked to record their voice over to an animated video clip, as is done in silent video 
tasks, they are restricted by not being able to point or touch. This restriction can help encourage 
learners to move from predominantly informal spoken language (with which students are more or less 
fluent) to the formal written language of mathematics (Pimm, 1989). When learners report to their 
peers, they must choose what to say, consider what they know, and what they believe their audience 
knows. Such practice can place sophisticated linguistic demands on learners’ communicative 
competence and help teachers gain access to learners’ proficiency (Pimm, 1989). Despite its 
importance, the discursive practice of explaining (asking students to give oral explanations) in 
mathematics was identified by Erath to be not only too seldom practised but also too seldom set as 
an explicit learning goal (Erath, 2017). 

Silent video tasks require teachers to set the discursive practice of explaining as an explicit learning 
goal. They involve teachers asking students to work in pairs to record a voice over with explanation, 
description, or narration of what they see in a short (less than 2 minutes long) silent animated video 
that focuses on one mathematical concept or phenomenon. Results from the first phase of a doctoral 
research project on the design and development of silent video tasks (Kristinsdóttir et al., 2020a) 
indicated that these tasks could be used as part of teachers’ formative assessment practices, making 
classroom discussion based on students’ responses around the issue of differences in conceptual 
understanding possible. This paper describes some initial results regarding teachers’ preferred ways 
of implementing silent video tasks in their classrooms with formative assessment practices in mind. 

mailto:bjarnheidur@gmail.com
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FORMATIVE ASSESSMENT 
For formative assessment practices, Wiliam and Thompson (2008) described the following five key 
strategies: i) Clarifying and sharing learning intentions and criteria for success, ii) Engineering 
effective classroom discussions and learning tasks that elicit evidence of student understanding, iii) 
Providing feedback that moves learners forward, iv) Activating students as instructional resources for 
one another, and v) Activating students as owners of their learning. Behind these five key strategies 
lies a definition of formative assessment: 

An assessment functions formatively to the extent that evidence about student achievement is 
elicited, interpreted, and used by teachers, learners, or their peers to make decisions about the next 
steps in instruction that are likely to be better, or better founded, than the decisions they would 
have made in the absence of that evidence (Wiliam, 2011, p. 43). 

For technology-based formative assessment, Wright et al. (2018) defined six potentials that support 
teaching and learning: a) Provide immediate feedback, b) Encourage discussion and develop 
cooperation, c) Provide an objective and meaningful way to represent problems and 
misunderstandings, d) Provide opportunities for using preferred strategies in new ways, e) Help 
raising issues that were previously implicit and not transparent for teachers, and f) Provide different 
feedback outcomes (Wright et al., 2018, p. 219). After the first implementation phase, findings 
suggested that silent video tasks supported all but the first of these potentials since feedback was 
delayed and took place in a follow-up lesson day(s) after students handed in their task responses 
(Kristinsdóttir et al., 2020a). This paper, which focuses on a second implementation phase that took 
place in fall 2019, reports on new findings where the instructional sequence of silent video tasks was 
changed (upon suggestion from participating teachers) in order to make immediate feedback possible. 

RESEARCH DESIGN 
Because results from the first implementation phase of the research project had indicated that silent 
video tasks might be useful for formative assessment practices, for the second implementation phase, 
I (first person refers to the first author) searched for upper secondary schools to work with that 
officially mentioned the use of formative assessment in their school policy. Mathematics teachers at 
these schools were invited to join the project regardless of what mathematics courses they taught. I 
intended to create silent videos based on their needs for the courses that they taught. Three 
mathematics teachers in two upper secondary schools in Iceland accepted participation. It so 
happened that all three teachers taught remedial classes for low-achieving 11th-grade students in 
courses focusing on algebra and coordinate geometry. Since the course schedules for these courses 
allowed for time for experiments, the teachers suggested that I would make silent video tasks on 
topics from this course. 

In collaboration with the teachers, I prepared three silent videos with a focus on characteristics of the 
coordinate system, line slope, and linear functions. They were all made with GeoGebra and screen 
recording software. The first silent video (SVT1) highlights different parts and certain characteristics 
of the coordinate system (see https://youtu.be/8cLrbJM4F-I). The second silent video (SVT2) shows 
the graph of a line that rotates around a point making pauses at different slopes (see https://youtu.be/-
snC4JLe63g). The third silent video (SVT3) shows discrete and continuous graphs of two lines with 
positive slopes that intersect (see https://youtu.be/aBtlIVTcs8M). The original plan was that all 
teachers would implement all three videos over the course of one semester, but in the end, only Orri 
at Blackbird High School (teacher and school names are pseudonyms) did so, whereas Andri and 
Edda at Mallard High school implemented one silent video in their classes. 

https://youtu.be/8cLrbJM4F-I
https://youtu.be/-snC4JLe63g
https://youtu.be/-snC4JLe63g
https://youtu.be/aBtlIVTcs8M
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Data that was collected in this phase of the research project included interviews with teachers, 
students’ responses to peer evaluation and self-reflection worksheets that teachers prepared, students’ 
responses to the task, classroom observation notes, communication with teachers via email and 
WhatsApp, and notes from my research journal. Semi-structured interviews (Brinkmann & Kvale, 
2009) were conducted at the start of the semester, and before and after each silent video task 
implementation. The interview guides were based on earlier interview guides from the first 
implementation phase. They were updated with a few new questions, two of which were inspired by 
Schoenfeld (2007). These questions addressed whether the task sufficed in on the one hand making 
students’ voices be heard in class and on the other hand in providing teachers with information 
regarding common misunderstandings. 

With Andri and Edda, I conducted two preparation interviews with both of them together and one 
interview with each of them separately after they tried out a silent video task in their classrooms. I 
transferred ideas from the first interview with Andri and Edda to Orri (see Figure 1) and conducted 
five interviews with Orri, before and after using the first two silent video tasks, and after using the 
third silent video task. Teachers were informed that the focus of the interviews would be on their 
experiences with the implementation of silent video tasks. As compensation for their participation, I 
offered participants support meetings in the case that they were working on changes in their practice. 
Orri accepted this offer and we met six times to discuss ways to build a thinking classroom (e.g. 
Liljedahl, 2018) at meetings that were recorded but not transcribed or analysed. 

 

Figure 1. Approximate timings of silent video task implementation and interviews with Andri and 
Edda at Mallard High School and Orri at Blackbird High School during fall semester 2019. 

The Icelandic Data Protection Authority was informed about the research project. Participating 
teachers and their school leaders received information and signed an informed consent explicitly 
stating the research aims, the intended data collection, treatment of data and in what ways results 
would be communicated. It is important to note that in fall 2019, the General Data Protection 
Regulation (GDPR) had recently been introduced to school leaders in Iceland. They were very 
cautious regarding data collection in classrooms. In order to better grasp speech, gestures and mimes 
that often happen simultaneously in classrooms, I had planned to video record the task 
implementation, but school leaders preferred field notes over video data. To build trust and positive 
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correspondence needed for research that is done in collaboration with teachers, I, upon their 
recommendation, decided to refrain from collecting video data and take field notes instead. No 
personal or personally identifiable information was collected from students and they all received 
information sheets about the research project that their teachers were taking part in. 

Freudenthal (1973) discusses the use of some kind of think-aloud exercises that he calls thought 
experiments and, according to Gravemeijer (1994, p. 448),  

[…] the elaboration of an educational design is, in practice, constituted via a thought experiment. 

In addition to setting a mathematical learning goal before starting developmental research, the thought 
experiment is intended for developers to envision how the teaching-learning process might proceed 
in the classroom. This free-flow and in-the-moment exercise is a tool that I used in three of the five 
interviews with Orri (see Figure 1). I asked him to imagine how he would implement a silent video 
task and think aloud what he would do and why. He could change his mind on the go when needed, 
in the midst of wondering about different variations of instructional sequences that he might use. 

In the first interview, I used the thought experiment to hear Orri’s initial ideas and in later interviews 
as a means to reflect on his experiences and keep a record of his ideas for the next implementation 
round. He not only thought aloud but also reflected on his in-the-moment thoughts and related them 
to planned actions for the next round of implementation. Normally, one would expect it to require 
training to remember and reconstruct one’s own interpretations, moments of thought, sensemaking 
of any kind. It might be that since we sat down for the interviews immediately after implementation 
it was easier to apply this method despite no training. 

DATA ANALYSIS 
For the purpose of this paper, the data that was analysed included transcribed interview data, research 
journal notes and notes from classroom observations during the implementation of silent video tasks. 
Interviews were transcribed verbatim in Icelandic and when possible, I transcribed them immediately 
after the interview took place. As I asked teachers to implement silent video tasks in their classrooms 
and reflect on their expectations and experiences, I took a hermeneutic (interpretive) 
phenomenological stance (Van Manen, 2016) to answer the question of how and why these tasks 
could be used for teaching and learning in the mathematics classroom. Especially in the case of Orri, 
I studied teachers’ actions and reasons given for their actions with the aim to make the instructional 
sequence generalizable. In other words, to describe their instructional sequence in such a way that 
could be helpful for other teachers aiming to use such tasks. 

It was important that this happened in the busy setting of participating teachers’ own classrooms 
where I could observe their work and make notes preparing for the next interview. In the interviews, 
I referred to teachers’ actions and when possible, they would state the reasons for their actions. 
Moreover, teachers gave their personal insight as to whether and how they could use this tool for the 
teaching and learning of mathematics. Directly after our meetings, I reflected on teachers’ insights in 
writing and then repeated that process when I analysed the transcripts from our interviews. Thus, I 
used iterative cycles of writing notes and reflections, considering how excerpts from the data 
contributed to evolving understanding of the way silent video tasks could be used in the mathematics 
classroom. 

In the first data familiarization phase, which started right after the first interview and lasted until the 
last interview had been transcribed, I focused on the instructional sequence design, making sure that 
ideas would be transferred between participating teachers and paying attention to how these ideas 
developed over the semester. In a second familiarization phase, I used open coding to mark anything 



 

ICTMT 15 Copenhagen 75 

 

I found interesting in the data. To summarize and deepen my thoughts, I wrote detailed notes in 
English in the third round of reading through the transcripts. On the basis of these detailed notes, I 
created a condensed overview of how Orri’s ideas, experiences and expectations developed in time 
on a large sheet of paper (630 × 891 mm). To document the way that the instructional sequence 
developed, I drew comics and flow charts. 

FINDINGS AND DISCUSSION 
To enrich the discussion, especially in the case of students’ responses being similar, I had received a 
suggestion to prepare pseudo-responses for teachers to use in a mixture with their students’ responses 
to the task. This idea of “the use of pre-designed student responses to unstructured mathematics 
problems as a possible resource for teachers to develop their capacity of acting contingently in the 
mathematics classroom in a productive way, whilst teaching” (Evans & Ayalon, 2016) also seemed 
to me to be a possible workaround in case of tensions coming up regarding the use of student task 
responses as a basis for discussion–a tension that teachers had experienced in the first implementation 
phase of the research project. Being willing to create some pseudo-responses for teachers was 
therefore one of the ideas that I introduced to teachers who participated in the second implementation 
phase of the research project. Upon receiving this suggestion, teachers were not fond of the idea. They 
explained that pseudo-responses might affect the trust between teacher and students as students might 
recognize that none of them had created that response. They also pointed out that such responses 
might address conceptual conflicts that their own students had not yet encountered. Therefore, 
pseudo-responses were neither created nor used in this implementation phase. 

Initial ideas had suggested that teachers would listen to all students’ responses and select and 
sequence some of them to be played at the start of the follow-up lesson where a whole group 
discussion would take place. For example, responses could be sequenced such that they would range 
from everyday language to formal mathematical language. However, similar to what Wright et al. 
(2018) suggest, Andri and Edda wanted feedback to be immediate and to take place directly after 
students handed in their responses. They underlined, based on previous experiences with other types 
of tasks, the importance of immediate feedback for formative assessment practices. As for the 
sequencing of students’ responses, they pointed out that students might interpret any sequencing to 
be “from the worst to the best”, affecting their attention and shifting the focus away from listening, 
reflecting, and learning. Andri and Edda also mentioned that it might be interesting to have students 
give each other feedback, for example by each pair of students listening and reacting to two or three 
of the other student pair’s responses as a warm-up for the whole group discussion.  

Andri and Edda’s suggestions and ideas were transferred to Orri. He decided to prepare and try out 
peer assessment and self-assessment in his implementation of SVT1. Each pair of students would be 
assigned two other pairs’ responses that they were asked to reflect on along with reflecting on their 
own task response. It so turned out that little time was left for group discussion based on SVT1 and 
Orri felt like students got away little effort, giving and receiving too meagre of a feedback. He rather 
wanted to play all students’ responses in a random order and react to them “on the go” in a whole-
group discussion. Furthermore, Orri decided to show the next silent video, SVT2, twice to the student 
group: first at the start of the learning sequence, before they would learn about the slope of a line, to 
collect students’ ideas in a word cloud, and then again at the end of the learning sequence, asking 
students to record their voice-over task responses. This way, Orri was able to collect students’ initial 
ideas (some of which surprised him) and receive the important information that even though his 
students according to course schedules were supposed to have learnt about the concept of a line 
before, none of them came up with the word “line” when watching the video. This information helped 
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him plan the lesson sequence accordingly. All three teachers experienced surprise when it came to 
listening to students’ responses. They discovered new obstacles and misunderstandings that had been 
previously hidden to them, similar to previous results from the first implementation phase 
(Kristinsdóttir et al., 2020b). 

By deciding to lead a group discussion without having heard any of the students’ task responses 
beforehand, Orri put quite some strain on himself. Despite that strain, he felt that it was a more 
genuine and interesting way of giving feedback and that this way it was easier to involve students in 
giving feedback to each other as compared to asking them to write reflections about only a part of 
their peers’ task responses. After the lesson, as Orri and I listened to students’ responses to SVT2 
during our interview, Orri sometimes noticed something that he had not paid attention to in the action 
of leading the group discussion. He mentioned that in such cases he could give written feedback 
afterwards on top of the feedback already given during the group discussion. 

Information about Orri’s experiences was transferred to Andri and Edda and implemented SVT2 in 
the same way as Orri. Similar to what teachers had predicted, students seemed to find it important 
that their task response was played during the whole-group discussion. During the discussion, for 
example, teachers asked students to pay attention to if they could notice any differences and 
similarities between responses and asked students to repeat what they had understood from a given 
response. No student-to-student debate was observed during classroom observations of SVT2 and the 
effort made by teachers to involve students in the discussions resulted only in short reflections and 
surface discussion. At the end of the lesson, after the group discussion, Andri and Edda asked students 
to answer in writing what (if anything) they would have liked to change in their voice-over, if there 
was anything (then what) that surprised them or made them wonder, and if they would like to add any 
comments or questions regarding the silent video task. 

Since Orri felt that students had not participated actively in the group discussion of SVT2, he decided 
for the implementation of SVT3, after the whole-group discussion, to ask students to record a new 
task response. However, during our interview when listening to students’ initial and new responses 
to SVT3 side-by-side, Orri decided that in future he would either skip this re-recording part 
completely or maybe–similar to what Andri and Edda had done–he would let students reflect in 
writing on what (if anything) they would like to change and why. The reason for this was that he 
found the original versions more informative than the new ones, and he was not sure why students 
had changed what they changed. All three teachers mentioned that leading group discussions was a 
challenge, similar to previous results (Kristinsdóttir et al., 2020b). During the implementation of 
SVT3, Orri, however, managed to engage students more effectively as participants in the whole group 
discussion. 

To summarize the ways in which participating teachers decided to implement silent video tasks, the 
following describes the instructional sequence developed: 

1. (optional) Teachers might show the silent video at the start of a learning sequence and collect 
words that come into learners’ minds (e.g., in a word cloud). 

2. Teachers show the video to the whole group of learners toward the end of a learning sequence. 
3. (optional) Teachers might guide students through closing their eyes and making gestures to 

indicate what happened in the video. 
4. Teachers make learners aware of that different approaches can be taken to create a voice-over, 

that their task response might help other learners to gain access to the mathematics shown in 
the video, and that it is theirs to decide what to focus on in their response. 

5. Teachers assign learners into groups of two using a visibly random method. 
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6. Pairs of learners watch the video as often as they like on their own device while they prepare 
their voice-over recording. 

7. Learners get an opportunity to acknowledge, express and discuss what they know, understand, 
or think about what they see in the video. 

8. Teachers refrain from answering proximity questions (asked only because the teacher is 
nearby) and stop-thinking questions (such as “Is this correct?”). 

9. Learners record their voice-over and send it to their teacher. 
10. All learners’ responses get listened to (randomly) and discussed in a whole group discussion. 
11. Teachers encourage learners to reflect on and reason about their own and their peers’ 

responses to the task. 
12. Teachers keep their ears open to possible conceptual obstacles that can be addressed in the 

group discussion. 
13. Teachers facilitate awareness of the importance of precision in language use during group 

discussions. 
14. (optional) After group discussion learners can write a reflection in their journals (“notes to 

my future self”). 
15. Teachers re-listen to students’ responses for reflection and to plan further teaching activities. 
16. (optional) Teachers might send individual feedback to students. 

CONCLUSION 
New ideas regarding task implementation, that might seem obvious in retrospect, might not have 
come up without the collaboration with the participating teachers. What we have discussed in the 
findings of this paper is rather descriptive, but we believe that it might give interesting insights into 
decisions that teachers make regarding task implementation. For example, observing teachers make 
decisions that lead to extra workload in connection with orchestrating classroom discussion based on 
student responses without any previous preparation, only for the sake of importance of immediate 
feedback seems to us to be important. In retrospect, if the teacher had taken time to reflect and prepare 
the discussion, one could imagine that the discussion would have become more teacher-centred as 
only the teacher would have had time to sit back, think and ponder over the different student 
responses. Instead, by reflecting “on the go”, teachers aimed to get students to think along with them. 
Even though students were observed to take little part in the discussion at first, during the second 
time round when Orri initiated whole-group discussion students were observed to take a more active 
part. Since orchestrating a meaningful classroom discussion is a tough task (Stein & Smith, 2011) 
that requires practice, it might be that it gets easier with time to activate students in the discussion. 

Previous results regarding fulfilment of five out of six potentials listed by Wright et al. (2018) were 
confirmed during the second implementation phase reported on in this paper. In addition, the sixth 
potential about providing immediate feedback was also fulfilled, as it was identified by teachers to 
be of great importance for formative assessment practices. 
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Teaching and learning in Europe have undergone massive changes due to the Covid-19 pandemic. 
Based on challenges of distance education, we derive the following criteria for the design of distance 
learning environments: enabling synchronous lessons, facilitating communication despite spatial 
separation, fostering individual support and assessment, as well as following a low-tech barrier 
approach. The MathCityMap@home (MCM@home) concept is one example that addresses these 
requirements for mathematics teaching and learning. With this concept, the students work self-
regulated on digital learning environments, i.e., pre-structured task sequences. By means of a case 
study with three German teachers, MCM@home is evaluated as a suitable tool for mathematics 
distance education. In line with theoretical considerations, the interplay of assessment and 
interaction is seen as a condition of success for the development of distance learning environments. 

Keywords: Digital learning environment, distance education, MCM@home, mobile learning, 
synchronous online teaching. 

Because of the Covid-19 pandemic and the subsequent reorganization of teaching in the virtual space, 
new ways of instruction have occurred – and new tools for distance education have been developed 
(Flores & Swennen, 2020). In this paper, we firstly identify the requirements for the design of distance 
learning environments in mathematics education. Secondly, the MathCityMap@home concept 
(MCM@home) is introduced as an approach for the conduct of mathematics distance education that 
has been developed since spring 2020. Thirdly, it is investigated to what extent the MCM@home 
concept meets these requirements from a theoretical perspective. Finally, we present a case study to 
evaluate the use of MCM@home in school practice and derive further needed developments of the 
MCM@home system. Since this case study was conducted in Germany, the situation of Covid-19 
distance education is sketched for Germany in the following. 

DISTANCE EDUCATION IN GERMANY DUE TO THE COVID-19 PANDEMIC 
As in most European countries, teaching and learning in Germany has changed massively since spring 
2020 due to the Covid 19 pandemic. Instead of learning in a common place, namely the classroom, 
the place of learning has been shifted to the children’s rooms. In the first period of spring 2020, 
lessons were mostly not held at a common time – a predominance of asynchronous learning settings 
is reported for spring 2020 (Drijvers et al., 2021; Wößmann et al., 2021). Since the average learning 
time decreased from 7.4 to 3.6 hours per day in the first school lockdown (Wößmann et al., 2021), it 
can be assumed that not only the place but also the time of learning varied in contrast to the familiar 
classroom setting.  

This major reorganisation of learning at home goes hand in hand with a decrease in student-teacher 
interaction (Aldon et al., 2021) and student-to-student communication (Drijvers et al., 2021) resulting 
in a perceived lack of personal contact (Barlovits et al., 2021). During distance education, students 
take on greater responsibility for structuring and organising their learning progress (Barlovits et al., 
2021; Wacker et al., 2021) as both the teacher and classmates are not immediately available. From 
the teacher's perspective, this more independent learning impairs the implementation of formative 
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and summative assessment (Aldon et al., 2021). Regarding formative assessment, especially the 
diagnosis of learning progress and individual support are perceived as challenges in distance 
education by both teachers (Aldon et al., 2021; Barlovits et al., 2021) and students (Wacker et al., 
2021). 

Since lower-performing students and students from households with a lower social status report more 
problems with distance education, an increase in social inequality is feared (Wößmann et al., 2021). 
From a technical perspective, the so-called digital divide is exacerbated because students with a lower 
social status tend to have less access to digital tools (DESTATIS, 2020). But not only the availability 
but also the handling of the technology is reported as an issue for teachers and learners (Barlovits et 
al., 2021). 

From the outline of the educational situation in Germany in spring 2020, the following design 
requirements for distance learning tools are derived: Firstly, it can be assumed that (i) synchronous 
and strongly pre-structured distance learning environments counteract the loss of familiar school 
structures (Barlovits et al., 2021) and self-organization (Wacker et al., 2021), as students - despite 
spatial separation - learn at a common time in a prepared setting. Secondly, (ii) a possibility for direct 
interaction is needed to address the decrease of content-related (Aldon et al., 2021; Drijvers et al., 
2021) and personal communication (Barlovits et al., 2021). Thirdly, distance education tools should 
enable teachers to provide (iii) appropriate individual support (Barlovits et al., 2021) respectively 
formative and summative assessment (Aldon et al., 2021). Finally, from a technical perspective 
(Barlovits et al., 2021.; DESTATIS, 2020), (iv) a low-barrier and user-friendly approach is required.  

MCM@HOME: THE CONCEPT  
Based on these four assumptions on distance education, the MCM@home concept for the conduct of 
mathematics distance learning has been developed since spring 2020. Here, the freely available 
system MathCityMap, which was originally developed for outdoor mathematics, has been adapted to 
the needs of distance education. The MathCityMap system provides two working spaces, namely a 
web portal for teachers and a smartphone app for students. In the MathCityMap web portal, teachers 
can create own or select publicly available task sequences. These task sequences can be characterized 
as internet-based, structured, and guided learning environments for students’ autonomous and self-
regulated work on a particular topic (Greene et al., 2011; Lichti & Roth, 2018). They can aim for a 
broad repetition of previously learnt topics or focus on a single topic as a theme-based learning 
environment. The workspace for learners is the free and add-free MathCityMap app. The students 
can access the digital learning environments through the smartphone app which is presented in the 
following. 

The MathCityMap App: Asynchronous Support for Students 
To participate in a lesson conducted with MCM@home, students simply need to enter the code of the 
digital learning environment into the MathCityMap app to access the tasks. To encourage the task 
solving process, students can call up to three hints on demand. After entering, the app validates the 
answer, i.e., students receive an immediate systemic feedback on their calculated solution. Further, 
students receive up to 100 points depending on the quality of the entered solution. Thus, the app 
provides a shallow gamification of the digital learning environment (Gurjanow et al., 2019). 
Additionally, students can compare the calculated solution with a sample solution. These 
asynchronous features of the MathCityMap app are shown in Figure 1. 
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Figure 1. Working on the task “Ping Pong Table” supported by the MathCityMap app: task 
formulation, hints, answer validation incl. gamification and sample solution (from left to right). 

The “Digital Classroom” of the Web Portal: Synchronous Monitoring of the Students 
The MCM@home concept aims at the simultaneous teaching and learning of mathematics in distance 
education settings. Additionally to the described asynchronous functions of the app, a feature for the 
synchronous conduct of math lessons is provided: the so-called “Digital Classroom”. 

 

Figure 2. The feature “Digital Classroom” in the web portal: monitoring on class level and individual 
level (e-portfolio) as well as the chat function (from left to right) 

The “Digital Classroom” is a tool for teachers to monitor and support students on an individual level 
(Baumann-Wehner et al., 2020). It consists of two main components, namely a chat and a monitoring 
tool. The chat enables a direct student-teacher interaction. For example, the learners can ask their 
teacher for help by sketching their solution process via text and audio message or by sending a picture 
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of their notes (Figure 2, right). Besides, the “Digital Classroom” provides a monitoring view for both, 
class and individual work progress. Teachers can observe the learning progress of all students in real 
time through the number of tasks accessed, the quality of task solution and the achieved scores (Figure 
2, left). In the e-portfolio, the teacher can retrace the individual work process of a single student. 
Here, all entries of a student into the MathCityMap app, e.g., the entered solutions or the use of hints, 
are stored (Figure 2, middle). 

MCM@home in View of the Pandemic Situation 
With regard to the identified requirements for distance learning (i)-(iv), the paper aims to examine 
the extent to which they are met by MCM@home.  

(i) Synchronicity and guided structure: The demand for synchronicity due to the loss of familiar 
school structures can be fulfilled using the “Digital Classroom”, in which all students work on the 
same topic at the same time. Further, learning environments provide guided and pre-structured task 
sequences (cf. Lichti & Roth, 2018) that allow autonomous and self-regulated learning (cf. Greene et 
al., 2011). Therefore, MCM@home seems to pre-structure the individual student’s work process in 
distance education.  

(ii) Communication and interaction: The requirement of online discussions (cf. Drijvers et al., 2021) 
and personal communication in distance education (cf. Barlovits et al., 2021) is taken up by the 
availability of the chat function. It enables teachers to communicate directly with their students and 
to support them individually. By implementing the chat, a feature is provided which at least partly 
counteracts the lack of personal contact in distance education settings (cf. Barlovits et al., 2021). 
However, it seems questionable whether this form of interaction is completely sufficient for distance 
learning purposes. 

(iii) Individual support and assessment: The demand for formative assessment in distance learning 
situations (cf. Aldon et al., 2021) is addressed within the feature “Digital Classroom”: Teachers can 
monitor the student’s learning progress and analyse their individual work process in the e-portfolio. 
However, the need for summative assessment (cf. Aldon et al., 2021) is not currently met by 
MCM@home. Therefore, requirement (iii) is only partly fulfilled by MCM@home. 

(iv) Technical availability and handling: From a technical perspective, only a smartphone with an 
active internet connection and the installed, cost- and add-free MathCityMap app is required on 
students’ side to use MCM@home. As smartphones are a worldwide used device (Deloitte, 2017) 
and moreover widely used for educational purposes in Europe (European Commission, 2019), the 
MCM@home concept can be seen as a low-barrier approach to distance learning. 

To conclude, MCM@home meets most of the theoretically identified requirements for distance 
education. In the following, we will focus on the questions of whether this hypothesis can be 
empirically confirmed and whether the chat can fulfil the need for interaction in distance education. 
This should be analysed within a case study which is presented in the following. 

RESEARCH QUESTIONS AND METHODOLOGY 
To answer the research question, we conducted a case study in Germany in summer 2020. It aims to 
evaluate MCM@home from the teacher’s perspective (RQ 1) and to investigate the use of the chat. 
(1) Concerning the design requirements (i), (iii) and (iv), how do teachers evaluate the use of 
MCM@home for mathematical distance education during Covid-19 pandemic? (2) Concerning 
design requirement (ii), how do teachers and students use the chat channel provided within 
MCM@home? 
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To answer these research questions, three classes of a German Gymnasium (grammar school; grades 
6, 9 and 10) were accompanied while solving mathematics tasks with the system. During the school 
closure period in June and July 2020, the three classes worked on MCM@home learning 
environments for one double lesson each. The different class levels were chosen in order to observe 
learning groups that were as heterogeneous as possible and to answer the research questions. 

Due to the different grade levels, the learning environments cover different topics: The tasks for grade 
6 deal with the calculation of decimal numbers, while the tasks for grade 9 aim at an overall review 
of the school year. The learning environment for grade 10 deals with the topic of data and statistics. 
Unlike the actual use of MCM@home, which is organised by the teachers themselves, these three 
digital learning environments were created by the researchers. This approach should ensure a certain 
comparability of the task design in order to analyse the user behaviour of teachers and students in 
digital learning environments. 

After conducting the double lesson with MCM@home, the three teachers received an online 
questionnaire with fourteen open questions (free-text answers) focussing on the design requirements 
(i) synchronicity and guided structure, (ii) communication and interaction, (iii) individual support and 
assessment as well as (iv) technical issues and handling. If at least two out of three teachers report 
similar or the same experiences in the questionnaire, their statements are considered to be essential 
in this paper. To analyse the communication and interaction via chat (RQ 2), the number of chat 
messages and their purpose are further taken into consideration. 

RESULTS: MCM@HOME IN TEACHING PRACTICE 
RQ 1: The teachers’ evaluations of the tool are subsequently presented on behalf of the identified 
design requirements (i), (iii) and (iv). 

(i) Synchronicity & guided structure: The synchronous conduct of distance education within the 
“Digital Classroom” is highlighted by the teachers since it allows the real-time monitoring of the 
student’s individual work progress. On the other hand, the synchronous conduct demands for an 
immediate support of the students: “It is difficult to help students with problems, […], at least when 
many problems arise at once.” For structuring the students’ work process in distance lessons, the 
asynchronous support functions of the MathCityMap app are emphasised, i.e., hints, immediate 
answer validation, gamification and sample solution. Moreover, the possibility to work at one's own 
pace is stressed: The use of MCM@home “has given students who are usually quieter in class the 
opportunity to engage intensively with the tasks”. 

(iii) Individual support & assessment: The monitoring function of the "Digital Classroom" is seen as 
a well-structured tool for tracking learners' work processes in distance learning: “The display showing 
which student is working on which tasks or has already completed them is great!” For monitoring 
students’ work process, the teachers reported both, class overview and e-portfolio, to be suitable for 
analysing and retracing students’ progress. The e-portfolio is, in particular, analysed to provide 
individual feedback for the students via chat (see RQ 2). However, to immediately support the 
students after entering a wrong answer, further development of the “Digital Classroom” is desired: “I 
think it is important that e.g., a pop-up message is displayed directly when a student has entered a 
wrong solution”.  

(iv) Technical availability & handling: On the teachers’ side, no problems are reported regarding the 
handling of the "Digital Classroom". The three teachers could create a “Digital Classroom” session 
the MathCityMap website without any difficulties. For navigating in the “Digital Classroom”, the 
clear structure is highlighted: “I like the clear presentation. […] Clear icons, concise naming of the 
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areas, clear arrangement, clear differentiation of the areas from each other.” On the other hand, the 
map-based design of MCM@home is criticised. Since the original system MathCityMap has been 
developed for teaching and learning mathematics outdoors, all tasks are related to a specific object 
and thus marked on a map. This, of course, is for the purpose of distance education no longer needed. 
Thus, teachers consistently expressed the wish for “utilizing the space of the map” for distance 
learning purposes, e.g., to see the work progress of several students at a glance or to show teachers 
the tasks and the sample solutions while simultaneously observing students’ work progress in the 
“Digital Classroom”. In addition, the use of the smartphone on side of the students is highlighted. 
Due to the high availability of smartphones and the students’ experience in using them, “it is an 
advantage to work well on own mobile devices”. Only a few difficulties were encountered in dealing 
with the MathCityMap app, all of which were due to an unstable internet connection. Otherwise, no 
problems were reported in dealing with the app, regardless of the age of the students. 

RQ 2: To analyse the use of the chat, the teachers’ answers to questions related to the requirement 
(ii) communication and interaction are considered. Further, the number of organisational and content-
related conversations as well as communications aiming at personal contact are taken into account 
(Table 1). Hereby, one conversation contains all messages related to one reason for communication.  

Initiation by Contact person Number Number per cause of communication 
O C P 

Teacher (N = 3) All students 8 7 1 0 
Single student 27 4 23 0 

Student (N = 43) Teacher 68 9 48 11 

Table 1. Use of the MCM@home chat: number of conversations for organisational (O), content-
related (C) causes as well as for personal communication (P). 

Based on the number of communications, it can be assumed that the MCM@home chat function can 
be used properly by both, students and teachers. The communication initiated by the three teachers is 
mainly content-related: In 23 out of 27 one-to-one messages, the teachers gave individual support to 
a student – often after retracing the student’s work progress in the e-portfolio. The possibility to send 
messages to all students at once is mainly used for organisational reasons (7 of 8 class messages). In 
addition, the students also requested advice from the teacher in 48 communications, which is almost 
equivalent to one request for help per student (N = 43). Besides this two-way content-related use, the 
chat – in student’s view – can be used for personal communication, e.g., for questions about the well-
being of their teacher.  

In the questionnaire, teachers emphasise the possibility to send messages to all learners to give general 
instructions or to clarify open questions. To support an individual learner, teachers stressed the 
possibility to support learners individually after analysing their entered answers and invoked hints in 
the e-portfolio. As a further development, a teamwork mode is requested, where learners can use the 
chat to collaborate with other learners on the tasks. 

CONCLUSION: CONSEQUENCES FOR THE LEARNING PLATFORM 
Teaching and learning in distance due to the Covid-19 pandemic is perceived a major challenge by 
teachers and students. In this paper, we identified design requirements for distance learning 
environments with regard to the challenges that arose in Germany in spring 2020: (i) synchronicity 
and guided structure, (ii) enabling communication and interaction, (iii) fostering individual support 
and formative assessment as well as (iv) low-tech approach and user-friendly handling. 
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Hereinafter, the MCM@home approach was presented as a promising approach to address the 
described challenges of teaching and learning at home. After evaluating MCM@home in view of the 
design requirements from a theoretical perspective, a case study was conducted to evaluate the 
system’s use in school practice. Based on the case study, we draw the following conclusions about 
MCM@home – being aware of the small sample of three teachers. 

RQ 1 aims to evaluate MCM@home from a teachers’ perspective in terms of design requirements (i), 
(iii) and (iv). The three teachers consistently describe the “Digital Classroom” as a suitable tool to 
manage distance education in real time. This finding is in line with our assumptions on the value of 
synchronous lessons in order to overcome the loss of familiar structures in distance education 
(Barlovits et al., 2021). Also, the guided structure (cf. Lichti & Roth, 2018) and the self-regulated 
learning (cf. Greene et al., 2011) in digital learning environments created within MCM@home, e.g., 
by the availability of hints and immediate answer validation, is highlighted.  

Regarding the monitoring function of the “Digital Classroom”, the retracing of students’ work 
progress is seen as a major advantage of MCM@home. Hereby, teachers used both, the class view 
and the e-portfolio for an overall respectively individual monitoring. Desired features are automatic 
pop-up messages about the student’s individual progress and the replacement of the map-based view 
(due to the original outdoor purpose of MathCityMap). Overall, it can be assumed that MCM@home 
meets the requirement of formative assessment (cf. Aldon et al., 2021). On the other hand, currently, 
no functionality for summative assessment (cf. Aldon et al., 2021) is available. 

Finally, from a technical perspective, no problems with handling can be reported on the side of 
teachers (web portal) or students (app) in this sample. The approach of using smartphones is 
highlighted by the teachers in terms of ease of use.     

RQ 2 focuses on the use of the chat within MCM@home. The teachers emphasize the chat channel 
to support students on an individual level after retracing their work progress in the “Digital 
Classroom” Thus, the interplay of the design requirements (ii) assessment and (iv) communication is 
highlighted. Furthermore, it is remarkable that not only the teachers – based on their observation in 
the e-portfolio – contacted their students, but the learners themselves ask for help via chat. Thus, the 
chat is described by teachers as a suitable and convenient way to fulfil the demand of teacher-student 
communication in distance education settings (cf. Aldon et al., 2021). Since learners also contacted 
their teachers for personal communication, e.g., asking about the teacher's well-being, it can be 
assumed that the chat can also help to compensate for the perceived lack of personal contact during 
distance learning (Barlovits et al., 2021). 

However, the chat tool does not provide an opportunity for communication between students. In line 
with the need of interaction among students (cf. Drijvers et al., 2021), the teachers requested a 
teamwork mode for online collaboration. Being aware that also a decrease in content-related 
discussions is reported (cf. Drijvers et al., 2021), we recommend supplementing lessons conducted 
with MCM@home with synchronous video conferencing.  

Overall, the case study shows that MCM@home can help teachers to monitor the work progress on 
both, class and individual level within the “Digital Classroom”. Via chat, the teachers were able to 
individual support their students. Therefore, from both theoretical and empirical perspectives, 
MCM@home fulfils the demand of (ii) formative assessment and (iv) communication. However, the 
features requested by the teachers focus precisely on these two design requirements. Thus, the 
successful interplay of assessment and direct communication can be assumed – in a broader sense –
to be a condition of success for the development of distance learning environments. 
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OUTLOOK: DEVELOPING THE ASYMPTOTE SYSTEM 
With a focus on this interplay, the MCM@home concept is further developed to the stand-alone 
system ASYMPTOTE. From spring 2022, the web portal (www.asymptote-project.eu) and app of 
ASYMPTOTE is publicly available. Here, special attention is given to the integration of a teamwork 
mode and an improvement of the “Digital Classroom” evaluation. In addition, a broad open database 
of prepared digital learning environments on different topics is created during the project lifetime 
until February 2023. Finally, systemic adaptivity and automated assessment of student work is 
integrated to fully exploit the potential of digital learning environments (cf. Greene et al., 2011). 
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Written feedback is powerful in math teaching yet highly labour-intensive. Hence, digital assessment 
with fully-automated feedback has received much attention. Unfortunately, learners solve higher-
order questions more naturally when using paper and pencil. Therefore, we investigate semi-
automated assessment: a method in which a teacher works with a computer system to assess 
handwritten tasks. When a teacher writes feedback for a student, the computer saves it, so the text 
can be reused when following students make the same or similar mistakes. To make feedback more 
reusable, we devised atomic feedback. During the workshop, participants learned how to write atomic 
feedback, experimented with providing feedback using the semi-automated system implemented in 
Moodle, and gained a thorough insight into the research project.  

Keywords: Atomic feedback, handwritten task, reusable feedback, semi-automated assessment. 

RESEARCH CONTEXT 
In this research project, we investigate how we can give feedback to handwritten math assignments 
more efficiently. After all, handwritten tasks remain important to train higher-order thinking skills 
and genuine problem-solving in mathematics education. Therefore, we propose a semi-automated 
approach: teachers write feedback items, the computer saves these items so they can easily be reused 
when other students make similar mistakes (Moons & Vandervieren, 2020). 

How to write feedback that can easily be reused for other students? Long pieces of classic feedback 
are often too targeted to a specific student. Hence we came up with atomic feedback: a collection of 
form requirements for written feedback that is hypothesized to be more reusable. To write an atomic 
feedback item, teachers must: identify the independent error occurring and; write short feedback 
sentences for each error, independently of each other. A comparison between classic and atomic 
feedback can be found in Figure 1. 

In a crossover study with 45 math teachers in Belgium (Moons et al., in press), we could already 
prove that atomic feedback was significantly more reused than classic feedback (odds ratio: 2.6). 
Furthermore, results showed no significant time differences between paper-based feedback versus 
semi-automated feedback, but the teachers in our sample wrote significantly more feedback using the 
semi-automated system with atomic feedback compared to giving feedback with paper-and-pencil (d 
= 0.41). The semi-automated system with atomic feedback has been implemented in Moodle. A final 
version is planned to become available as open-source software when the research project is finished. 
We currently investigate ways to combine it with a marking system and suggest already provided 
feedback more intelligently. 

WORKSHOP REPORT 

The workshop wanted participants to experience the possibilities of semi-automated assessment of 
math tasks with atomic feedback and give them a deep inside of the current research project. First,  
participants learned how to write atomic feedback. Second, they tried to provide atomic feedback  
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Figure 1. Example of classic versus atomic feedback 

using the semi-automated system in Moodle on some students’ tasks on linear equations. Sufficient 
time was provided to experience the effect of reusing feedback. Next, certain feedback examples of 
the participants were scored on their atomicness by the attendees using the codebook from Moons et 
al. (in press). This phase served as a reflective moment for the participants to deeply understand the 
atomic feedback concept. In the last half an hour, the experimental design of the study and the results 
were presented. The workshop ended with a lively, inspiring discussion on the following steps in the 
research project, the participants’ experiences during the workshop, and their envisioned potential of 
semi-automatically assessing math tasks with atomic feedback. Several attendees taught mathematics 
to large groups themselves and were immediately interested in when they could implement the semi-
automated approach with atomic feedback in their lesson series. 
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Universität Augsburg; reinhard.oldenburg@math.uni-augsburg.de 

A new web-based implementation of the FeliX system that combines algebra and geometry in a way 
that supports relational thinking is introduced. It allows to explore the role of algebra for the 
modelling of geometrical relations. The rationale behind the system is described, its design principles 
based on mathematical logic are explained and some use-cases are described. Especially, the 
didactical implications of a new feature that incorporates minimization is elaborated. Examples 
range from elementary explorations of geometric and algebraic relations to advanced applications. 

Keywords: Algebra, geometry, educational software, relational thinking. 

INTRODUCTION 
Algebra offers different thinking tools; among the most important are variables, expressions, 
functions and equations. Working with and thinking about functions is coined together into the 
famous concept of functional thinking, which dates back to the days of Felix Klein more than 100 
years ago (Weigand et al., 2017). Despite its age, the concept is still of great importance, and the use 
of spreadsheets and dynamic geometry systems such as Geogebra put even more weight on this. Both 
types of software realize a functional view of computations: There are certain input elements (cells 
with numbers respectively basic objects) from which other objects are functionally dependent (cells 
with formula respectively constructed objects). Dependent objects may be the input of further 
calculations or constructions so that a directed graph of dependencies is constructed. When an input 
cell is changed, or a basic object is moved then following the route of this graph allows propagating 
recalculation through all dependent objects. Thus, existent technology uses and fosters functional 
thinking.  

Functions have a direction: 𝑥𝑥 ↦ 𝑓𝑓(𝑥𝑥). This is the reason why they are so often useful in modelling 
causal chains or channels of information transport. However, in the real world, there are also many 
relations that are undirected. Consider economics: Are the wages a function of the prices or the prices 
a function of the wages? Or consider physics: Is the pressure of a gas a function of its volume, or is 
its volume a function of the pressure? In such examples, there is no clear direction and functional 
thinking falls short as a mental tool to model such situations. What is needed is relational thinking. 
This concept is not as widespread as functional thinking. Stephens (2006) has reviewed some of the 
literature with a focus on primary education where relational thinking shows up in being able to see 
the equal sign not only in an operational sense. In secondary education, relational understanding also 
links to understanding the meaning of the equal sign (Bardini et al., 2013). For the present paper, 
relational thinking is understood as the thinking that relates several quantities. The aspect that 
equations are relations or restrictions on values of variables is also elaborated in Drijvers (2011). 

Given this background, the project described here addresses the following research questions: 

1. Is it possible to design a consistent software environment that supports relational activities? 
2. Is it possible to integrate relational and functional modelling tools? 
3. Do examples of tasks exist that exhibit the power of relational thinking for modelling?  



 

ICTMT 15 Copenhagen 90 

 

The methodology to answer all three questions is constructive existence proof. It is thus a theoretical 
and empirical paper where the empirical part consists of computer implementation experiments. 
Therefore, data collection is reduced to observing the behaviour of the implementation. Based on old 
ideas (Oldenburg, 2007), a new system (Oldenburg, 2021) called FeliX has been developed. The 
present paper describes the implementation and the possibilities it opens up to integrate relational and 
functional thinking. The paper first gives a short overview of the system from a user’s point of view, 
then shortly explains the design choices. A short technical part explains central ideas of the 
implementation. The paper concludes with a small kaleidoscope of applications. 

FELIX FROM THE USER’S PERSPECTIVE 
The user interface of FeliX consists of three main components: A geometry view that shows part of 
the Euclidean plane with a Cartesian coordinate system (cf. Fig. 1). Points and other elementary 
geometric objects can be created, and points can be dragged. The second component is a table that 
shows all points and their current coordinates. Points may be moved with the mouse or by entering 
new coordinates in the coordinate table, i.e., these representations are bi-directionally linked. The last 
and most important component is an equation table that may in fact take equations, inequalities and 
expressions that are built up from the coordinate variables of the points.  

 

Figure 1. The main components of the FeliX window are a Euclidean plane, a table of points and a 
table of equations/inequalities and expressions 

If there is a point P, then its Cartesian coordinates are Px and Py. The equations and inequalities are 
respected while dragging. Assume one has three points A, B, C and enters the equations 
2*Bx=Ax+Cx and 2*By=Ay+Cy then B will be the midpoint of A and C. Still, all three points can 
be dragged with the mouse. In fact, if one of the points is dragged the system has some freedom to 
adjust the other two points so that the equations are fulfilled. To make the behaviour more 
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deterministic, one may set any of the points (temporarily) fixed using a checkbox in the object table. 
Such fixed points can still be dragged, but they will not move when the system tries to fulfil the 
equations. If, e.g., B is fixed, then A or C can be moved, and the other one follows as a reflection of 
the moved point. Equations and inequalities may be nonlinear and involve all usual mathematical 
functions such as the absolute value abs, trigonometric functions sin, cos, tan, exponential and 
logarithms and much more. There are helper functions to calculate distances, angles and lengths of 
segments. Moreover, some common equations (e.g., orthogonality or parallelism) may be set by using 
a button for convenience: This results in the appropriate equations being inserted just if they were 
entered by the user directly. Of course, all equations can be modified to explore the meaning of these 
algebraic relations. They can be set valid or invalid to explore their meaning. If the user enters 
contradictory equations, such as Ax=1 and Ax=3 then the system will show red defect values for 
those equations that cannot be satisfied. In this particular case, Ax would take the value 2 with defect 
1 for both equations. 

Figure 2 illustrates how FeliX can be used to model the classic sliding ladder problem. A “ladder” of 
length 8 with endpoints A and B is modelled by the equations Ax=0 (i.e., endpoint A is on the y-axis 
as a wall), By=0 (i.e., the other endpoint is on the x-axis as the ground). The formula for the length 
of the ladder was entered as Len(s1)=8 which FeliX automatically expands to the Pythagorean form 
given in Figure 2. Next, the midpoint M of the ladder was constructed. It can be moved with the 
mouse only on a curve, and, using Groebner basic methods, FeliX can calculate the equation of this 
curve and plot it. It is a circle which is optically highlighted by moving D to its centre (but D is not 
necessary in this example to create the circle!). Such graphs of curves that result from constraints on 
the freedom of a point are called “relation graphs” in FeliX language. 

 

Figure 2. The sliding ladder problem 

One could further construct an orthogonal line to the segment that passes through D. To do this, one 
has to construct a further point F, construct the line through D and F and enter the equations Dx=0, 
Dy=0, (Fx-Dx)*(Bx-Ax)+(Fy-Dy)*(By-Ay)=0. The last equations can also be set by using the green 
“declare orthogonal” button. Then the intersection of the line and the segment follows an algebraic 
curve of degree 6, which can be calculated but not yet plotted. 
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Figure 3 presents two other simple problems where the calculation of curves is interesting. On the 
left-hand side is an ellipse constructed from the defining equation that point C is on the ellipse if the 
distances to focal points A and B sum up to a fixed number. This fixed number is Dx in this case, so 
moving D deforms the ellipse.  

The second example in Figure 3 starts from two segments that are set orthogonal. FeliX can calculate 
the curve that C can move on easily. As in Figure 2, the midpoint D of A and B is obsolete but was 
included in the figure to optically underpin that it is the centre of the Thales circle. 

  

Figure 3. An ellipse from Len(s1)+Len(s2)=Dx and a Thales circle constructed from setting s1 and s2 
orthogonal. 

A feature not touched upon in the examples so far is that FeliX can handle inequalities. For example, 
one may enforce that two points always have at least a distance of 1 by entering (Ax-Bx)^2+(Ay-
By)^2>1. This results in a construction where one of these points may be used to push the other 
around if they would come too close to each other.  

Yet another feature is the ability to draw function graphs from expressions that are allowed to involve 
all other objects’ variables. Using the “bind to” tool, points can be bound to lines, segments, circles, 
function graphs or relation graphs.  

All these functionalities add up to a system that is very flexible in modelling geometric configurations 
and exploring the meaning of a wide range of algebraic relations. 

DESIGN CHOICES 
The design of FeliX follows from some very basic principles that have motivations both in 
mathematics and in didactics:  

• Full Information: All information that governs the behaviour is fully visible on the screen. 
This is in contrast, e.g., with spreadsheets where one usually sees only the values in the cells, 
not at the same time the formulas (or, in formula view, vice versa). 

• Based on concepts from mathematical logic: Object tables with the values of coordinates are 
essentially interpretations in the sense of mathematical logic (e.g., Hamilton, 1988): At each 
time, they assign numerical variables to all variables in such a way that, if possible, this is a 
model of the equations, i.e., that they are all fulfilled.  

• Object creation and imposing relations between objects are independent operations. This 
allows a step-by-step specification so that the user can symbolize its knowledge about the 
situation dynamically as it evolves. 

• Everything can be changed at all times. The order in which objects or equations are created 
has no impact on the behaviour. For example, the equations in the equation table are logically 
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connected by the “and” operator, which is commutative—any order of creation or order of 
imposing relations thus leads to equivalent configurations. Thus, no user will ever be caught 
in a deadlock because (s)he took a wrong decision at some time of the “construction” process. 

• There is no restriction on the type of operations and functions that can be used. 

It is interesting to compare these characteristics to those of dynamic geometry systems such as 
GeoGebra which differ much in all these points. Focusing on geometrical aspects, one may realize 
that the functional dynamic geometry is very different from the relational geometry described here. 
For example, to construct a triangle with sides 3,4,5 in a dynamic geometry system, one has to come 
up with a construction (which is a real problem for students that encounter it the first time), while, in 
relational geometry, one simply specifies the parts, removing this occasion for problem solving. From 
a pedagogical point of view, one may wonder what kind of geometry is more important to master. As 
compass and ruler constructions dominate in schools, functional geometry is more important there. 
However, in the professional world of computer-aided design systems such as AutoCAD and 
FreeCAD, the relational approach is dominant.  

IMPLEMENTATION 
The goal of FeliX’s design is to have a system that has a clear and mathematically-defined semantics. 
Thus, it is basically an interface to a numerical constraint optimization algorithm. If, e.g., a point P 
shall be dragged to coordinates (𝑥𝑥0,𝑦𝑦0) then the expression (𝑃𝑃𝑥𝑥 − 𝑥𝑥0)2 + �𝑃𝑃𝑦𝑦 − 𝑦𝑦0�

2
 is minimized 

subject to the constraints given by the equations and inequalities. Coordinate values of fixed objects 
are inserted in the constraints, of course. At each point, the current configuration is used as the starting 
point for the search for a new solution. This approach is rather simple, but some caveats are in place: 
The solution process is done by a numerical algorithm (Powell, 1998) and hence may fail to find a 
solution, or there may be some noticeable inaccuracy. Moreover, some artefacts may result from this 
design. If a point is bound to a line that is fixed because some fixed points lie on it, then dragging the 
point is restricted in the sense that it will stay at the line and move to that point on the line that is 
closest to the mouse position. It may be the only sensible behaviour in this case.  

Often there are many solutions, but only one will be found and realized. The equation that states that 
the lines through A,B and C,D are orthogonal leads to a scalar product equation that is not only 
fulfilled if the lines are orthogonal but also if A=B or C=D. Hence, such a degenerate solution may 
be found and realized by FeliX. There are two ways out: One may add an inequation that says that 
the points shall have some minimal distance. The other way is to use the “shake button” that randomly 
moves points and will often get one out of degenerate solutions.  

Another issue is that of points going to infinity: Consider the lines through A,B and through C,D and 
construct the intersection point F. Set A,B,C fix and move D around C. The intersection F should 
move to infinity and come back from the opposite side. This may bring the solver into trouble. There 
is a more powerful move tool that sets the coordinates of the moved points and searches then for a 
solution. With this move tool, one may move through such degenerate situations. 

The approach further implies a kind of existential quantification. If one has two circles and an 
intersection point, one cannot move the circles so far apart that they no longer intersect. Dragging 
mode will stop when they are tangent at their intersection point. Moreover, an equation like 
Ax=sqrt(Ay) will, as a side-effect, constrain A to the first quadrant of the coordinate system. 

In contrast to the dynamic of moving objects, the calculation of relation curves for a restricted point 
P is done symbolically by calculating lexicographic Groebner bases (Cox et al., 2005) and eliminating 
non-fix auxiliary variables. In the resulting equation, only variables of fixed points and of the 
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generating point P occur. The method of Groebner bases is suited only for polynomial equations. 
Thus, FeliX eliminates in a preparation step subexpression 𝑎𝑎

𝑛𝑛
𝑚𝑚,𝑛𝑛,𝑚𝑚 ∈ ℕ and replaces them with 𝑣𝑣𝑛𝑛 

where 𝑣𝑣 is a new variable, and it adds the equations 𝑣𝑣 ≥ 0 ∧ 𝑣𝑣𝑚𝑚 = 𝑎𝑎.  

Taking these elements together, research question 1 is answered positively by this constructive proof 
of existence. 

EXAMPLES OF OPTIMIZATIONS 
FeliX has a powerful feature that is almost invisible from its user interface: The checkbox to set 
equations either valid or invalid (an invalid equation will be ignored while dragging) is also in place 
for expressions. In contrast to equations, expressions are set to invalid by default. Setting them to 
valid means that they will be minimized! This gives some more modelling possibilities and combines 
relational and functional thinking, as the following examples will show. 

Figure 4 illustrates a possibility to explore the optimality of certain figures. Five points are created 
and connected by segments s1,s2,s3,s4,s5 to form a polygon. The user entered the equation 
abs(polyArea([A,B,C,D,E]))=50 which is expanded by FeliX using the Gauss formula for the area of 
a polygon. It is then interesting to move around the points and see how flexible a polygon with fixed 
area of 50 is. Entering Len(s1)+Len(s2)+Len(s3)+Len(s4)+Len(s5) as an expression displays the 
circumference, e.g., the polygon on the left in Figure 4 has area 50 and length 32.48. Setting the 
expression for the circumference valid, i.e., minimizing its value, immediately moves the points to 
form the shape on the right-hand side of Figure 4. Similar investigations can be undertaken, e.g., to 
find shapes that have maximal area under fixed circumference or to solve other optimization 
problems. 

        

Figure 4. One click transforms the polygon of area 50 to one with the same area but minimal 
circumference 

Figure 5 shows a discrete hanging chain. Points A and E are fixed (recall that they still can be moved 
explicitly with the mouse), and B,C,D are unrestricted points. The segments s1,s2,s3,s4 between AB, 
BC, CD, DE are all set to have length 3. Their midpoints F,G,H,I are constructed, and the expression 
Fy+Gy+Hy+Iy that corresponds to the potential energy of the chain is minimized. It is interesting 
how natural the chain behaves when, e.g., E is raised further or moved horizontally.  
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Another example shown in Figure 5 is a shortest-path problem which is also classic: The Fermat point 
is that point P inside a tringle ABC that minimizes the sum of the distances AP+BP+CP. FeliX allows 
students to observe the fact that at the optimal point, the three segments to A,B,C form angles of 120°. 
Of course, this is not yet the solution, but it may give hints to come up with a theoretical solution.  

Both problems support a combination of functional and relational thinking. They combine the 
variability of a function value (which is minimized) with the invariance of a relation, which is 
preserved. The existence of these examples answers research questions 2 and 3 positively. 

 

    

Figure 5. Discrete hanging chain and Fermat Point of a triangle 

DISCUSSION AND OUTLOOK 
The use of the old FeliX system 15 years ago was very limited because it was extremely difficult to 
install, but with the new web-based approach presented here accessibility of FeliX shall no longer be 
a problem. There are quite a number of areas were the work with FeliX might open promising 
perspectives. This final section will discuss some of these. Implementing the use of FeliX in schools 
is a complex task. First, teachers need to get an idea about what FeliX is and why its use could be 
rewarding. Next, one needs concrete ideas of how to introduce the system and what topics to use it 
for.  

As a first contact with FeliX the problem of finding the midpoint of two points is very rewarding, 
because it exhibits most of the semantics of FeliX. Moreover, the equations that one needs are very 
easy and can either be entered by the students or created using the convenient tools. To explore und 
understand the midpoint relation it is useful to use FeliX’s option “integer move”. When this is 
activated, the dragged point moves discontinuously jumping only to points with integer coordinates. 
This eases mental calculations to check and understand what the system does. Moreover, modifying 
the midpoint equations is an interesting problem: How to get the 1:2 point that divides AB in this 
ratio? From there, one can, in principle, go on to find a form of the equation of a line. 

A next activity may be to investigate one-dimensional equations. For example, one sets two points, 
A,B on the x-axis by Ay=0, By=0, and then relates A and B, e.g. by Ax+2*Bx=12 or by Ax*Bx=100. 
The same strategy can also be applied to equations that relate more than two variables, e.g., the “lens 
equation”: When a lens forms a sharp image of an object, then there holds the relation 1

𝑓𝑓
= 1

𝑎𝑎
+ 1

𝑏𝑏
 

between the focal length of the lens 𝑓𝑓 and the distances 𝑎𝑎, 𝑏𝑏 between then lens and object and between 
the lens and image. This interesting example has been used by Drijvers (2006) to illustrate the many 
roles variables can take when a computer algebra system is used, but the same consideration applies 
here: Setting a point fixed, e.g., turns it from a variable into a parameter. 
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Another field that can be explored with FeliX consists of the many relations between the various 
forms of quadrilinears. One may start with a general quadrilinear, possibly with its diagonals, and 
then may impose more and more relations and explore how rigid it becomes. As a last area of 
applications, the large field of mechanical linkages shall be mentioned. FeliX both provides easy 
ways to model and simulate them and to calculate relation curves of the movement of certain objects.  

Of course, plenty of research lies ahead. One may ask if the experience with equations in this 
relational sense enhances students’ performance on reversal error tasks (Rosnick & Clement, 1980).  
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“… THEN IT LOOKS BEAUTIFUL” – PREFORMAL PROVING IN 
PRIMARY SCHOOL  
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With a focus on the primary level, the project “Prim-E-Proof” pursues the goal of developing 
learning environments to support proving skills in mathematics education at primary school. The aim 
is to support teaching and learning processes with substantial learning environments in which – if 
useful – digital media (free applets on tablet PCs) are applied. In this paper, the state of the art of a 
learning environment for proving the theorem “the sum of two odd numbers is always even” is 
described and evaluated. A single case study explores the question of which epistemic actions are 
recognizable in a primary school child’s activities according to Abstraction in Context to provide 
indications for the further development of the learning environment and the applet.  

Keywords: Preformal proving, arithmetics, primary level, digital media. 

THEORETICAL FRAMEWORK AND OBJECTIVES 
Addressing the topic of proof already at the primary level can contribute to learners’ perception of 
mathematical proof at secondary school or university as a natural extension of their earlier 
mathematical experiences (Stylianides, 2016)—and thus of mathematics education as a coherent 
whole (Wittmann, 2014). Digital media can have the potential to help children learn to prove through 
self-activity, which is a crucial aspect in learning mathematical proving (Freudenthal, 1979).  

Blum & Kirsch (1991) distinguish (1) experimental ‘proof’, (2) action proof, (3) ‘inhaltlich-
anschaulich’ proof, and (4) formal proof, whereby they summarize the action proof and ‘inhaltlich-
anschaulich’ proof under the generic term preformal proof. The border between proofs that are none 
and real proofs runs between (1) and (2). In an “inhaltlich-anschaulich” proof (Blum & Kirsch 1991; 
Wittmann & Müller, 1988), something general is proven on a concrete, visually perceptible object 
usually presented in an iconic way. By trained observation, a learner can understand it as an object of 
a more general kind, whereby she/he has to mentally see the more general in the special of this 
example, to be able to produce an ‘inhaltlich-anschaulich’ proof. In ‘operative proving’ (Wittmann, 
1985), this object represents a simple, generally executable operation that can be applied to an entire 
class, e.g., the shifting of tiles or the swapping of summands. Before these operations can be used in 
proof and have their effect, they must first be recognized as generally executable (Krumsdorf, 2015). 
A learner has to verbalize an ‘inhaltlich-anschaulich’ or operative proof so that what is initially 
subjectively found to be universally valid can be socially shared and recognized by others (Wittmann 
& Ziegenbalg, 2007).  

The objective of Prim-E-Proof is to develop substantial learning environments for primary school 
mathematics lessons to support proving skills. Wittmann (1998) describes substantial learning 
environments with the following criteria: They must (1) represent central goals, contents, and 
principles of mathematics teaching, (2) provide rich opportunities for the mathematical activities of 
students, (3) be flexible and easily adaptable to the specific conditions of a given class, (4) integrate 
mathematical, psychological, and pedagogical aspects of teaching and learning holistically and 
therefore offer a broad potential for empirical research. 
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THE LEARNING ENVIRONMENT “DAMON & PHINTIAS” 
In a study on the first version of the learning environment with 23 fourth graders of a German primary 
school, a need for proof could not be awakened for each learner (Platz, 2019). That is why a reference 
to the Pythagoreans is established in the sense of a historical digression (Krauthausen, 2018) to 
support the arousal of a need for proof. A researcher’s booklet (www.melanie-
platz.com/Forscherheft.pdf) deepens the historical digression using an introductory story about the 
Pythagoreans Damon and Phintias (cf. Dinger, 2014) as an introduction to the learning environment, 
because: “For primary school children, there are different experiences of relevance than for 
mathematicians. On the detour via a story, mathematically necessary relevancies can also implant 
themselves in the child’s mind.” (Kothe, 1979, p. 280). The structure of the researcher’s booklet is 
based on the didactic model for learning and teaching proof concerning the process model of school 
proving (Brunner, 2014) with a particular focus on supporting the generalization process. A discursive 
framework initiates a need for proof, the oracle of Delphi poses a riddle to the children: If I add two 
even numbers, is the result even or odd? If I add two odd numbers, is the result even or odd? Can 
you convince me that your assertion is always true? (Platz, 2020b). These two proofs are developed 
based on tasks or task sequences (i.e., preliminary exercises). The second proof is partially analogous 
to the first proof (Fischer & Malle, 2004). Central tasks are for each of the two proofs: (1) What were 
even and odd numbers again? (2) Create tasks (even plus even or odd plus odd). What did you 
discover? At this point, the Steinchen-Applet (www.melanie-platz.com/Steinchen-
Applet/Steinchen.html) is introduced to the learner. It allows to create, move and delete square 
(single) tiles, two-, five-, or ten bars on the screen. The objects can be rotated, grouped, or broken up 
into units. Furthermore, rectangles (or rectangles with a ‘nose’, see (3)) can be formed by touch 
actions. A grid in the background functions as an additional structuring aid. Different colors can be 
used, and a pen function allows to write on the screen. The mentioned functionalities allow a more 
robust fit between action and mental operation (Walter, 2017) than it would be possible with actual 
tiles. (3) The children then work on a task format based on Akinwunmi (2012, p. 128f), in which the 
learners deal with a geometric-visualized sequence of square tiles (arithmetic tiles; figured numbers) 
to provide a meaningful approach to algebra (see Figure 1).  

 

Figure 2: task in the researcher’s booklet edited by Bob 

http://www.melanie-platz.com/Forscherheft.pdf
http://www.melanie-platz.com/Forscherheft.pdf
http://www.melanie-platz.com/Steinchen-Applet/Steinchen.html
http://www.melanie-platz.com/Steinchen-Applet/Steinchen.html
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The sequences of even and odd numbers, represented by tiles, are connected with an arithmetic form 
given in a table. The geometric figure shown in the task is called a ‘double row’ or ‘double row with 
a nose’ (Wittmann, 2014; Krauthausen, 2018; the ‘nose’ is the single tile at the top of the double row). 
(4) What happens if I place 2, 4, 6, or 8/ 1, 3, 5, 7, or 9 tiles on an even/odd number? Is the new 
number even or odd? (5) How do you know that the sum of two odd/even numbers represented by 
tiles will result in an even/odd number? (6) We explained it only for an example. Why does this apply 
to all odd/even numbers? 

This work on preliminary exercises for proving and decomposing the proof intends to help learners 
structure the proof. Besides, the teacher can more easily recognize and name the respective degree of 
generalization of the assertion or the conclusion of a partial argument instead of remaining with the 
question ‘Why does it always apply?’, because: “The student may misjudge the limits of the 
generalizability of assertion and proof, especially if he is at the forefront of his knowledge when 
discovering, and not only when checking, an assertion.” (Krumsdorf, 2015, p. 354). 

RESEARCH QUESTIONS 
This paper targets the following research questions: RQ(1) Which epistemic actions are recognizable 
in a child’s activities working on the learning environment “Damon & Phintias”?; RQ(2) Is the 
developed learning environment substantial, and which consequences can be drawn for the further 
development of the learning environment and the applet?  

METHODS AND PROCEDURES FOR COLLECTING AND ANALYZING DATA 
Qualitative data collection and analysis methods were used within a single case study (Yin, 2018). A 
clinical interview (only key questions are defined and the interviewer follows children’s thinking) 
was conducted for data collection. A clinical interview is, in principle, analogous to classroom 
management in implementing a substantial learning environment (Wittmann, 1998). This way, the 
collected data can provide information “[...] about teaching/learning processes, thinking processes 
and learning progress of students [...]. On the other hand, they help evaluate and revise the learning 
environment to design teaching/learning processes even more effectively.” (Wittmann, 1998, p. 339). 

The author of this paper conducted a clinical one-on-one interview in June 2020 with a typical fourth-
grader (Bob) from a Hessian (Germany) primary school. Bob was chosen because he is not excited 
about mathematics but also not averse, and his usual performance in mathematics is average. Two 
sessions of 45 minutes each took place. The interview was videotaped and transcribed. 

For data analysis, Abstraction in Context (AiC) is used, which allows studying, at a microanalytic 
level, learning processes that lead (for the learner) to new constructs (concepts, strategies, etc.). The 
central element of AiC is a theoretical-methodological model, the dynamically nested epistemic 
action model, according to which the emergence of a new construct is described and analyzed based 
on three observable epistemic actions (RBC model):  

[…] recognizing (R), building-with (B) and constructing (C). Recognizing refers to the learner 
seeing the relevance of a specific previous construct to the situation or problem at hand. Building-
with comprises the use and combination of recognized constructs, in order to achieve a localized 
goal such as the actualization of a strategy, a justification or the solution of a problem. […] 
Constructing consists of assembling and integrating previous constructs by vertical 
mathematization to produce a new construct. It refers to the first time the new construct is 
expressed or used by the learner. (Dreyfus et al., 2015, p. 188) 

An a-priori-analysis according to AiC for the given proving task was done in Platz (2020a). 
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RESULTS AND DISCUSSION 

RQ(1) 
In the first interview session, Bob worked on pages 1–9 of the researcher’s booklet (the proof of the 
theorem the sum of two even numbers is always even). In this session, Bob explains the term 
“beautiful” with the expressions “always two tiles on top of each other” or “without gaps”, meaning 
a double row (even number). He explains, “if something does not look nice, then it is not even” 
meaning a double row with a nose (odd number). One week later, Bob worked on pages 10–18 of the 
researcher’s booklet, and scene 1 follows, where Bob tries to prove the theorem the sum of two odd 
numbers is always even. He initially stuck to the example 3+3 and explained the found pattern 
according to the interviewer’s advice using the example 5+11. 

Scene 1. 

 
1 I: hm (affirmative) (...) Exactly, which means that you always represent an odd 

number with a nose, right? 
2 B: hm (affirmative) 
3 I: exactly 
4 B: but you just have to rotate it correctly. 
5 I: hm (affirmative) and how to rotate? 
6 B: once around its axis. So half-way. […] 
7 I: and then what happens after you’ve rotated it? //(not understandable) 
8 B: Then it is/// then it looks beautiful. 
9 I: hm (affirmative) 
10 B: Then it goes like this. (indicates rotation of the triple-figure on the right side 

of the tile pattern in the upper left corner, which stands for the task 3+3, i.e., 
a ‘double row with a nose’) 

11 I: hm (affirmative) ok exactly, because then the two of them// (not 
understandable) (points to the ‘noses’ of the double rows) 

12 B: are united.// 
13 I: exactly, and then it will be 
14 B: without gaps. 

Bob represents a number as a set of tiles (recognizing: cardinal number aspect). The applet facilitates 
the use of structured number representation. Bob understands an actual situation with similar objects 
(tiles) as a natural number. He also recognizes even and odd numbers and builds with the constructs: 
To distinguish them, he develops arithmetic and geometric patterns, modifies them systematically, 
and describes them. This process and the used constructs are strongly instructed in the researcher’s 
booklet (see Figure 1). Bob uses presumably the basic idea of dividing (pairing of tiles), wherein an 
odd number one tile is added (Figure 1: “verdoppeln +1” – in English: “double+1”) or missing and 
in an even number (scene 1, turn 14: we do not have “gaps”). Actions on sets of objects (sets of tiles) 
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and the actions themselves (pairing) are related, and Bob recognizes mathematically structural 
properties of even and odd numbers. He forms the sum and uses these structural properties in terms 
of constructing. Bob discovers that the two individual tiles can be joined together and that an even 
number can be produced when forming the sum by cleverly joining the double rows (scene 1, turn 
4). By actions with (addition) and at sets of objects (pairing) as well as by relating the actions (to the 
previous construct), there is a mathematical transfer of the structural properties of even and odd 
numbers to the structural properties and the result of a basic arithmetical operation (addition). The 
reasoning of Bob is still tied to the presented examples. He verifies the statement by showing its 
validity in a typical case. It is not entirely clear if he manages to appeal to the structural properties of 
mathematics with reference to a generic example (Balacheff, 1991). Bob would have to recognize 
and describe the regularities in geometric and arithmetic patterns and continue them for 
generalization. Actions have to be put in relation to each other, a construction of actions has to take 
place, to which the action structure (previous construct) can be applied meaningfully, and the 
conditions of their use have to be worked out (Peschek, 1989). Mathematically, Bob has to recognize 
the structural properties of the sum of any two uneven natural numbers. What becomes evident in the 
presented scene is that the interviewer assists a lot. With help, Bob makes a representative selection 
of examples, and he tries to find possibilities for generalization. He seems to have a suitable 
justification idea that has not yet been taken to its conclusion in the sense of a conclusive 
argumentation. The resulting construct is still fragile and context-dependent and can only be used 
freely and flexibly by the learner through consolidation (Dreyfus & Kidron, 2014). Such a flexible 
use can be interpreted in the following scene: 

Scene 2. After scene 1, Bob mentions that the sum of an even and an odd number is always odd (this 
was not a task, and Bob concluded this on his own). 

1 I: How would you/ or how can you see that this must always apply? 
2 B: Well then remains/ it remains a nose. 
3 I: hm (affirmative)  
4  B: So here like before, if I would put another one on here, that would be even 

(puts a new single tile to the right side of the tile pattern in the upper left 
corner, which stands for the task 3+3, and creates a square by putting the 
single tile into the ‘gap’ to create the task 3+4) 

 
5 I: hm (affirmative)                           
6 B: so (..) then something remains, a nose. 
7 I: hm (affirmative)             
8 B: or a/ or a gap, no matter how (.) depends on how you do it. 

In conclusion, the joint development of a kind of word or sentence memory (Selter & Sundermann, 
2012) might have been useful to support Bob in verbalizing the generalization so that less assistance 
from the interviewer might be necessary. This word or sentence memory should be supplemented 
when the learner defines terms (e.g., scene 1, turn 10: “then it looks beautiful”). This way, a minimal 
professional consensus in terms of shared mathematical knowledge (Brunner, 2014) between 
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interviewer and learner can be established, “[...] by first clarifying the central subject-specific 
concepts and terms that are needed in a joint conversation and thus actually ensuring the shared 
meaning to the problem context.” (Brunner, 2014, p. 89f). 

RQ(2) 
Especially criteria (2) and (3) of Wittmann (1998) are not entirely fulfilled because of strong 
instruction, which could lead to a restriction of individual and creative solutions. According to 
Wittmann (1998), “[...], a substantial learning environment is open in principle, and only the key 
information that the teacher gives at the beginning of each stage is fixed. Further interaction with the 
students and among the students remains open” (p. 339). Such an open interaction is not given in the 
current version of the learning environment. To create an openness of solutions, consideration could 
be given to providing learners with different approaches by offering various tasks and means of 
representation:  

(School) mathematics is a language that uses different regulative and regulated symbol systems: 
formal-algebraic, constructive-geometric, and verbal-conceptual or networks of these pure forms; 
these can be expressed predicatively or functionally […]. Thus, different approaches to 
mathematics […] can be accommodated. (Lambert, 2012, p. 19) 

In this version of the learning environment, the presentation and structuring of the tiles are strongly 
guided. However, it can be helpful if a learner can experience the same situation in various 
representations and explicitly compare them. “A fixation on the same tool should be avoided.” 
(Krauthausen, 2001, p. 107). In this sense, selection options could be implemented in the applet to 
allow working with other means of representation and tasks or examples that would enable different 
approaches and structuring. In addition to the presentation, the choice of examples also plays a role. 
A number example that is not too trivial in the sense of big numbers (Martin & Harel, 1989), i.e., 
dealing with large or unhandy numbers, can help to prevent the learner from perceiving the task as 
too easy, which can prevent the development of a need for proof. This could also be extended through 
a visualization where counting the tiles is not possible anymore. Thereby, it can be prevented that the 
learner only inductively tests the assertion on the example so that the learner’s gaze might fall more 
on the structural aspects of the presented example (Krumsdorf, 2015). Not the quantity of given 
examples is essential: “[…] it seems to make more sense […] to offer the student selected examples 
according to his situational level of knowledge. Not quantity, but the quality of examples is crucial.” 
(Krumsdorf, 2015, p. 353). 

CONCLUSION 
Bob was supported by the applet primarily through the possibility of rotating the grouped tiles and 
the structuring aids (grid) and the visualization options (different colors, pen tool) offered by the 
applet, which enabled Bob to take aesthetic actions (to make something look “beautiful”). As shown 
in scene 2, the developed learning environment could be used as a kind of preliminary exercise to 
enable the pupils to build constructs that can be used in other, similar proving tasks (e.g., inspired by 
the doctrine of even and odd in the Book IX of Euclid’s Elements). However, the means of 
representation and arithmetic and geometric patterns are strongly instructed in the learning 
environment, which does not enable individual creative solutions. Therefore, a new learning 
environment, allowing discovering the assertion, building on previous knowledge, and promoting 
individual, creative solutions will be developed. In clinical teaching experiments (Wittmann, 1998), 
different support options will be tested depending on the proof phase, e.g., the variation of appropriate 
materials or representations (Krauthausen, 2001), the variation of appropriate example-based proofs 
(Krumsdorf, 2015), the use of Big Numbers or merely imagined examples (Martin & Harel, 1989), 
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or the use of pre-exercises for proving (Brunner, 2014). Nevertheless, a one-time implementation of 
a learning environment into mathematics lessons does not support proving competencies in a 
sustainable way. A culture of proving must be established in the classroom. 
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Feedback in a digital learning system has two functions, a pragmatic and an epistemic one. In 
previous papers, we were concerned with the pragmatic function, showing how digital feedback 
initiates acting with the system in groups of students. This paper addresses the epistemic function of 
this feedback by describing how feedback supports understanding algebraic principles. We report on 
an investigation of learning algebraic rules conducted with a virtual manipulative learning system,  
distinguishing, identifying and describing different forms of epistemic feedback, that is, how feedback 
provided by the learning system fosters disclosing and using algebraic principles.  

Keywords: Algebra, epistemic feedback, integer arithmetic, representations, virtual manipulatives. 

INTRODUCTION 

Manipulatives have long been used in mathematics education to provide concrete representations of 
mathematical concepts. Symbols, however, are the primary representations used in mathematics, and 
students must become familiar with their use. We have been researching how to support this transition 
using digital feedback in a multimodal algebra learning system. In previous papers, we have focussed 
on the pragmatic function of feedback (Bikner-Ahsbahs et al., 2020, 2021), showing that digital 
feedback evokes students’ actions by a feedback loop constituted in the learning groups. This paper 
reports on a complementary study in which we focus on the epistemic function of feedback in the 
same system. That is, we are investigating if our conceptually designed forms of feedback actually 
support the understanding of algebraic principles. Our report illustrates several kinds of epistemic 
feedback in the system, focussing on a virtual manipulative environment for integer addition. In this 
case study, we show particularly how this feedback allowed two boys to connect actions on the 
manipulatives to symbolic representations, in the process identifying and using several algebraic 
principles. We answer the research question of how the different kinds of feedback may foster 
disclosing and using algebraic principles.  

THEORETICAL FRAME 
As Duval (2006) notes, “mathematical processing always involves substituting some semiotic 
representation for another” (p. 107). Here we are interested in the substitution of symbolic 
representations for action on (virtual) physical objects. We make use of the ideas from research on 
representations by Kaput and Duval.  

Kaput (1998) notes that already twenty years ago, “bi-directional links between pairs of the 
traditional … (numerical, graphical and character-string) notations have dominated the attention of 
educators and researchers” (p. 272) and that this focus informed software design. One example is the 
SimCalc project (see, e.g., Roschelle et al., 2000), in which actions on graphs affected other graphs 
and motions of cartoon figures. A danger of such environments, Kaput notes, is that, if the 
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representations only refer to one another and not to the students’ experiences in the world, any fluency 
in translation between them is empty.  

Duval (2006) uses the concept of registers to clarify the kinds of transformations of representations 
that occur. When two different representations are linked, for example, symbols and manipulatives, 
two kinds of transformations can occur. Duval calls transformations that occur within a single 
register, that is, transformations of the manipulatives or of the symbols, ‘treatments’. Transformations 
that occur between registers, he calls ‘conversions’.   

These transformations are central to learning using models. As Yopp (2018) puts it: 

The concept is conceived by individual learners through: 

• Working with objects that fall under the concept 

• Working with representations of those objects, and 

• Working with relationships between these objects and their representations. (p. 45) 

THE MAL-SYSTEM 
We are involved in a research project, the Multimodal Algebra Learning (MAL) project, with the goal 
of developing an “intelligent” system of algebra tiles with the ability to give feedback to its users 
(see, e.g., Janßen et al. 2017, 2019, 2020; Janßen & Döring, 2017; Janßen, 2017; Reinschlüssel et al. 
2018). We developed an app with virtual algebra tiles for testing various features. The app provides 
the same visual and symbolic feedback as is planned for the physical tiles. It is based on a balance 
model, which associates the physical act of placing or removing objects on each side of the balance 
with the mathematical operations of adding to and subtracting from each side of an equation. Like a 
physical balance, the app provides feedback if the quantities on the two sides differ, but unlike a 
physical balance, the MAL-system can handle negative and unknown quantities.    

 Figure 1. Some key features of the MAL-system 

Some key features of the MAL-system are visible in Figure 1. Red square tiles, representing negative 
numbers, have been placed on both sides of the ‘mat’. On the left side, they are grouped into a group 
of 5 tiles representing (–5) and a group of two tiles representing (–2). Because they are both on the 
same side, they are considered to be added, but because they are in two groups, the addends are 
represented, not the sum. On the right side, the tiles represent the sum (–7). The “balance feedback”, 

Positive tile 

Symbolic feedback 

Task: “Use the tiles to calculate the result of 
–2 + (–5)”  

Negative tiles grouped as a single 
number 

Balance feedback 
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the equal sign between the two sides, provides feedback that the two sides are equal. If they are not, 
it becomes a not-equal sign. Above the mat is the statement of the task and the symbolic feedback: 
“((–2))+((–5))=((–7))”. The double parentheses are due to a bug in the programming. This symbolic 
feedback updates as tiles are regrouped, added or removed, but it cannot be changed directly. Both 
the balance feedback and the symbolic feedback are always visible.  

To represent an equation like 3 – (3) = 0, a special zone is used, the subtraction zone (see Figure 2). 
Tiles in this zone are considered to be subtracted from the tiles outside it, on that side. In the symbolic 
feedback, the symbolic form of the tiles in a subtraction zone are always enclosed in parentheses to 
indicate that the subtraction sign is not a negative sign. The zone outside the subtraction zone is 
referred to as the ‘addition zone’. Red tiles represent negative numbers that are added, while blue tiles 
in a subtraction zone represent positive numbers that are subtracted, making the distinction between 
these two situations visually evident.  

In Duval’s (2006) terms, the MAL-system operates in two registers, the tiles register and the symbolic 
register. The symbolic feedback provides a ‘conversion’ from the tiles register to the symbolic 
register. Manipulations of the tiles involve ‘treatments’ in the tiles register, and the balance feedback 
operates in that register as an indication that the manipulations are legitimate ones in that register.  

Figure 2. A Subtraction Zone used to represent 3 – 3 = 0 

METHODS 
The data analysed here come from a larger study exploring students’ reactions to features in the MAL-
system. Four pairs of Grade 5 students (aged about ten years old) from a German Gymnasium (upper 
stream secondary school) were given tasks about addition and subtractions of integers in a clinical 
interview setting outside the classroom (Hunting, 1997). The pairs were videotaped. We focus here 
on two boys, Simon and Timo, who were more vocal than the other pairs.  

RESULTS AND ANALYSIS 
In this section, we will describe results related to each kind of feedback and implications of the boys’ 
reactions to that feedback. The boys’ comments quoted below have been translated from the original 
German, and their names are pseudonyms. 

The Tiles as Objects 
One form of feedback that is not immediately obvious is the identification of the virtual tiles as 
behaving like physical objects that can be moved, and that have important properties like being 
countable and preserving quantity when rearranged. In the first task, only blue tiles were available, 
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and the boys were asked to place a single tile and observe what happened. The boys placed three tiles, 
predicting that the symbolic feedback would show “3”, and were surprised when it showed “1+1+1”. 
We interpreted their surprise as an indication that they expected the symbolic feedback to count the 
tiles in the same way they would, which in turn indicates that they expected the tiles to be countable 
in the same way that physical tiles are. As the boys placed more tiles and rearranged them, the virtual 
tiles continued to behave as if they were physical objects. This meant that the boys could make use 
of their prior experiences with physical objects when working with the MAL-system.  

Grouping Feedback 
As they rearranged the tiles in Task 1, the boys accidentally brought two of them close enough that 
the yellow outline marking a group was activated, and the symbolic feedback changed. They then 
moved all the tiles together. Simon commented, “When you move them together, then they are 
counted together as one number”, indicating an understanding of how grouping works in the app. 
This suggests that the grouping feedback, in conjunction with the symbolic feedback, had allowed 
the grouping convention to become transparent (Meira, 1998) to the boys.  

Balance Feedback 
The first part of Task 2 states: “Represent the number 5 on the left side of the mat.” As the boys did 
so, Timo commented, “At the beginning, there was an equal sign in the middle, that means it’s equal.” 
We believe he had observed that when no tiles are present, the balance feedback is “=” and that as 
soon as they started adding tiles to the left side, it changed to “≠”. The next part of the task reads: “So 
far, you see an unequal sign in the middle. Move tiles from the stock to the right side and observe 
what happens. What do you have to do to make the unequal sign an equal sign?” Timo conjectured 
that the sign would again be an equal sign “when there is equally many in there” and confirmed his 
conjecture by moving two tiles from the left side to the right side and adding one tile to the right side 
from the stock, making three tiles on each side. Here we see the linking of the balance feedback to 
the state of the tiles on the two sides. Here Timo seems to understand the use of the equal sign to 
represent the equality of two quantities, which is fundamental to algebraic thinking. This 
understanding of the equal sign was not the only one they used, however. Later, in Tasks 4 and 5, 
Simon seemed to interpret the equal sign as an “instruction to calculate” (Behr et al., 1980).  

In Task 3, which asked the boys to create a subtraction zone and explore how it worked, Timo again 
referred to the balance feedback. They had placed a tile on one side and made a subtraction zone. 
Timo placed a tile in it and said, “and when I put that in here, then it’s equal. It’s exactly equal and it 
shows an equal sign.” The interviewer asked him why, and he explained, “Because one minus one is 
zero and zero is the same as zero, and there, there’s zero.” It is interesting that he does not simply say 
“Because one minus one is zero”, which uses the equal sign to separate a calculation and its result, 
but continues “zero is the same as zero” using the equal sign to mark equality, which according to 
Knuth et al. (2008) is a prerequisite for further algebraic understanding. Here Timo’s treatment in the 
tiles register supported his interpretation of the balance feedback within that register; no conversion 
to the symbolic register was involved.  

Tile Colours for Representing the Sign 
In the first five tasks, only blue tiles were available. In Task 6, red tiles were added to the store, and 
Timo immediately noticed them. The task asked them to find the result of 2 – 3. Timo remarked, “I 
think it could still work because it could be possible that the red tile is negative”, and Simon agreed, 
“I think so, too”. The boys followed the procedure they had used in previous tasks to find the positive 
difference between two numbers. On each side, they placed three blue tiles in a subtraction zone and 
two blue tiles outside it. This gave them a starting position in which the two sides were visually equal, 
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and the balance feedback indicated “=”. They had learned that removing one tile from a subtraction 
zone and one from outside it preserves the equality. They did this twice on the right side, leaving one 
tile in the subtraction zone and none outside it.  

The instruction in the task then told them to place a red tile and a blue tile together outside the 
subtraction zone. As he placed the tiles, Timo commented, “I think it stays equal,” adding, “yes!” 
when the balance feedback remained “=”. The balance feedback, operating in the symbolic register, 
provides evidence that a red-blue pair has a value of 0 in the tiles register. The boys made a direct 
connection between the tiles and integers. When the interviewer summarised “a red and a blue 
together always gives zero”, Timo explained, “because a red one is negative”, and Simon commented, 
“that [refers to a blue tile] is 1 and that [refers to a red tile] is, I think, minus 1.” 

Zero Pairs Feedback 
In Task 8, a new kind of feedback was introduced. When a red and a blue tile are grouped as a pair, 
the pair vanishes. They seemed to be aware of this new feedback and its mathematical meaning. 
Simon observed, “it disappears,” and Timo explained, “The result is 0 and therefore they are only 
additional tiles which are not needed.” The task then instructed them to place more tiles on the left 
side, so that the balance feedback stayed “=”. Timo immediate stated “simply zero pairs.” At first, 
they had difficulty placing zero pairs because the new feedback immediately removed them, but Timo 
realised that if they were not placed together, they would remain, thus identifying the principle of 
adding a number and its additive inverse cancel each other.  

Symbolic Feedback 
The most important feedback in terms of making a connection between the boys’ actions on the 
manipulative and symbolic representations is the symbolic feedback, but this connection is made with 
the support of the other kinds of feedback we have already discussed.  

The boys had noticed the symbolic feedback already in Task 1, when they saw that it showed a sum 
when tiles were placed apart on the mat, and a single number when they were grouped. However, in 
Task 2, in which they were to make as many representations of 5 as possible, the interviewer had to 
explain that “representations” referred to what was written in the symbolic feedback.  

In Task 3, Timo was clearly attending to the symbolic feedback as he commented on two different 
symbolic expressions. They had placed the tiles as shown in Figure 2, when Timo remarked, “before 
there was a brackets calculation” and separated the group of tiles in the subtraction zone into a pair 
and a single tile. This changed the symbolic feedback to “3 – (2+1) = 0” and Timo noted, “with 
brackets.” We believe he had noticed the symbolic feedback earlier, when they were first placing the 
tiles in the subtraction zone and had not yet grouped them into a group of three.  

The boys were also aware of the relationship between the symbolic feedback and the tiles when they 
began Task 4, which told them to begin by placing tiles to show “3 – 2” on both sides. They placed 
the correct tiles, but due to a bug in the software, the symbolic feedback did not show “3 – 2 = 3 – 2” 
as expected. They restarted the task and proceeded once the symbolic feedback was what they 
expected. They also referred directly to the symbolic feedback at the end of the task, when they were 
trying to rearrange tiles to change the symbolic feedback from “2 + (–2) – (1)” to a single number.  

In Task 8, Timo explained why the symbolic feedback displays “3 + ((–3))” when they have a group 
of three blue tiles together with a group of three red tiles. He said, “So there appears a double bracket 
because, otherwise, it would calculate plus minus three, and that would not make sense, and therefore 
there appears the bracket because it is another calculation.” We believe he is saying that writing “plus 
minus three,” that is, “3 + –3” “would not make sense.” His exact meaning is not clear, but he is 
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certainly relating the symbolic feedback to the tiles and to the arithmetic operations on natural 
numbers that he is familiar with. The brackets are doubled due to a bug in the software, but the boys 
did not remark on the doubling. 

USE OF FEEDBACK IN ESTABLISHING NEW KNOWLEDGE 
In Task 9, the boys were to represent the number –5 on the left side and then on the right side, find 
different possibilities for representing the same number. Simon began placing five red tiles on the left 
side to represent (–5) while at the same time, Timo created a subtraction zone on the right side and 
started placing blue tiles in it to represent 0 – 5. They next placed another blue tile in the subtraction 
zone and a matching tile in the addition zone on the right side to represent 1 – 6. Timo then wondered, 
“What happens then if I …” and he placed a red tile in the addition zone. The balance feedback 
showed that the two sides were no longer equal. Timo removed one blue tile from the subtraction 
zone, which restored the equality. He said, “That works, too. Because they are negative, they don’t 
need to be in the subtraction zone”. Simon agreed, “That would also work,” and he removed another 
blue tile and added another red one to produce (–5) = (–2) – (3). Timo explained, “Yes, that would 
work too because it results in zero.” This is an interesting remark. Unlike a zero pair, which gives the 
feedback that it is equal to zero by disappearing, the zero here is indicated more abstractly, by the fact 
that the balance feedback remains equal when a blue tile in the subtraction zone is exchanged for a 
red tile in the addition zone. Here the boys used the interaction of feedback from the tiles, the symbol 
feedback and the balance feedback to conclude that, as Simon put it, “We always place one more red 
tile in the addition zone, then we take one blue away. That stays always the same.” He also noted, 
“The same works the other way around” and removed a red tile, placing a blue tile in the subtraction 
zone, observing that the balance feedback continued to indicate equality. The boys had discovered an 
important principle in integer arithmetic, that subtraction of a number and addition of the opposite 
number are equivalent.  

CONCLUSIONS 
The different kinds of feedback offered in the MAL-system allowed the boys to make links between 
their experiences of physical objects, the virtual tiles and symbolic expressions.  

Conversions from the symbolic register to the tiles register and back again occurred throughout. 
Because the tasks presented symbolic representations, the boys converted to the tiles register when 
setting up the tasks. They were guided in this by their connecting the virtual tiles to real objects. The 
symbolic feedback provided a check on this process, converting the arrangements of tiles the boys 
produced back into the symbolic register. This feedback was combined with the grouping feedback 
to establish what representations in the tiles register correspond to numbers, and how addition is 
represented in the tiles register.  

The subtraction zone does not correspond to a real-world object, and so establishing its meaning 
involved comparison of the symbolic feedback and the tiles representation. In Task 4, the boys said 
that tiles representing 3 – 2 on one side of the mat are equal (according to the balance feedback) to a 
single tile on the other side. This fits with the boys’ real-world experience of subtraction as removing 
two objects from a set of three. The balance feedback in the tiles register gave them immediate 
confirmation that the subtraction zone representation corresponded to subtraction as taking away.   

The balance feedback was also important, in Task 6, in establishing that a red tile is the opposite of a 
blue tile. The boys saw that a red-blue pair is equal to an empty side representing zero, and hence that 
the red tile represents a negative number. When zero pairs feedback was introduced in Task 8, this 
identification was reinforced.  
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In addition to using the feedback to establish how to convert between representations, there were also 
occasions where the boys used the feedback to reach conclusions. One example of this is in Task 9. 
They could explain why exchanging subtraction of a positive number corresponds to the addition of 
a negative number, but they also relied on the balance feedback to confirm that the action in the tiles 
register of exchanging a blue tile in the subtraction zone for a red tile in the addition zone, produces 
an equivalent symbolic expression.  

The feedback in the MAL-system offers support for mathematics learning in a number of ways. It 
helps to establish the meanings of representations (through conversions), it supports the definition of 
new objects and operations (through conversions and treatments), and it helps to confirm hypotheses, 
primarily through conversions; hence, the feedback functions in various epistemic directions.  

Our study shows that the combination of manipulative material, and feedback offered by software, 
makes it possible to overcome the danger pointed to by Kaput, of conversions between registers 
becoming a meaningless game. We also believe that the feedback offered by the MAL-system 
allowed Simon and Timo to discover for themselves an important principle in integer arithmetic, that 
subtracting a number is equivalent to adding its opposite. In contrast, using physical manipulatives 
alone require interventions by a teacher to say how representations should be interpreted. That is, 
physical manipulatives provide pragmatic feedback, while the digital feedback in the MAL-system 
provides both pragmatic and epistemic feedback. 
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INTRODUCTION 
At German universities, systematic errors caused by overgeneralizations can frequently be found in 
first-year STEM students’ solutions of tasks related to differential calculus (Schirmer et al., 2020). 
These errors often remain stable and hinder students from successfully completing advanced 
mathematics courses (Kersten, 2015). Hence, there is a need to facilitate students to recognize their 
own errors so that they can adequately expand on their previous knowledge.  

Students often make use of online videos to consolidate their knowledge. Despite a high number of 
freely available online videos intended to support students in consolidating their school knowledge 
in preparation for university mathematics, the quality of these videos is sometimes questionable or 
these videos do not explicitly address systematic errors (Oldenburg et al., 2020).  

CONFLICT-INDUCING INTERACTIVE VIDEOS 
The purpose of the present study is to design interactive videos that can induce a cognitive conflict. 
For that purpose, videos use the ECRR (elicit – confront – resolve – reflect) instructional sequence 
(Engelman, 2016) in order to reduce a typical student error. The study focused on a typical procedural 
error that first-year students show when deriving products of functions, and that can be described as 
overgeneralization of the differentiation rules for sums of functions to products of functions. This 
overgeneralization is also referred to as “illusion of linearity”. As the concept of linearity is intuitive, 
students tend to rely on it without reflecting on its limitations and, in turn, inappropriately expand the 
domain of applicability (Verschaffel & Vosniadou, 2004). 

To induce a cognitive conflict, we used a function that can be represented as the product of two 
polynomials and differentiated it in two ways. We designed a video that contrasted the incorrect 
solution of determining the derivative caused by overgeneralization and the correct solution based on 
elementary derivation rules. The idea was that the comparison of the two unequal results coupled 
with the reliance on elementary derivation rules for polynomials would lead (1) to the awareness of 
the presented inconsistency, (2) to a dissatisfaction with the existing unsustainable concept—a 
condition for a conceptional change (Hewson, 1992)—and (3) to a rejection of the incorrect rule. To 
reinforce this rejection, we presented the solution obtained with the help of the product rule and 
highlighted the equality of the result with the result we got when using elementary derivation rules 
for polynomials in order to convince students of the necessity of the product rule.  
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EXPLORATORY STUDIES 
In our exploratory studies, we investigated the effects of the conflict students experienced. 
Particularly, we examined whether students recognized the contradiction presented in the video and 
whether they considered it to be useful for their learning. 16 second-semester engineering students 
worked with the interactive video and were interviewed afterwards in videotaped sessions. In a 
pretest, no student made the error based on overgeneralization. One-third were able to recognize the 
error as the primary learning objective of the video. The most frequent classification of the learning 
objective was the deepening of the product rule. Furthermore, five students expressed surprise or 
uncertainty when they watched the presentation of the wrong solution. Four out of these five students 
initially doubted their own solution based on the product rule, which they had previously solved in a 
test task. We concluded that the function we used to contrast two different solutions was not suitable 
to trigger a cognitive conflict. 

In a follow-up interview study, engineering students were presented with different contradictions and 
two means to make sense of these contradictions: the first example was more procedurally oriented, 
the second more conceptually oriented. The students were asked to give reasons for the contradiction. 
Results showed that students struggled to compare ways of calculating a derivative which we, based 
on our analysis of the data, attribute to high cognitive load. It was noticeable that some students 
recited concepts about calculating extrema, even though the interview question referred to the 
verification of solutions of different calculations. For the conceptually oriented example, students 
used arguments based on geometric properties of functions, such as the concept of slope, to explain 
the contradiction. We conclude that a procedurally oriented example is less suitable to reveal a 
contradiction and hence is not likely to trigger cognitive conflicts. 
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Theme 2: Making Sense of ‘Classroom’ 
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with and through technology 
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Mathematical discussion plays a key role in teaching-learning processes, and it has been mostly 
studied when implemented in physical classroom contexts. However, during the lockdowns imposed 
by the Italian government (and many other governments worldwide) because of the COVID-19 
pandemic, teaching had to be performed exclusively online. Therefore, also mathematical 
discussions, when implemented, had to be carried out through digital technology. In this paper, using 
the perspective offered by the Theory of Semiotic Mediation on collective mathematical discussions, 
I analyze an online mathematical discussion on division algorithms in a 6th-grade class. The analyses 
point out significant differences in how the actions were implemented online and in their effect in the 
discussion, especially on the emergence and elaboration of signs. 

Keywords: Online mathematical discussion, signs, teacher actions, Theory of Semiotic Mediation. 

HOW MATHEMATICS CAME TO BE TAUGHT THROUGH TECHNOLOGY IN 
ITALIAN CLASSROOMS: THE COVID-19 CRISIS 

To contextualize this study, I start by citing a very representative quote from a recent paper by 
Ramploud et al. (2021) describing the general feeling of most (if not all) Italian teachers during the 
COVID-19 crisis: 

[…] it was a violent and uncontrolled cultural change that teachers had to face at a moment of 
extreme isolation, since communication with and among students was to be necessarily combined 
with technological tools, changing the nature of communication […] (Ramploud et al., 2021, p. 5) 

The authors describe the situation as a crisis, referring to Yerushalmi (2007): 

Crisis situations, as I am defining them, occur during ordinary life occurrences when one’s 
personal mechanisms for organizing experience cease to function. […] Often the primary 
experience is one of internal imbalance and lack of control over one’s life. (Yerushalmi, 2007, pp. 
359–360)  

Although, unfortunately, this was the situation within which most Italian teachers felt trapped, they 
(at least the teachers from our research-action groups [1]) continued doing their best to support the 
emotional well-being and mathematical learning of their students. In this crisis situation, many 
students did not dispose of adequate devices and internet connections, so most of the teachers decided 
not to propose activities with digital artefacts during the regular online lessons. Such a decision was 
in contrast with what I and other researchers involved in the research-action projects tried to propose 
and had hoped to be able to study. However, many of the teachers in our groups did try to promote 
mathematical discussions online. This is the situation that I use in this paper to exemplify teaching 
through technology. In particular, I will highlight shifts in the practice of mathematical discussion 
when it is carried out online as opposed to in physical classrooms. 

Conceptualizing the use of digital technology in the “crisis” context and my objective. 
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The didactical tetrahedron (Ruthven, 2012) foresees two main roles of technology: one describes 
digital technologies in their mediational role with respect to specific mathematical content, while the 
other is described by Ruthven (2012) as follows: 

Another line of development in the educational use of digital technologies has sought to update 
and enhance the basic infrastructure that supports classroom communication between teacher and 
students, and assists their use of content-related resources within and beyond the classroom. 
(Ruthven, 2012, p. 628). 

Because of the data that I was able to collect and analyze prior to this talk, I will focus on lessons in 
which digital technologies are framed within this second line of development. Moreover, this will 
allow me to focus specifically on shifts that occur due to the different form of communication (online 
as opposed to “in presence”) between teachers and students, avoiding overlap between the two lines 
of development. Within this second line, we can talk about way in which teachers use digital 
technology in terms of “schemes”, as discussed in the Theory of Instrumental Genesis (Monaghan et 
al., 2016). 

Within this perspective, our teachers were faced with the task of communicating with their students, 
to teach them mathematics, and to accomplish such a task they made use of the (digital) tools of 
Google Meet and Jamboard. So, studying how mathematical discussions are carried out through 
technology becomes a matter of inferring teachers’ schemes, by looking at techniques (the visible 
parts of such schemes) used to communicate with digital technology during such online discussions. 

Objective of this Paper 
Specifically, I will focus on the online implementation in Meet and Jamboard of the typical actions 
(see the following section) used by the teacher in a mathematical discussion, which I expect to be 
qualitatively the same online and in presence. I will pay particular attention to how the teachers use 
this digital technology to foster the emergence and elaboration of signs in such a discussion. An 
underlying hypothesis is that there are differences in how the actions are implemented online and in 
their effect in the discussion, especially on the emergence and elaboration of signs.  

SIGNS AND MATHEMATICAL DISCUSSION FROM THE PERSPECTIVE OF THE 
THEORY OF SEMIOTIC MEDIATION 

The Theory of Semiotic Mediation (Bartolini Bussi & Mariotti, 2008) was developed to analyze the 
relationship between students’ accomplishment of a task through an artefact and their mathematics 
learning, precisely addressing the issue of how students can become aware of the meanings stemming 
from the activity with an artefact to accomplish a task, and of how such meanings can evolve towards 
target mathematical ones. In this section, I introduce collective mathematical discussions, as they are 
conceptualized within the Theory of Semiotic Mediation, focusing specifically on the theorized 
teacher actions within such discussions according to the goal of promoting the evolution of signs. I 
will use the notion of sign in a broad sense, including any kind of perceivable spatio-temporal entities 
which might be uttered, spoken, written, drawn, encoded electronically, or in general used by 
someone to express some meaning.  

Collective Mathematical Discussion 
Classroom discussion to promote mathematical learning has been conceptualized in different ways 
(e.g., Michaels & O’Connor, 2015; Stein et al., 2008). Here I refer to collective mathematical 
discussion as introduced by Bartolini Bussi and Mariotti (Bartolini Bussi, 1998; Bartolini Bussi & 
Mariotti, 2008); it is part of each didactic cycle, and it is a kind of activity involving the whole class: 
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various solutions are discussed collectively, students’ situated signs (with personal meanings) are 
collectively analyzed, commented, and elaborated. Students’ interventions are coordinated by the 
teacher with the goal of generalizing the situated meanings, emerging from the activities with the 
artefact, and moving them towards mathematical meanings. (e.g., Bartolini Bussi & Mariotti, 2008; 
Mariotti & Maffia, 2018). 

Teachers’ Actions in Collective Mathematical Discussions 
The study of teachers’ actions aimed at fostering the production and development of signs during 
mathematical discussions has led to a classification of such actions (Mariotti, 2009) that Mariotti and 
Maracci (2010) have also described in terms of schemes. Below are the four types of actions 
conceptualized in these terms. 

Back to the task: the class of situations characterized by the need of promoting the students’ 
production of signs related to the actual use of the artefact for accomplishing a given task.  

Focalize on certain aspects of the use of the artefact: the class of situations when the discussion has 
led to the emergence and sharing of a rich net of signs related to the use of the artefact and there is 
the need of selecting the pertinent aspects of their shared meanings in respect to the development of 
the mathematical signs that constitute the final education goal.  

Ask for a synthesis: the class of situations when the discussion has led to the emergence of shared and 
stable signs condensing the key aspects of the common experience with the artefact, and there is the 
need of generalizing and decontextualizing the meanings that emerged. 

Provide a synthesis: the class of situations, when the discussion has led to the de-contextualization 
and generalization of meanings form the context of use of the artefact towards the context of 
mathematics, and there is the need of ratifying the acceptability and the status of a sign within the 
mathematical context. 

Application of this Theoretical Perspective to the Study in Focus 
The teachers in this study were aware of the four types of actions described above, and they were 
used to enacting them during collective mathematical discussions conducted in presence in their 
classrooms. However, the teachers had not conducted discussions completely online before. 

A slightly delicate issue is that of the artefact around which the discussion is centered, according to 
the didactic cycle. In many studies in the literature, including most of my own (e.g., Antonini et al., 
2020; Baccaglini-Frank & Mariotti, 2010; Baccaglini-Frank, 2019, 2021), the artefact is a digital one. 
Such studies would, therefore, fall into the first role of technology described by Ruthven, that I 
introduced above. However, in this paper, the artefacts around which the discussion is promoted are 
two division algorithms [2] (Lisarelli et al., 2021). Therefore, the signs I will be analyzing refer to 
these algorithms and mathematical meanings behind them, such as division, place value of digits in 
numbers written in base ten, or powers of ten. 

However, here I will not be looking at how digital technology mediates mathematics, but at how it 
mediates the communication about mathematics between the teachers and the students, which is 
consistent with Ruthven’s second role of technology. 

PARTICIPANTS, MATHEMATICAL CONTEXT AND DATA COLLECTION 
The mathematical discussion in this paper is part of data collected during the Italian lockdown in 
March-April, 2020 from classes of the teachers of our research-action group [1]. Specifically, the 
discussion occurred online in one of the two subgroups that a 6th-grade class was divided into for 



 

ICTMT 15 Copenhagen 119 

 

some of the online activities (as described in Lisarelli et al., 2021). The online discussion was 
conducted by F., the main teacher, together with G., a researcher, who had been involved in the design 
and implementation of the teaching sequence on division algorithms. 

The class was part of an English school in Northern Italy, in which mathematics had been taught in 
English until the end of grade 5, while in grade 6 it was taught in Italian. In primary school the 
students had been taught an algorithm they called “DMSB”. The acronym stands for the steps: divide, 
multiply, subtract, bring down (Figure 1a). Prior to the lesson in focus, the class had been introduced 
to what was referred to as the “Canadian” algorithm (also known as “Nuffield”, see Figure 1b) [3], 
through the escamotage of a letter from an imaginary Canadian student Nadège. Prior to this lesson, 
the students had used both algorithms to calculate quotient and remainder of various divisions, but 
they had never been asked to compare these two algorithms. 

a)  b)  

Figure 1. a) Divide, Multiply, Subtract, Bring down (DMSB) algorithm; b) “Canadian” (non-
optimized) or “Nuffield” division algorithm 

During the online lessons (including the one in focus), the students were asked by their teacher F. to 
keep their webcams and microphones off unless she asked them to activate the microphone, while the 
webcams had to stay off. The students had free access to the online chat in Meet. The mathematical 
discussion occurred in Italian, and it was transcribed in Italian and then translated into English. 

Setting the Scene of the Lesson with Respect to the Didactic Cycle 
F. and G. had assigned the division 395: 16 to be carried out with the DMSB and with the Canadian 
algorithms as homework. They had collected the students’ work and transcribed some of the solutions 
to use at the beginning of the lesson, before launching the collective discussion. G. was in control of 
the Jamboard and, together with the class teacher, F., guided the discussion. F. had announced, at the 
beginning of the lesson, the objective in the following terms: “Let’s be mathematicians and try to 
compare these two algorithms and discover why they produce the same quotient and remainder.” 

SPECIFIC FINDINGS FROM THE ANALYSES OF EXCERPTS FROM THE ONLINE 
COLLECTIVE MATHEMATICAL DISCUSSION IN A 6TH GRADE CLASS 

For space limitations, I will not include here the complete transcriptions of the excerpts I report on, 
some of which are included as subtitles of the video clips shown during my talk (visible here: 
https://youtu.be/WqEQHtP5_fs). Here I will only list some of the findings from such analyses, 
organizing them around the main tools used, and trying to follow the discussion’s temporal evolution. 

Using the Chat in Google Meet to See Students’ Signs and as a Window onto the Class 
Both F. and G. frequently open the chat and scroll down, in search for students’ signs to pick up and 
use in their actions. Especially at the beginning of the discussion, they use the students’ signs written 
in words for focalization actions. We note that signs in chat are only expressed in a single modality, 
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as written words, unlike in “in presence” classrooms, in which F. would usually capture gestures and 
oral expressions together with written signs on the students’ worksheets or notebooks. So, this online 
action appears to dramatically narrow down students’ initial modes of sharing signs they have 
produced. When promoting online focalization actions, F. and G. tend to call on students who have 
produced certain signs to turn on their microphone and explain, adding another mode of production 
and potentially new signs to the semiotic bundles (Arzarello, 2006) produced. 

The teachers also use the online chat to get an overview of how the class is following. For example, 
after providing a synthesis of what Ka. has noticed, Figure 2a shows F. asking whether the class 
agrees with Ka. and immediately after, she and G. scroll through the chat. Many students write “yes” 
or words suggesting approval. However, F. seems to use that chat also to see who remains silent, that 
is, “invisible”, to later call on them and ask them to participate. 

a)  b)  

Figure 2. a) The teachers using the chat as a window onto their online class; b) visual glimpse at 
student participation in a physical classroom, in response to a similar question by the teacher 

This way of using the chat seems to be an online version of what visual and acoustic signs convey in 
physical classrooms. Figure 2b shows students in a physical classroom responding to a similar 
intervention of their teacher in a mathematical discussion. However, unlike in a physical classroom, 
the chat allows to “see behind” students’ raised hands, because frequently students write brief answers 
to questions posed by other classmates or by the teacher. In the discussion analyzed here, a student, 
Al., referring to the “75” that appears in both algorithms, disagrees with a classmate who says: “they 
are the same” and asks to speak, writing in the chat: “[but] coming from two different sums”. 

Using Jamboard for “Online Gesturing” in Coordination with Students’ Speech through the 
Mic 

Initially, G., who is in control of the shared board, tries to coordinate her production of signs Ka.’s 
words as she speaks (without being seen or being able to act on the Jamboard). For example, in Figure 
3a, G. highlights with the laser tool the numbers Ka. is referring to. This technique, a sort of “online 
gesturing”, serves to bring attention to certain graphical signs, part of the bundle with the oral signs, 
as well as to confirm to Ka. that she is being understood. Notice that, in a physical classroom, these 
or similar gestures accompanying verbal utterances would all be produced by the student. 

F. suggests a modification of G.’s technique to produce more permanent signs on the board, as shown 
in Figure 3b. 

Ka.: Like the 24 in the DMSB is above; instead, in the, in the Canadian way it’s formed 
by 10, 10 and 4. (Figure 2a) 
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F.: Uhm, can you circle them, G., with the same color using the highlight tool, 
maybe? ... Leave them colored. 

a)  b)  

Figure 3. a) G. uses the laser tool as Ka. speaks; b) correspondence between signs described by Ka. 
and highlighted graphically by G. 

Now Ka.’s verbal utterances are completed with corresponding graphical signs, that are highlighted 
to make the correspondence explicit. The correspondence between the 10, 10 and 4 and the 24 shown 
in Figure 2b is expressed orally, graphically, and through G.’s online gesturing. So the set of signs in 
focus is produced jointly through a collaboration between Ka. and G.. In this joint effort, the actors 
seem to have different, though harmonious intentions: Ka. wants to explain the correspondence 
between signs she has perceived but that she can express only verbally, while G. works hard to 
interpret Ka.’s words, in order to “see through her eyes” and show Ka. she is being understood, while 
at the same time enriching the set of signs with graphical components in the hope that other students 
will see the same connections that Ka. is describing. This coordination effort can be seen as a 
focalization action.  

Indeed, G. notices Al.’s comment, finds it relevant in the orchestration of the discussion, and 
immediately uses it in a focalization action. 

G.: What does “broken into two different sums” mean?  

Al.: The two...I mean in the first one there is 235 minus 160... and, eh, and in the one on 
the right there is 39 minus 32. 

F. & G.: Uhm! Uhm! 

G: What do you see as similar? What does “broken un into two different sums” mean? 

Al.: No, in the sense that they derive from two different sums, the same subtraction. 

F: It means that the 75 comes out from two different processes, Al. is saying. 

G: So Al., are you suggesting that this package—I don’t know if I’m going too far 
beyond or if it’s what you meant—should somehow correspond to this little package 
here? (Figure 4) 

In the excerpt above, notice how Al. uses a sort of verbal enaction of a pointing gesture (“on the 
left/right”), elaborating on the sign “different sums”, which he then refers to as “the same 
subtraction”. F. elaborates on Al.’s sign, restating it as “different processes”. This builds up to a key 
moment in the discussion, at which G. expresses the sign in terms of “packages” that she interprets, 
as shown in Figure 4. Such an interpretation does not seem to be completely coherent with Al.’s 
meaning. 
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Figure 4. G. highlights the “packages” that she interprets Al. sees as corresponding in the production 
of the 75s in the two algorithms 

G.’s focalization action includes a strong interpretation of Al.’s sign: while the student’s intervention 
refers to the two 75s “coming from different sums/subtractions”, G. uses oral and graphical marks to 
bring the class’ attention to “39-32” in the DMSB and to longer sequence in the Canadian division, 
adding the word “little package(s)” in correspondence to her signs (Figure 4). Moreover, Figure 4, 
together with Al. and G.’s verbal utterances, illustrates how different components of the semiotic 
bundle are produced and constantly re-elaborated by the actors, in this case, the student and the 
teacher, G.. This re-elaboration of the signs produced by the student seems to go far beyond his 
intended meanings: indeed F. will then spend most of the lesson trying to bridge the gap between the 
meanings at play, created by G.’s misinterpretation. In F.’s physical classroom, even when the class 
was co-conducted with G., we have not hardly ever witnessed such a discrepancy between a student’s 
intended meanings and those in the teacher’s interpretation of the shared signs. I expect this to be the 
case because, in the physical classroom, signs are elaborated more gradually by other students as 
opposed to by the teacher. 

Using Speech through the Microphone Uncoordinated with Actions with any Other Tools 
A standard practice in F.’s class is to have students “ask each other” when they do not understand 
something. During the online lesson, F. tries to use the same practice, but mediating students’ 
interactions much more, because of her rules on taking turns speaking by turning on the microphone, 
only when asked. Towards the end of the discussion, F. uses such a practice to ask Jia. to explain to 
Gem. something that had been shared by other students: why in the DMSB there is a “39-32” that 
gives 75 (not 7). This is a kind of ask for a synthesis action. F. rapidly follows up on such an action 
providing a synthesis, herself, in which she further elaborates on the signs produced by the class. 

Jia.: Instead, the 39 is simply without the 5 that then in brought down to the 7.  

F.: Jia. is saying that 39 is actually a 395,... the 5 stayed up top. 

F.: Then, instead she says that that 32 isn’t in fact exactly a 32, but it’s 320, there is a 
zero hiding away a bit there. And that 320 is exactly the sum of the two 160[s] 
instead in the Canadian [algorithm]. 

Focusing on the signs in this excerpt, there are at least two sets of signs that are put in relation with 
one another: one that includes the “bring down” in the DMSB, and one including “hidden” digits 
(these two sets are highlighted graphically in Figure 5). As shown previously, here, too, different 
components of the sets of signs are produced and managed across the actors: Jia., like her classmates 
who spoke before her, explains only orally, without the possibility of marking the board or even 
pointing to signs on the board; F. repeats and rephrases some of the words uttered by Jia., but because 
she is not in control of the Jamboard, her signs are also expressed in a single modality, though they 
refer to numbers written on the board.  
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Figure 5. Two sets of signs co-produced by the class and the teachers 

Unlike what she did with students, G., is not supporting F.’s synthesis with any online gesturing. 
Therefore, in F.’s synthesis the connections between visual and verbal components of the sets of signs 
are left implicit. I tried to highlight some of these connections with the additional markings I made in 
Figure 5. This surely shows that the ways in which signs are produced and shared on online 
discussions like this one is quite different than those that take place in physical classrooms. Possibly, 
a lack of explicit connections, like in the case shown above, can be stimulating for some students, 
who in this way are not shown everything, but they need to actively follow others’ words to visually 
navigate the page. However, this set up may be problematic for some students, as it surely creates a 
heavier cognitive burden for them to carry. At the moment, I do not have enough data on the effects 
of this sort of online teaching practice to discuss it any further. 

Using the Microphone for a Vocal Check In 
Another interesting technique used frequently by G. and F. is a sort of grunt they emit orally while a 
student is speaking. The main objective seems to be to let students know they are being listened to 
and understood. In other words, this “vocal check-in” seems to satisfy a phatic function, the means 
by which two or more speakers reassure themselves that not only are they being listened to, but they 
are also being understood. The frequent vocal check-ins that occur online seem to substitute for other 
means through which the phatic function is carried out in physical classrooms. 

OVERVIEW OF FINDINGS 
The tools used in Meet were the chat, the microphone, the video camera, and, in and Jamboard, the 
laser highlight, the colored pens and the highlighters. Table 1 presents the main communication 
techniques, the visible parts of the schemes, the teachers used to communicate with these tools. I will 
now describe the main potentials and limitations that seemed to be experienced by the teachers and 
the students, and to mostly influence the emergence and elaboration of signs. 

The chat offered the potential to “see behind” students’ “raised hands”. Indeed, in this online lesson, 
when students were asked a question, or when they wanted to say something in support or against a 
classmate’s statement, they would signal their desire to intervene by writing in the chat. Scrolling 
down through the chat, the teachers could quickly get an idea of who was thinking what; perhaps this 
allowed them to identify relevant signs to pick out and share more rapidly than in the physical 



 

ICTMT 15 Copenhagen 124 

 

classroom. However, a limitation of having students quickly type their signs into the chat is that the 
signs emerged in a single modality (written verbal), and usually in a very concise and cryptic form. 

The fact that the students could activate the microphone only without the video camera and without 
having direct access to the Jamboard was another limitation that forced students to share signs in a 
single modality (aural), when called on. However, this also led some students to attempt to clarify 
their signs and reasoning through a sort of aural enaction of pointing gestures, giving names to sets 
of marks on the board. 

Writing or highlighting on the Jamboard has the potential of coordinating speech and gestures, like 
in a physical context, allowing the simultaneous production of sets of signs with graphical and aural 
components that are immediately accessible to the listeners. However, the fact that, as a class norm, 
the teacher did not allow students to act on the Jamboard caused the following asymmetry in the 
management of the written signs: the students could only see them, while the teachers (actually, only 
G.) could highlight and modify them. This asymmetry forced the students to verbally interpret the 
written signs, on the one hand, and, on the other hand, it led the teacher to translating them into a 
mixed verbal and graphical set of signs. The teachers were constantly active (more than in the physical 
classroom) interpreting the students’ signs, guessing at the meanings evoked by the students, adding 
components and enriching the semiotic bundles, which led to a relatively large discrepancy between 
Al.’s intended meanings and those in the G.’s interpretation of the shared signs (Figure 4). 

 

technique  goal 

Open and scroll chat Obtain an overview of students’ participation and search for 
interesting signs for discussion 

Write in chat Parallel communication between students or between students and 
the teacher to organize speaking turns, or just to “stay in touch”  

Write or highlight in 
Jamboard 

Add and coordinate visual parts of signs in student’s speech, to 
help class follow/focus and show speaker s/he is “understood” 

Use mic. for vocal “check-
in” 

Let students know they are being listened to (phatic function) 

Use mic. to call on 
“invisible students” 

Increase participation of students (especially those expected to 
struggle) 

Use mic. to aurally enact a 
pointing gesture 

Get listeners’ attention to go somewhere specific on screen 

Table 1. Main communication techniques implemented in Jamboard and Google meet to communicate 

In general, the analyses also suggested that focalization and provide a synthesis actions prevailed over 
the others. Frequently right after asking for a synthesis, online the teacher would quickly shift to 
providing a synthesis herself, while in her physical classroom, F. would carry out this action less 
frequently. This behavior could be due to a feeling of lack of control over her class that F. experienced 
online, or simply to the difficulty of bearing silence in the online situation. 
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DISCUSSION AND CONCLUSION 
This study suggests that during the lockdown in Italy, even in a class whose teacher belongs to a 
research action group and who continued to collaborate with researchers (indeed one was even co-
teaching with her!), digital technology is still used rather “naively”, as a means to transfer online what 
the teacher usually implements in her physical classroom, without fully taking advantage of its 
potential. The analyses suggest that changes in how the discussion was conducted online as opposed 
to in physical classrooms were due to limitations in how signs were co-produced and shared between 
students and teachers, but probably also to the norms imposed during the crisis situation. Ruthven’s 
decade-old claim seems to still apply:   

These developments have been readily embraced because they provide relatively simple (if often 
expensive) enhancements to everyday means of communication and resource use, in and beyond 
the classroom. These technologies are not strongly framed in didactic terms, and have potential to 
support activity across the didactic spectrum; nevertheless, in practice they are often appropriated 
to a reproductive didactic. (Ruthven, 2012, p. 629) 

So, it seems natural to question the extent to which the online communication was really responsible 
for these changes? What could have been done to better exploit the potential of communication 
supported by digital technology and transform (at least some of) these constraints into opportunities? 

A few possibly insightful directions to explore come to mind, concerning the chat and, more in 
general, shared spaces provided by digital technology. Chats could be used both synchronously and 
asynchronously with respect to the online discussion to foster students’ written argumentations. 
Indeed, the chat tool offers a means of online communication that privileges written text. This tool 
could be used according to different schemes, based on forms of communication it is supposed to 
mediate (e.g., teacher to student, student to teacher; students to student, ...).  

Shared “spaces” could be provided, such as text documents or boards shared within small groups of 
students, in order to promote the production of personal signs that can later be shared with the larger 
group. For example, breakout rooms as “secure” spaces where students can interact more freely 
without teacher mediation. In a shared space such as Jamboard, the management could be different, 
for example, allowing students to access it, write on it and produce online gestures around the signs 
on it, as was done only by G. in the online lesson. In contexts where the teacher prefers not to give 
students access to the board, such as F.’s, lessons could involve activities designed to foster the 
development of verbal language, for example asking for predictions and descriptions of the behavior 
of interactive digital artifacts (e.g., Baccaglini-Frank et al., 2018). This goes back to the first line of 
development of digital technologies described by Ruthven, concerning their mediational role with 
respect to specific mathematical content. While there has been lots of research in this direction over 
the past decades, why have classroom practices lagged so far behind, making teachers and students 
fall into such difficult situations (the one described is among the “happiest” I have witnessed during 
the lockdown) when online education became necessary?  

A key might be to look in the direction of professional development. What kind of professional 
development is needed for teachers to be able to feel more comfortable in online teaching contexts? 
How should professional development courses be designed? These and similar questions have been 
raised in different countries and communities, who all feel the need for research on online teaching 
and learning with and through technology (Bakker et al., 2021). I join this chorus. 
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NOTES 

1. At the Mathematics Department of the University of Pisa the research-action group “Gruppo di Ricerca e 
Sperimentazione in Didattica della Matematica” (GRSDM) directed by Anna Baccaglini-Frank and Pietro Di Martino has 
continued to meet online throughout the pandemic.  

2. The conceptualization of algorithms as artifacts, and the didactic potential of their synergy are described in Baccaglini-
Frank, et al. (2021). 

3. This algorithm owes its Italian name to the collaboration between the research group coordinated by Paolo Boero and 
a Canadian group of teachers. 
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We consider integrated interactive digital tools and interactive tasks as typical potentials of digital 
mathematics textbooks that distinguish them from printed textbooks. In this research project, the 
impact on students’ achievement compared to analogue printed materials is of particular interest. So 
far, previous studies have indicated different results between male and female students regarding the 
learner uptake and benefit supported by the materials. For example, the PISA study showed that boys 
scored higher in mathematics, while other studies show that girls benefit more from the interactive 
materials. In the context of the use of a digital textbook, the KomNetMath project is investigating in 
a pretest-posttest design whether male and female students show a different achievement development 
with or without a digital textbook. The results show advantages for the female students when using 
digital materials.  

Keywords: Achievement, digital textbook, digital tools, gender, influence of technology. 

LEARNING WITH A DIGITAL TEXTBOOK 
The latest digital mathematics textbooks integrate features and digital tools that distinguish them from 
printed textbooks and traditional e-books (Pepin et al., 2015). These variations represent the potential 
of digital mathematics textbooks. For example, digital mathematics textbooks may include interactive 
tasks, multimedia elements, opportunities for assessment, personalisation or communication 
(Choppin et al., 2014; Pepin et al., 2015; Rezat, 2021). A digital textbook should therefore differ from 
a printed textbook in having dynamic structural elements in addition to static structural elements (Pohl 
& Schacht, 2019).  

These fundamental differences in the structure of digital and printed textbooks are of particular 
relevance for an investigation into the influence on learning with digital textbooks. This is because 
the learning opportunities offered by a textbook are shaped by its structure and content (Pepin et al., 
2015). The learning opportunities and, thus, the particular textbook have an impact on the 
organisation, more precisely on the “how” and “what” of the teaching and learning process (Chazan 
& Yerushalmy, 2014; Pepin et al., 2015; Sievert et al., 2021). This means that the quality of the 
textbook on a topic can affect the time spent on that topic and thereby the classroom activities. 
Subsequently, there is research indicating that students’ performance correlates with the learning 
opportunities provided by a textbook (Pepin et al., 2015; Sievert et al., 2021).  

The textbook can be classified as an artefact that has a translation function from the intended 
curriculum to the implemented curriculum, i.e., teachers’ actions (Valverde et al., 2002). Although 
the textbook is the most important resource and the guiding medium for teachers (Fan et al., 2013; 
Pepin et al., 2015; Valverde et al., 2002), there are very few studies investigating the use of a textbook 
and its impact on student learning and achievement (Fan et al., 2013). So far, often studies have rather 
compared different textbooks and neglected the actual usage (Fan et al., 2013). The first studies 
comparing digital and analogue learning materials regarding the effects on achievement were able to 
show the first positive effects of the digital materials (Radović et al., 2020; Reinhold et al., 2020). In 
the study of Reinhold et al. (2020), it was shown that especially low-achieving students could benefit 
from the digital materials when learning fractions. This was attributed to interactive and adaptive 
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scaffolds in particular, e.g. individual feedback, which should help to reduce the cognitive load when 
dealing with the digital materials. Radović et al. (2020) particularly highlight the potential and 
influence of embedded GeoGebra applets. In addition to a positive influence on students’ knowledge, 
they observed a positive impact on students’ perception of learning and their motivation. These 
findings are in line with the results of a meta-analysis of quantitative studies, which showed that the 
use of digital tools has positive effects on learning success (Hillmayr et al., 2020). 

GENDER DIFFERENCES IN MATHEMATICAL ACHIEVEMENT AND THE USE OF 
DIGITAL TOOLS AND MATERIALS 

Various studies have already identified gender differences between male and female students in terms 
of their mathematics achievement. For example, in the Programme for International Student 
Assessment (PISA) study, 15-year-old boys show significantly better results than girls in mathematics 
competencies in Germany and across all of the Organisation for Economic Co-operation and 
Development (OECD) countries (OECD, 2019; Reinhold et al., 2019). In Germany, similar results in 
favour of male students were found in the second national assessment of mathematics and science 
proficiencies at the end of ninth grade (Schipolowski et al., 2018). The differences between boys and 
girls were particularly large in the core theme data and chance (Schipolowski et al., 2018). 

This gender gap is often attributed to psychological factors (Perez Mejias et al., 2021), such as a lower 
self-image and lower self-efficacy on mathematics and the use of digital media among female 
students (Fraillon et al., 2014; Gerick et al., 2019; Perez Mejias et al., 2021). Especially when using 
digital textbooks and digital tools, this can be a decisive factor, as the use demands certain challenges 
from the users (Rezat, 2021). In particular, when it comes to advanced skills in using digital media 
and the use of computers, higher self-efficacy of male students has already been identified (Cassidy 
& Eachus, 2002; Fraillon et al., 2014; Gerick et al., 2019). This does not suggest that boys’ computer-
related or digital skills are also higher. For example, the ICILS study found that girls performed better 
in this respect (Fraillon et al., 2014; Gerick et al., 2019). Overall, there often are different and 
contradictory results on gender disparities, which may also depend on the methodological conduct of 
the study and on social and cultural reasons reflected, for example, in stereotypes or teacher behaviour 
(Reinhold et al., 2019). 

There also are different results so far as to whether the use of an interactive textbook differs between 
male and female students, e.g., with regard to the way the integrated elements are used (Hoch, 2020). 
Regarding the performance in the use of interactive materials, the previously mentioned studies 
conducted by Reinhold et al. (2020) and Radović et al. (2020) found differences in the performance 
of male and female students. In the study of Radović et al. (2020), females performed better than boys 
in the retention test. Reinhold et al. (2020) found that the girls outperformed the boys only among 
high-achieving students. 

RESEARCH QUESTION 
The digital textbook provides new opportunities for teaching and learning through its potentials and 
the integration of digital tools (Chazan et al., 2014; Pepin et al., 2014). The first study results show 
that students can benefit from digital materials and tools under certain conditions (e.g., Radović et 
al., 2020; Reinhold et al., 2020). Whether there are differences between male and female students in 
terms of their use of digital media and tools and the subsequent performance has not yet been 
definitively clarified, although they often differ in their mathematical competences in various studies 
(e.g., OECD, 2019; Reinhold et al., 2019; Schipolowski et al., 2018). This research gap is addressed 
in this study. Thus, the aim of this study is that a differing achievement development can only 
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attributable to differences between digital and analogue materials in a controlled series of lessons. 
This is why this study compares the textbook in a digital and an analogue printed version, but with 
the same content. The topic is of particular relevance because the textbook is considered the most 
important resource in teaching mathematics (Fan et al., 2013; Pepin et al., 2015; Valverde et al., 2002) 
and may enable learning not only with but also through technology due to the newly recognised 
potentials. In summary, the following research question results: 

What impact on achievement does the use of the digital textbook have on learner achievement in 
comparison to the use of analogue printed materials in terms of gender in a teaching series of the 
theme data and chance? 

METHOD 

Sample and Data Collection 
In this study, 93 male students and 86 female students from nine mathematics courses from German 
secondary schools participated. The students attended grade 10 of the German Gymnasium and grade 
11 of the German Gesamtschule (same level in different school tracks). One person assigned to the 
gender “diverse”. Since this was only one individual, this person is excluded from further statistical 
analyses. The participating students had a mean age of M = 15.62 (SD = .77).  

The data was collected as part of a series of five lessons on conditional probability in the school year 
2020/21. Students completed a test before and after the series of lessons to measure student 
achievement. The test was developed for this study (see section Design and test instrument). Due to 
the COVID-19 pandemic, it was not possible to realise a follow-up test under the same conditions in 
the participating courses. 

As part of the KomNetMath project, the students and teachers are provided with the digital 
mathematics textbook Net-Mathebuch for a complete school year. Therefore, the students and 
teachers are already familiar with the digital textbook at the time of data collection and have thus 
instrumentalised it. In addition, the participating teachers receive regular advanced training on the 
use of the digital textbook in mathematics lessons. 

Material 
The digital mathematics textbook called Net-Mathebuch (www.m2.net-schulbuch.de) is a freely 
available digital textbook in Germany. The digital textbook can be used on any device. It covers the 
contents of the upper secondary school and is not based on a printed original. The digital textbook is 
structured in chapters and sections, allowing users to choose their own tasks and topics. It is 
characterised by being a purely digital concept and by providing digital tools throughout the entire 
textbook, for example, through the integration of GeoGebra. The textbook takes up many of the 
potentials of a digital textbook described by Choppin et al. (2014). For example, there are interactive 
tasks (e.g., including GeoGebra applets) or feedback options for entering solutions.  

For this study, students used the chapter on conditional probabilities with its interactive features in 
the Net-Mathebuch (see Figure 1). The control group used a printed version created for this study. In 
this version, the chapter with its digital interactive features was adapted. For example, drop-down 
hints became equivalent printed hint cards and dynamic drag-and-drop tasks became static matching 
tasks. 

http://www.m2.net-schulbuch.de/
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Figure 1. Sample task with feedback options in the chapter on conditional probabilities in the digital 
textbook Net-Mathebuch (www.m2.net-schulbuch.de) 

Design and Test Instrument 
In this study, a teaching series of five lessons on conditional probabilities was conducted. Each 
participating course was divided into an experimental and a control group based on the pretest (see 
Figure 2). The groups have been divided in such a way that two mixed-ability groups were created in 
which female and male students are equally represented. In the experimental group, the students 
worked with the digital mathematics textbook Net-Mathebuch. In contrast, the students in the control 
group used the printed adaptation of the Net-Mathebuch. The teacher of one course taught the same 
content in both study groups following predefined plans, so that the influence of the teacher on the 
results of the intervention is minimised. Thus, the students in both groups always work on the same 
tasks.  

 

Figure 2. The pretest-posttest design of the study 

The pretest and posttest were developed for this study. In total, these two tests contain 21 items. The 
items have a closed or semi-open response format. The students’ answers in the tests were coded 
dichotomously. Both tests ask about the contents of the lesson series, whereby the pretest, in 
particular, contains items on prior knowledge in stochastics. Using the one-parameter Rasch model, 
the data were scaled with the software Conquest and item- and person-parameters were estimated 

http://www.m2.net-schulbuch.de/
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with a one-dimensional model (Rasch, 1960/1980; Wu et al., 2007). According to PISA (OECD, 
2012) and Bond and Fox (2007), the weighted mean square fit (WMNSQ) as an index of the item fit 
for a very good test should be between 0.8 and 1.2. In this test, the values are between 0.93 and 1.10. 
The EAP/PV-reliability is 0.54 and is sufficient for group comparisons (Lienert & Raatz, 1998). With 
the person parameters obtained, methods of classical test theory are used in the analysis of the groups. 

RESULTS 
In the group that used the digital mathematics textbook (see the experimental group in Figure 3), t-
tests show different results for male and female students.  

 

 

Figure 3. Results of the pretest and posttest in the experimental group and in the control group 

The female students (Nfd = 40) increased significantly with t(39) = -2.53, p = .016 and the effect size 
Cohen’s d = .40 represents a small effect. For the male students (Nmd = 49), no significant effect is 
depicted with t(48) = -0.84, p = .407. The results of a two-way repeated measures ANOVA show no 
significant interaction between the two measurement time points and gender (F(1, 87) = 0.67, 
p = 0.227, partial η² = .06). The within-subject factor gender also reveals no significant results 
(F(1, 87) = 1.41, p = .239, partial η² = .02). In the control group (see Figure 3), the results for the 
male students (Nmp = 44, t(43) = -0.43 , p = .670) and for the female students (Nfp = 46, t(45) = -1.08 , 
p = .285) do not increase significantly. A two-way repeated measures ANOVA also shows no 
significant results for the interaction between time of measurement and gender (F(1, 88) = 0.12, 
p = .732, partial η² = .001). In contrast, the within-subject factor gender is significant for this control 



 

ICTMT 15 Copenhagen 133 

 

group (F(1, 88) = 5.17, p = .003, partial η² = .06). In addition, the achievement of male and female 
students in both groups already differ significantly at the pretest, t(177) = -2.54, p = .012). 

DISCUSSION 
As conducted in the PISA study, male and female students differ from each other in terms of their 
mathematical performance (OECD, 2019; Reinhold et al., 2019). In this study, the male students 
already have significantly higher scores in the pretest compared to the female participants. In the 
control group, male and female students develop comparably, and these differences, in the beginning, 
persist across both measurement time points when using analogue printed materials. In contrast, in 
the experimental group, there was no significant difference regarding the genders implied. This 
finding could be related to the fact that, in this group, the female students improve significantly in 
contrast to the male students. It is also the only one of the four subgroups to improve significantly. 
This is consistent with the findings that girls, in particular, can benefit from interactive digital 
materials (Radović et al., 2020; Reinhold et al., 2020). Hence, this assumption can also be made in 
this study, as the experimental and control groups only differed in the materials they were given. The 
same lessons were always held in both groups according to prescribed plans. In addition, the same 
teacher always taught both comparison groups so that the results are not dependent on the individual 
teacher and thus on previous experience. 

However, since the interaction of gender and measurement time points does not show any significant 
results, further analyses on gender differences are necessary. For example, it could be examined 
whether girls were able to answer certain items correctly more often than boys. Further analyses could 
therefore investigate whether there are differences between items that are interconnected more than 
other items to the interactive elements used from the book. In this way, it could be analysed whether 
multidimensional Rasch models are more fitting for the evaluation. It can also be debated whether 
dichotomous coding fully represents students’ solutions. Furthermore, in this study there was no 
insight into the use of the digital textbook and the printed materials. In Hoch’s study (2020), for 
example, process data showed that girls used the embedded widgets more frequently and then solved 
the interactive tasks more often in the tests.  

Psychological factors have been presented as possible reasons for differences between male and 
female students. For example, different self-efficacy of boys and girls regarding the use of the digital 
textbook could be a contributing factor (Fraillon et al., 2014; Gerick et al., 2019; Perez Mejias et al., 
2021). Therefore, in this KomNetMath project, attitudes and self-efficacy regarding the use of the 
digital textbook are additionally surveyed (Brnic & Greefrath, 2020). For this purpose, the 
participating students fill out corresponding questionnaires at the beginning, in the middle and at the 
end of a school year. The upcoming results of these questionnaires can then be linked to the results 
of the intervention and analysed. In this way, conclusions can be drawn as to whether there are 
connections between these psychological factors and the achievement of the genders. 

The question arises to what extent the results depend on the chosen topic. This is because it is 
precisely for the area of data and chance that the greatest differences between boys and girls were 
found in Germany (Schipolowski et al., 2018). On the other hand, this core theme is most suitable for 
an investigation of whether gender differences in achievement can be minimised with the use of 
digital materials. Thus, the chosen topic may be one reason why differences between boys and girls 
can already be seen at the pretest. But since the students had already worked with the digital textbook 
before the intervention, this seems to be contradictory to the results presented here that girls 
particularly benefit from the use of the digital textbook. This suggests that other factors also play a 
role, e.g. the interaction between student and teacher, the actual use of the textbook in class initiated 
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by the teacher, or the influence of stereotypes that is often cited in the literature (Gerick et al., 2019; 
Perez Mejias et al., 2021). Through the choice of study design, such factors could be partially 
minimised so that girls seem to benefit particularly from the digital learning environment. This could 
be attributed to research indicating that girls have higher computer-related and digital skills than boys, 
as using a digital textbook has particular challenges (Fraillon et al., 2014; Gerick et al., 2019; Rezat, 
2021). In order to confirm the results of the survey, the series of lessons will be conducted with further 
mathematics courses. This study already gives first indications that differences between the genders 
can be minimised through the use of a digital textbook with its integrated tools and features. 
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This paper examines the role of the teacher in fostering students to think mathematically and to 
socially construct mathematical meanings in distance teaching contexts. Findings from two teaching 
activities, carried out during the pandemic, are presented and discussed in order to contribute to the 
discussion on whether and how teachers can foster students’ learning when teaching mathematics 
with technology in distance contexts. The first activity involved twenty-three 9th-grade students in a 
dice situation aimed at recognising regularities, conjecturing and verifying, communicating online 
with peers. The second activity was carried out online with a small group of 12th-grade students with 
the aim to socially construct the meaning of rotation with its main properties through the use of 
GeoGebra. The analysis of the teacher’s intervention during the discussions shows that the teacher’s 
ability in orchestrating the activities allows students to develop their learning.  

Keywords: Mathematical thinking, social construction of mathematical meanings, role of the teacher, 
teacher’s intervention, distance teaching contexts. 

INTRODUCTION  
Many studies in mathematics education show activities in which technologies are used to foster: the 
observation, study, and experimentation of patterns—systematic attempts in order to determine the 
nature or principles of regularities (Arzarello, 2016); the production of conjectures and the need to 
verify them (Swidan & Faggiano, 2021); peer communication and the shared construction of 
meanings (Bartolini Bussi & Mariotti, 2008; Faggiano et al., 2018). This kind of technology 
integration can foster the development of mathematical thinking and the social construction of 
mathematical meanings. Accordingly, as far as the gap of the physical distance is bridged by remote 
teaching, one of the main challenges in pandemic education is the design and orchestration of 
activities that cannot fail to effectively integrate technological tools in distance contexts. When 
teachers are aware of the potential usefulness and effectiveness of technological tools as a 
pedagogical resource, they can move their attention to re-think teaching practices (Maschietto & 
Trouche, 2010) with the aim to guide students in thinking mathematically and socially constructing 
mathematical meanings. Hence, the role of the teacher is fundamental in order to foster students’ 
learning when teaching mathematics with technology (Clark-Wilson et al., 2014), within the 
mathematical systems or through models of real-world objects.  

This paper attempts to contribute to the reflection on remote teaching due to the pandemic, showing 
that the development of mathematical thinking and the social construction of mathematical meanings 
can be promoted by the teacher’s orchestration of the activities. In particular, the research question 
we aim to answer is: how can the teacher’s orchestration of the activities in technology-rich 
mathematical contexts foster students’ learning? To do that, we focus on the teacher’s intervention 
during the discussions in two case studies developed in distance contexts. Findings show that the 
students’ development of mathematical thinking and the social construction of meanings in remote 
teaching can be promoted by the teacher’s questioning and revoicing, likewise it happens in a 
traditional educational context. 
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THEORETICAL FRAMEWORK  
A substantial amount of research has proved that the use of technology may allow teachers to create 
suitable learning environments, with the goal of learning to think mathematically and promoting the 
construction of meanings for mathematical objects (e.g., Noss & Hoyles, 1996).  

According with Schoenfeld (1992), learning to think mathematically means: 

developing mathematical point of view, valuing the processes of mathematisation and abstraction, 
developing competence with the tools of the trade, using those tools with the goal of understanding 
structures and mathematical sense-making. (p. 334)  

Many studies also deal with the social construction of mathematical meanings (Bishop, 1985) as a 
process through which the learning of mathematics is developed with understanding –extending and 
applying previous knowledge to new problems, reflecting about experience and constructing 
relationship– by means of different kind of activities (e.g., Arzarello, 2016; Swidan & Faggiano, 
2021).  

Our claim is that effective distance education cannot fail to take this into account: students have to be 
guided in learning to think mathematically and socially constructing mathematical meanings. The 
role of the teacher, hence, becomes fundamental in exploiting the affordances of technology in 
fostering students’ learning: teachers can prompt students’ mathematical thinking through their 
orchestration of the activities in technology-rich contexts in the same way as they do it in traditional 
classroom teaching. For many years, in particular, researchers have highlighted the importance of 
teachers’ questioning (e.g., Wood, 1998; Herbel-Eisenmann & Breyfogle, 2005) and revoicing 
(Forman et al., 1998; Enyedy et al., 2008), in guiding the students to the desired end, to perform a 
certain procedure for solving problems, or to facilitate students debate and mathematical 
argumentations, thus developing a deeper conceptual understanding of mathematics. Carefully 
listening to the students’ responses, the teacher can guide students with questions in the form of “why” 
and “what do we have?”, to focus on their own understanding and to reach the desired solution. With 
revoicing, which involves the re-uttering of another person’s speech through repetition, rephrasing, 
expansion, and reporting, the teacher tries to share and eventually emphasise one student’s idea with 
the others in the classroom and to add knowledge to what was said. According to this, we believe that 
through questioning and revoicing, teachers can help students to learn to think mathematically and to 
socially construct mathematical meanings also in distance teaching contexts. For this reason, in this 
work we mostly refer to teachers’ questioning and revoicing during the collective discussions 
conducted in the remote teaching platform. 

METHODOLOGY 
In order to answer our research question, in the next two sections, we present and discuss two teaching 
activities carried out during the pandemic: the first involved twenty-three 9th-grade students in a dice 
situation aimed at recognising regularities, conjecturing and verifying, communicating online with 
peers; the second was carried out online with a small group of 12th-grade students with the aim to 
socially construct the meaning of rotation in the plane with its main properties through the use of 
GeoGebra. The two examples are not meant to be compared. Rather, they have been chosen to show 
that even in the distance contexts caused by the pandemic, the teachers in these two examples succeed 
in fostering students’ learning through the use of the remote teaching platform and, for the second 
case, also of GeoGebra. We video-recorded the sessions in their entirety including the group work, 
in which students worked together to solve the tasks, and the general discussion led by the teacher. 
The videos were transcribed and analysed, together with the students’ protocols, focusing on the role 
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of the teacher in helping students to think mathematically and to socially construct mathematical 
meanings. In this paper we report on some significant episodes revealing the teachers’ orchestration 
and, in particular, their use of questioning and revoicing. 

THINKING MATHEMATICALLY IN A DICE SITUATION 
The main general aim of this activity was to help students in learning to think mathematically, and in 
particular to give meaning to the algebraic language. Through the formulation of appropriate 
questions, the students behaved like researchers: they investigated the problem under consideration, 
collected data and formulated hypotheses and conjectures, at the same time feeling the need to argue 
their own ideas and to discuss them with their peers. For the purpose of this paper, herein we focus 
on the first part of the activity, which started with group work. Students were asked to think about the 
arrangement of six white dice and ten grey dice in a specific given 4x4 configuration (Figure 1a) in 
which the numbers (A and B) on all the dice of each of the two groups were the same, and the 
difference between them was fixed. Then, the students were asked to observe how the total sum 
changes if A and B are changed, keeping their difference fixed at two (Figure 1b).  

Figure 1. English translation of the tasks given to the students 

At the end of the group work, a collective discussion was conducted by the teacher sharing her screen. 
First of all, she showed the empty table in Figure 1b and asked the students to help her to fill it in 
(Figure 2a). The order of the pairs was given by the students.  

Figure 2. Tables written and shared by the teacher  

The following excerpts of the discussion refer to the students’ explanations of the observed 
regularities in the total sums: 
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1 Teacher: What do we observe on the total sums as the numbers A and B vary? 
2 Vittorio: We have noticed that the sums of the opposite pairs always have 8 as a 

difference... That is, for example, (1,3) and (3,1) have sums that have a 
difference of 8. 

3 Caterina: We have noticed that, for example, the pairs (3,1) and (4,2) always have 16 
as the difference of the sum ... That is, the difference between the sum of the 
pair (4,2) and that of the pair (3,1) is equal to 16. 

The observations made by the students were reported by the teacher in the shared table (Figure 2b), 
using different colours to highlight the regularities that they found. Students justified the reason why 
the difference between the sums of the pairs (3,1) and (4,2) is 16 referring to the fact that, when 
changing the six white dice from 3 to 4 and the ten grey dice from 1 to 2, the result is that the numbers 
on all the sixteen dice have been increased by 1. The discussion then moved to give reason to the 
other observed regularity. 

4 Teacher: Ok, then ... Let’s try to understand, why is the difference 8? 
5 Caterina: I believe it is because the difference between 1 and 3 is 2, and since the dice 

are six and ten, then the difference between 6 and 10 is 4 ... So, swapping the 
four dice is why a pair has the greater sum of 8, and the other is less than 8. 

6 Teacher: You told me the difference between 1 and 3 is 2, instead the difference 
between 6 and 10 is 4… What should I do? 

7 Caterina: Precisely since it is as if four dice were being exchanged, a pair will have a 
sum that will be a number greater than 8 ... Because since the difference 
between 1 and 3 is equal to 2 and the dice that are exchanged are four, it is 8. 

8 Teacher: So, you are telling me that we are swapping pairs and that when I swap them 
there are four dice left over, so what should I do? 

9 Caterina: Precisely, I have to multiply by 2, because it is the difference between the 
numbers on the dice; that is, it is the difference between 3 and 1. 

10 Teacher: Times 2 ... And then becomes 8. 
11 Giorgio: Yes, it seems to me a correct reasoning ... 

The teacher then asked if the justification for the difference 8 could be given in another way. 

12 Giorgio: We could write A=B+2. 
13 Teacher: Ok… But how did you write the sum before?  
14 Giorgio: Yes, we can write (B+2)*6+B*10… then B*6+12+B*10… and so becomes 

16B+12. 
15 Teacher: In which pairs did you find the difference 8? 
16 Giorgio: In general, between the opposite ones, that is (3,1) and (1,3). 
17 Teacher: But what does opposite mean?  
18 Giorgio: Yes, opposite… Those in which first A is greater than 2 with respect to B and 

then those in which B is greater than 2 with respect to A. 
19 Teacher: So, in the sum formula, what should I exchange? 
20 Giorgio: Ah, maybe it becomes B*6+A*10… we have 6B+(B+2)*10… So 

6B+10B+20… That is 16B+20… We make S2-S1 and then becomes 8… 
Yes! 
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SOCIALLY CONSTRUCTING THE MATHEMATICAL MEANING OF ROTATION  
The activity described in this second case aimed at fostering students’ social construction of the 
mathematical meaning of rotation as an isometric transformation, characterised by specific properties. 
It was composed by a sequence of six tasks involving manipulatives and digital tools (Faggiano & 
Mennuni, 2020). For the purpose of this paper, herein we focus on the fourth task (Figure 3a). It 
required the use of GeoGebra and aimed at drawing students’ attention to the centre of the rotation as 
the unique point at the same distance from each pair of corresponding points of the figures. That is, 
the centre of rotation can be found as the intersection point of the perpendicular bisectors of any two 
segments joining a point of one figure to the corresponding point of the other figure. Students were 
given two congruent figures and they were asked to: find the centre of the rotation that transforms 
one figure into the other; explain how the point has been identified. 

   

a) The task with GeoGebra: find 
the centre of rotation, given 
the two rotated figures 

b) Valentina’s construction 
as it was shared and 
explained during the 
discussion 

c) The construction to find the 
centre as it was built by 
Valentina during the 
discussion 

Figure 3. English translation of the task given to the students (a) and two Valentina’s screenshots, (b) 
and (c), taken by the video recording of the final discussion led by the teacher 

At the beginning of the discussion, none of the students has correctly identified the hidden centre of 
the rotation, which transformed one figure into the other. One of them (Valentina) explained that she 
firstly pointed on a point in the GeoGebra plane that seemed to be the centre and then verified if the 
properties were still satisfied (Figure 3b): she drew the circumferences with centre in the hypothetic 
centre of rotation, passing through the main points of the first figure, to verify if the corresponding 
points of the second figure belong to the relative circumferences. It was when she checked if the 
obtained angles of rotation were all equal that the doubts arose. Then, during the discussion, another 
student (Pietro) explained that he considered the midpoint between A and A’, even if he has then 
realised that it couldn’t be the centre of rotation. The following teacher intervention brought Valentina 
to think about Pietro’s words and so to consider the perpendicular bisectors of the segments joining 
corresponding pairs of points: 

21 Teacher: Try to think for a while... Valentina was saying something about distances… 
Last time you started to see some of the properties of rotation, right?... So, try 
to focus on the properties for a moment and, if you like, read them backwards, 
because the properties can help you to find the centre. 

22 Valentina: We could draw the segments AA’, BB’, CC’ and DD’… And consider the 
perpendicular bisectors of each of them… [while speaking, she drew the 
segments and built their perpendicular bisectors]. Then the centre should be… 
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this point [she pointed on the common intersection points of the four 
perpendicular bisectors (Figure 3c is the screenshot of her shared construction 
at this point)]. 

23 Teacher: Why did you choose these four perpendicular bisectors? 
24 Valentina: Since Pietro had considered the midpoint, and since we know that one of the 

properties of rotation is that of the preservation of the distances of the points 
of the two figures from the centre, I thought that... The geometric locus of the 
points equidistant from the extremes of the segment AA’, as well as for the 
other segments, it is the perpendicular bisector. So, if we intersect all the 
perpendicular bisectors, the point we get could be the centre of this rotation. 

RESULTS, ANALYSIS AND DISCUSSION 
Our findings present some excerpts, taken by discussions developed in distance contexts, chosen as 
examples of teachers’ orchestrations in which questioning and revoicing are particularly evident and 
were fundamental to help students in learning to think mathematically and in socially constructing 
mathematical meaning. In both the presented case studies, the teachers’ questions of the form “why” 
and “what do we have?”, guided the students towards the goal of the activity. At the same time, this 
type of questioning allowed the students to focus on their own understanding of the situation at stake 
in order to express their thoughts, directing them towards the construction of meaning with the 
continuous discussion with their classmates. 

In the first case, the aim of the teacher was to offer students an activity in which it is necessary to 
critically observe, make conjectures and seek justifications, thus making students act as researchers. 
This case is interesting to be analysed because it is an example of an activity in which the students 
succeeded in thinking mathematically in a dice situation thanks to the ability of the teacher to 
orchestrate the discussion even using a remote teaching platform. Results, indeed, showed how the 
proposed activity brought students to make hypotheses, giving space to the arguments. A first 
example of argumentation to justify their hypothesis, concerning the difference between the sum of 
pairs such as (3,1) and (4,2), can be seen when students referred to the idea to turn all the sixteen dice 
to the successive number in order to move from the one pair to the other. Moreover, through the 
formulation of appropriate questions by the teacher, students thought mathematically, and in 
particular gave meaning to the algebraic language. The teacher shared and emphasised Caterina’s 
idea with the other students, asking questions such as “what do we observe?” ([1]) or “why the 
difference is 8?” ([4]) and revoicing Caterina’s observations ([6], [8] and [10]). This allowed the 
students to compare their ideas with one another and facilitate their mathematical argumentation. 
Indeed, the teacher’s revoicing also helped the other students (such as Giorgio ([11]), for instance) to 
focus on the differences between the sums in the case of swapped numbers in the pairs. The 
mathematical sense given by Caterina to the swapping situation and the successive teacher’s question 
(“how did you write the sum before?”) pushed Giorgio to re-think the situation in terms of the 
relationship between the formula to calculate the sum and the constraint of the fixed difference 
between A and B ([14] and [20]). In this way, the algebraic language allowed to re-think the dice 
situation mathematically.  

In the second case, being aware of the potential of the digital tool, both in terms of mathematical 
meanings and in terms of the students’ production of personal meanings, the teacher’s aim was to 
lead, with appropriate questions, the evolution of personal meanings towards the mathematical 
meanings of rotation. During the discussion, the teacher’s use of questioning and revoicing was useful 
to allow students to focus on a particular aspect of the properties of rotation. This allowed the property 
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of the preservation of the distances from the centre to be exploited to build the correct procedure for 
determining the centre of rotation. With the first intervention reported in the excerpt ([21]), indeed, 
the teacher tried to bring to the fore the students’ personal meanings in order to lead their evolution 
towards the mathematical meanings. In fact, she pushed the students to connect Pietro’s idea, 
considering the midpoint of the segments obtained by joining pairs of corresponding points, with the 
property of the rotation explained by Valentina on the preservation of the distances from the centre. 
The teacher’s intervention of revoicing added some knowledge to what was said: she suggested 
focusing on the properties they have already gained and to read them backwards, adding that “the 
properties can help you to find the centre”. Thanks to her added observation, the students focused 
their attention on the previous shared meanings and succeeded in finding the centre of rotation ([22]). 
Furthermore, the teacher’s request to let Valentina share her reasoning was also fundamental for all 
the other students. It allowed them to generalize the property of equidistance, characterizing the 
rotation, starting from the idea of having to use the midpoint and arriving at the use of perpendicular 
bisectors. This prompted Valentina to determine the centre of rotation as the intersection point of any 
two of them ([24]). Therefore, the teacher’s revoicing and questioning intervention resulted crucial 
in order to guide the students to accomplish the task and brought Valentina, and then also the other 
students, to realize that they must use the perpendicular bisectors. Finally, the teacher’s “why” 
question ([23]) concerning the role of the perpendicular bisectors helped the students to gain a full 
comprehension of the properties of the rotation and in particular of the centre. 

CONCLUSION 
In this paper, we have shown how the teacher’s questioning and revoicing can help students in 
learning to think mathematically and in socially constructing mathematical meanings in technology-
rich distance contexts, likewise happening in traditional teaching. To do this, according to the research 
results concerning teachers’ intervention presented in the theoretical framework section, we identified 
some episodes with “why” and “what do we have” questions and revoicing. These episodes come 
from two different teaching activities carried out during the pandemic with different teachers and are 
exemplary to answer our research question. The first teaching activity, which involved twenty-three 
9th-grade students, aimed at offering students a situation to be investigated, formulating hypothesis 
and conjecturing. Thanks to the teacher’s questioning and revoicing, the students succeeded in giving 
meaning to the algebraic language as a mathematical tool to explore the given dice situation, even if 
the entire activity was developed in a distance context. The aim of the second activity, carried out 
with 12th-grade students, was to socially construct the meaning of rotation with its main properties. It 
was based on the use of GeoGebra and developed online. The episodes presented in this case 
exemplify how the teacher can foster the students’ social construction of meanings through an 
appropriate orchestration and, in particular, again, through the use of “why” and “what do we have” 
questions and revoicing, even in distance context. Further investigations are needed in order to 
explore how the affordances of technology-rich environments can be exploited.  
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In this paper, we present a project that involved two classes of kindergarten children and their 
teachers in a teaching experiment focused on the development of spatial and computational thinking 
using a simple robot (Blue Bot). We focus on the design of activities, which also make use of playful 
movement experiences, with the aim of creating an inclusive environment in which children aged 
three to six can explore mathematically relevant ideas such as length, direction, and shape. We will 
discuss the initial insights coming from the teaching experiment on how children approached the 
length of straight paths. 

Keywords: Bodily movement, coding, computational thinking, STEAM, spatial thinking. 

FRAMING THE STUDY 
There is a growing interest in mathematics learning in early childhood (e.g., Clements & Sarama, 
2007), but the number of research studies focused on the use of digital tools in mathematics sessions 
for young children is still limited (Carlsen et al., 2016). Nevertheless, young generations are born in 
a digital world, and it is likely that pre-schoolers become familiar with digital devices before they are 
exposed to books (Hopkins et al., 2013). Balanskat and Engelhardt (2015) further highlight that many 
of today’s students will be involved in future developments of technology, which is important for 
society. Programming skills, therefore, became more and more relevant for the 21st-century skills 
required for future citizens and came to be integrated into the curricula of many countries as they are 
related to skills like problem-solving, creativity, and logical thinking, with which learners need to be 
equipped in the digital world nowadays.  

Schools have then increasingly integrated programming into other subjects, like mathematics, a 
concept that is not completely new as Papert (1980) already proposed to use programming in 
mathematics education, intending to provide different environments for the learning of mathematics 
and motivate students to engage with mathematics. Papert, for example, developed a Logo 
environment that required learners to program a computer to move a little turtle on the screen. Later, 
Benitti (2012) wrote a literature review in which he analysed the potential of robotics in schools and 
found that, in the examined studies, robots were useful to understand STEM concepts. Benitti and 
Spolaôr (2017) further underline that the potential use of robots within the mathematics classroom 
can be seen as a support tool. A recent review specifically investigates the use of programming in 
mathematics education for students aged 6 to 16 (Forsström & Kaufmann, 2018). 

Concerned with mathematical cognition with very young children, several studies have been 
investigating early learning of number and number sense using multitouch applications (e.g., Sinclair 
et al., 2016; Ferrara & Savioli, 2018). In such a digital environment, for example, specific gestures 
are used to create and manipulate numbers, but children’s perceptual and bodily engagement is 
enriched by auditory and visual responses to touch. The usage of simple robots, like Bee-Bots, was 
discussed in the field as a manner to foster the development of children’s geometrical understanding 
and to create occasions for early steps into computational thinking through coding activities. Studies 
show the strength of this technology to work on spatial abilities at the end of kindergarten, with 5-
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year-old children (Sabena, 2015), and to work on definitions of simple geometric figures, for 
example, the rectangle and the square, in primary schools (Bartolini Bussi & Baccaglini-Frank, 2015). 
What we find intriguing about using this artefact within the mathematics classroom is the way that 
starting from playing it, children can move their very first steps into 3D explorations in space with 
their bodies, imitating the robot’s movement or comparing their own movement with the robot’s. This 
opens room for processes of understanding and communicating about movement, direction, and path 
of the robot, and their relationship with spatial thinking and shape in mathematics. 

In this paper, we want to contribute to this line of research about robotics and mathematics with very 
young learners by presenting insights from a teaching experiment designed and carried out as part of 
the project “Children in Movement towards STEAM”, whose target are children aged 3 to 6 and their 
families. The intervention aimed primarily at introducing kindergarten children to coding and 
mathematical thinking, as a tool to start making sense of the complexity and variety of experiences 
they live and as a first approach to computational thinking at school. We will focus on the structure 
and objectives of the activities and offer, through a brief classroom excerpt, some initial discussion 
on how preliminary activities involving children’s bodily movements created the ground for further 
mathematical investigations into coding activities. 

CHILDREN IN MOVEMENT TOWARDS STEAM 
“Children in Movement towards STEAM” aims at engaging kindergarten children in laboratory 
activities about mathematics and robotics as an approach to the development of mathematical and 
computational thinking. The specific reference to STEAM (Science, Technology, Engineering, Art 
and Mathematics) helps to frame the project from a wider perspective, which takes into account the 
interdisciplinary nature of mathematics as a discipline that allows developing critical thinking and 
problem-solving, and argumentation skills in a variety of contexts. The project wants to nourish a 
vision of the cultural value of mathematical-scientific knowledge for learners to become aware 
citizens. Also, it makes room for creativity in the teaching and learning of mathematics, a dimension 
that is often neglected but is significant to engage in learners from an early age and to work on the 
relationships between mathematics and other sciences as well as art. 

While mathematical digital competency (Geraniou & Jankvist, 2019)—the ability and awareness of 
using instruments in various contexts and engaging in mathematical discourses and solving 
mathematical problems with digital devices—is generally discussed for older students, it is also 
apparent that young children develop with extraordinary ease fascination for and mastery of digital 
devices. It is a matter of concern for educators that this pre-disposition is somehow directed, during 
the school years, towards a critical use of digital devices. This can be achieved through the design of 
mathematical activities that account for the playful engagement with the instrument while valuing the 
relationships with it as one that includes questioning and discovery in manners that are typical of the 
scientific process. Moreover, taking a multimodal approach to cognition (e.g., Ferrara, 2014), all the 
modalities along which a mathematical activity develops come to constitute the learning process. In 
line with this idea, a design principle to consider is to incorporate and value bodily, imaginative, and 
semiotic aspects into any activity. 

Concerning tool use, we take as a reference the idea of mathematical instrument “as a material and 
semiotic device together with a set of embodied practices that enable the user to produce, transform, 
or elaborate on expressive forms (e.g., graphs, equations, diagrams, or mathematical talk) that are 
acknowledged within the culture of mathematics” (Nemirovsky et al., 2013, p. 376). This definition 
wants to embrace the complexity of learning to use a new tool and encompasses a non-dualistic 
approach to tool use, which values the minute interactions that come to constitute the experience of 
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playing an instrument. The expression “playing an instrument” is purposely used by the authors to 
evoke musical instruments, for which the ability of playing is indiscernible from the fluency of using 
the instrument and some knowledge of music.  

Nemirovsky and colleagues (2013) study how subjects interact with mathematical instruments in 
informal learning settings (museums) inside a semi-structured environment that is quite different from 
a kindergarten classroom. However, we see their perspective as appropriate to investigate tool use in 
our context. First, these researchers conceptualize tool use to the extent to which tools get 
incorporated into one’s lived experience. This also means that one’s investment in tool use emerges 
out of many aspects and that the tool (thoughts regarding it, sensations felt when using it, etc.) might 
permeate moments that are temporally far from the actual use. Secondly, this perspective allows us 
to move away from an instructional perspective on tool use, towards a vision of tools as occasions 
for meaningful encounters with mathematical concepts. In this direction, a second design principle 
that was crucial in the context of kindergarten activities is to use narrative as part of the teaching 
story, to engage children in discovery and reasoning and to raise their motivation.  

After all, language and mathematics are the basis of computational thinking, which has a specific role 
in the National guidelines for the curriculum of the primary cycle (kindergarten to junior high school 
in Italy; Ministero dell’Istruzione, dell’Università e della Ricerca, 2017) in line with the curricula in 
other countries. Coding and computational thinking are associated with logical, analytic, and creative 
thinking because they allow for problem-solving by constructing procedures, establishing 
connections and planning strategies, and intervening every day in facing and solving problems. 
Regarding the mathematical content, the guidelines specifically highlight that since early childhood, 
children develop spatial reasoning, learn to describe the distance and location of objects in space in 
their own words, and discover geometrical concepts like those of direction and angle.  

The project activities involved the kindergarten children using little robots (Blue Bots) to walk along 
open and closed paths (segment lines, L- or U-like lines, squares). The robots need to be programmed 
accordingly. While, in this manner, children learn coding and explore relations between the shape of 
the path and the corresponding code (as an approach to computational thinking), the aim is to 
stimulate an initial understanding of squared paths as shapes that satisfy certain mathematical 
properties. We can, for example, articulate on a square-like path saying that its sides must be formed 
by the same number of steps, and its turns (90° rotations) must occur in the same direction. Or describe 
it as the repetition of the same sequence (e.g., forward-forward-right turn) four times. These ways of 
seeing (and speaking of) the square allow for thinking of the shape in terms of spatial properties (e.g., 
side and angle equivalence). In addition, the activities implicate aspects of direction and orientation 
as well as of movement in space, introducing children to the capacity of reasoning on spatial 
relationships and the development of spatial thinking. 

PARTICIPANTS AND METHOD 
Three teachers from two different schools based in the surroundings of Torino (Italy) have been 
involved in the design of the project activities during the initial phases of work and have conducted 
a teaching experiment with their respective classes. The teaching experiment consists of 4 activities, 
each carried out in two 45-minute-sessions with a group of 12 children (half of the class), for a total 
of 9 sessions per group. The children in each group are 3 to 6 years old. A kit of six Blue Bots was 
available for each group in every school. Resources and materials have been designed to guide 
teachers’ work in the classroom, but they do not have a fixed structure; rather, they serve choices by 
the teachers along the way. The activities have been refined and redesigned during the whole duration 
of the experiment, by considering the children’s responses to specific tasks and associated difficulties 
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in managing the group of students. In-between the sessions, the teachers were free to work on 
collateral activities that do not directly face the mathematical content but that complement it in some 
fashion. For example, in one of those activities, children were asked to produce drawings associated 
with bodily experiences focused on how we step during walking (something that anticipates later 
work on the way that the robots move when they must cover a certain distance).  

The children’s parents took part in a presentation of the project and its purposes, to raise awareness 
and interest towards the relevance of the teaching experiment and, at the same time, of mathematical 
and scientific knowledge as a thinking and problem-solving means that can help children to face the 
complexity of their experiences in the world. They also had a role later when asked to partake in a 
final, collective digital creation to be shared with the researchers and all the other families. Parents’ 
involvement in the project is seen as a crucial point to sensitize families not only towards the value 
of the children’s mathematical experiences but also towards the value of the relationship between 
parents and children concerning the learning dimension.  

The authors of this paper participated in the conceptualization and design of the project (the third 
author is a primary school teacher with huge experience in curricula and design-based research 
activities). Two researchers (the first and second authors) were present during the intervention as 
active observers, one for each class. They could therefore interact with the teacher and the children, 
giving support to the teachers during the activities. The sessions were video recorded with a mobile 
camera, and all the written productions (mainly drawings) created by learners were collected. Weekly 
meetings between the researchers allowed to introduce variations in the implementation and 
refinements of the initial draft of the activities. After any activity, an individual interview with each 
teacher was also carried out to have information about the state of the art of the intervention and 
indications about its development. Some of the productions by the children, together with photos and 
short video pieces, were used to create an online Padlet board, weekly updated by the teachers and 
made accessible to all the families to share the flavour and some content of the activities with parents. 
In the following, we focus on the main ideas that characterized the creation of the activities. We will 
then discuss some insights coming from the teaching experiments. 

THE TECHNOLOGY: BLUE BOT 
Blue Bot is a simple bee-shaped robot (Figure 1). It can be moved by pressing a sequence of 
movement commands through orange buttons with arrows on the bee’s back: forward, backward 
(about 15 centimetres), left, and right (90-degree turns). Pressing the green button “GO” will make 
the robot move accordingly to the sequence that has been programmed. A one-second pause button 
can be used. A delete button (showing an “X”) allows learners to clear out their commands and start 
a new sequence from scratch.  

 

Figure 1. Blue Bot (front and above view) and the buttons with the commands on its back 

As Bartolini Bussi and Baccaglini-Frank (2015) point out, many significant processes that are 
typically mathematical or related to computer science emerge out of playing with this device: 
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counting (the number of commands), measuring (the length of a step or the path, the total distance 
travelled by the robot), exploring space, constructing frames of reference, coordinating spatial 
perspectives, programming, planning, and debugging. The trajectories that can be walked by the robot 
are broken lines and possibly polygons with 90-degree-angles. For example, a square-trajectory with 
each side 2 steps long is walked when a sequence of forward-forward-right, repeated four times, is 
programmed. The device resembles the real little animal but has hybrid characteristics of a robotic 
creature: it makes sounds as it moves and stops. This helps the children develop an affective 
relationship with the tool and care about it and its peculiar behaviour.  

OVERVIEW OF THE ACTIVITIES 
The activities are learner-centred and engage the children through making, bodily actions, senses, 
movement, and diagramming to foster their participation and motivation in playing with mathematics. 
They often challenge children to work in groups and collectively to promote a vision of mathematics 
as an activity with socio-cultural value, in and outside of the classroom context. The children are also 
part of heterogeneous groups to foster collaboration between different age levels. During the teaching 
experiment, different modalities and contexts were alternated. We used a set of introductory activities 
focused on movement in between points of reference within a space of the school, flowers previously 
coloured by the children and placed on the floor. In such activities, the children initially explored free 
movements and then were asked to control or limit their manners of stepping from one flower to 
another, with tasks proposed by the teacher in a playful environment. 

  
Figure 2. Activities involving body movements and drawings throughout the experiment 

After this phase, the teacher removed all the flowers but two and led a collective discussion that 
focused on how one can move from one flower to the other. Great attention was given to 
understanding one own’s way of moving and eventually the number of steps, and the children were 
encouraged to share their thoughts verbally or express them through a drawing (Figure 2). The device 
was introduced through a video prompt and a treasure hunt on site. The video, created for the children 
in Powtoon, presented a character, a little girl named Alice, who asked the children to help her to look 
for her special bee-friends because they were lost and hid in the school (Figure 3, left). This was done 
to create a narrative storyline that connected different moments of the experiment and of providing 
the children with an objective that guided their interactions with the device and introduced problems 
that the children had to solve. In the storyline, indeed, Alice was worried about the bees to be able to 
return home and engaged the children to understand and teach them how to move from one flower to 
another. 

The Blue Bots were then investigated by the children regarding how they look and how they move. 
After this examination phase, the children shifted to observing the kind of movement of the robots 
and exploring the presence of buttons and their role in that. At this point, the children programmed 
the robots for the first time, to have them moving along straight segment lines of different lengths 
and started guessing about the number of necessary steps or commands. 
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Figure 3. A frame of the video introducing the treasure hunt; using arrows to describe movements 

A general idea of the design was that of alternating moments in which the tool was present and in use 
and others in which it was only recalled, and body explorations in space were prevalent in the activity. 
Following the existing literature, a considerable amount of time was devoted to comparing the 
children’s movement and that of the robot. This was done to 1) promote a multimodal approach to 
the activities and 2) to provide the children with initial insights into both ways of moving and a shared 
vocabulary in the classroom on how to describe directions, paths and orientation. 

In the last part of the teaching experiment, arrows were used to codify the movements of both the 
bees and the children (Figure 3, right) through an ordered sequence of arrows. In the progression of 
tasks, a square path was gradually built by adding complexity: from the request to interpret a given 
code (forward-forward-turning) to then move the bee from one flower to another (passing through a 
third flower in a way that the bee can travel an “L” shaped path, then a “U” shaped path). In so doing, 
the teacher focused on a back-and-forth movement from imagining the code (or robot motion) to 
impersonating that code/movement or coding the robot, which allowed for reasoning on the tool in 
terms of bodily interactions (Ferrara, 2014; Nemirovsky et al., 2013). 

PRELIMINARY INSIGHTS FROM THE ACTIVITIES 
We present an episode to discuss initial insights coming from the teaching experiment, which 
informed the design of the activity. During the first activity, after the children have compared the 
different lengths of the paths between the flowers using their footsteps, the teacher gives the children 
the cut-out figures of a foot and flowers to glue on a sheet of paper to describe the previous bodily 
experience. Pairs of children of different ages are now working on the task. The researcher (R) 
approaches a pair of girls (Camilla, C, 3, and Mia, M, 5) who have already positioned two sets of 
flowers on a sheet (see Figure 4) and asks them: 

R: What did you do? 

M: We made longer paths. 

R: Which is the longer path? 

M: This (points, Figure 4, left) 

R: Because I see two paths… 

C: And this is the shorter one! (points to the shorter path) 

R: Why that one (points to the sheet) is the longer one? 

C: This one! 

M, R: Because it has more feet 

C: Yes, this is the longer one, and this is a little shorter (points to the two paths). 
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R: And how many steps are there? 

M: One, two, three, four. One, two (counts the feet on the two paths, Figure 4, middle) 

R: So, how can I do to see if one path is longer or shorter? 

M: It shows, and if you turn it, you see it better (shows the sheet to the camera, Figure 
4, right) 

   

Figure 4. Mia and Camilla comparing lengths of the two paths on the paper sheet 

The two children work together on a task that is preparatory to coding activities that require using a 
sequence of “steps” to describe and create a movement in space. The “foot” prepares the ground for 
the one-to-one relationship with the Blue Bot movement embedded by the code. We discuss this 
episode in terms of the aspects that we see as enriching the experiences of the children: the analysis 
is meant to highlight how the girls make and make sense of their drawing. In the brief interaction with 
the researcher, the two girls use the created representation to compare the lengths of the paths. They 
produce a first argumentation about the contextual experience of the number of feet; that is the paths 
are of different lengths. At the end of the brief excerpt, Mia changes the drawing position to allow 
the researcher “to see it better”. This funny moment speaks directly to the way in which the girl comes 
to inhabit the representation: for her, the privileged position to look at the drawing is the one in which 
they explored the movement from one flower to another. After, Mia exchanges the position of a blue 
and red flower to match the colours. Then, the girls add a much shorter path to their drawing (one 
foot only). They notice details that count in the description of a movement, even if only to adhere to 
the previous bodily activity, distinguishing between the starting point and the ending point through 
colour; they also explore new variations, using the foot as a measuring unit. The two children 
collaborate, despite the difference in age, and converge on a common narrative that establishes a 
comparison between the two paths, using numbers and a first measuring unit (the foot). Later in the 
teaching experiment, when the children programmed the Blue Bot to move it from flower to flower 
(a straight path across the classroom floor), we observed peculiar behaviour. Some children scanned 
the space in between and pressed buttons on the robot as they moved their eyes to the farthest flower 
as if they were imagining a movement happening in front of them. Further discussion is needed on 
how such activities can foster the use of the tool and promote spatial thinking and will constitute 
future research. 
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FRAMING THE STUDY 
This workshop discussed insights from a research project focused on the development of spatial and 
computational thinking with very young children, with the aim to introduce them to STEM (e.g., 
Benitti, 2012). In the project, two teaching experiments were carried out in two kindergarten classes 
(children aged 3 to 6), and a Blue Bot was used to create opportunities for mathematical explorations 
for the children in a playful environment. The Blue Bot is a little bee-shaped robot, which can be 
programmed to move by pressing sequences of commands (Figure 1, left and middle). Following 
Bartolini-Bussi and Baccaglini Frank (2015), significant processes that are typically mathematical or 
computer science-related emerge from play with this device, like counting, measuring, programming. 

ACTIVITY DESIGN 
In the initial part of the workshop, the principles that guided the activity design were presented to the 
participants. These principles are inspired by embodied cognition theories, which value the body in 
the teaching and learning of mathematics, and concern: the relationships between the children bodily 
movement and the robot movement; the interplay of imagining and observing, and of doing and 
creating; the passage from movement to trajectory to code, and vice versa; the multimodality of 
mathematical cognition (Ferrara, 2014). As an example, one of the first activities preceding the use 
of the tool involved bodily movement in space. Printed paper flowers of different colours were placed 
on the floor. The children first moved freely from one flower to the other, then the teacher asked them 
to perform variations of movement (faster, slower, with big steps, walking from one specific colour 
to another). This was done to raise awareness on bodily motion, explore constraints of movement, 
and share a common vocabulary to talk about movement. Next, the teacher turned the children 
attention to linear paths connecting two flowers, working on the comparison of their lengths by means 
of step-counting. The activity primed new activities that involved the robot and focused on its peculiar 
way of moving. 

     
Figure 1. Blue Bot (front and back); the code discussed in the episode from the classroom 

FROM THE CLASSROOM 
In the second part of the workshop, a video of a brief classroom situation was watched, in which the 
children interact with the teacher to solve a task. In the video, the children have been exposed to a 
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three command-code (Figure 1, right) and are asked to think of the robot movement. The teacher asks 
each child: “For you, which path will the bee follow?”. One of the children, Samuele, is at the centre 
of the classroom in front of his classmates, with the code captured by three plastic arrows positioned 
on a paper sheet on the floor. The bee bot is at his disposal on the floor. Samuele gestures on the floor, 
creating a shape like the one sketched in Figure 2, and answers: “Straight, then crooked, then straight 
again.” He repeats the same path three times. But Giovanni disagrees, so the teacher involves him in 
the discussion. Giovanni stands up and explains why: “Yes, because straight, then it turns, then it 
comes straight again”. As possibilities of the robot movement are discussed, the teacher asks other 
children to participate with their thoughts, until she involves a third child, Lorenzo, who before was 
gesturing the movement trajectory in the air. Lorenzo is asked to move as if he was the Blue Bot, and 
a conflict emerges. Lorenzo walks along a shape like the one traced by Samuele, contrasting 
Giovanni’s idea again. The Blue Bot is programmed by Samuele under the request of the teacher. 
But, as soon as the robot stops moving, Samuele exclaims: “No!”, and annoyed lifts it up, convinced 
that it has not moved as he has programmed it. 

.  

Figure 2. Samuele gesturing the path he imagined 

The dialogue continues, and Samuele and Giovanni discuss the code to reason about the movement 
of the bee bot. Giovanni tries to convince Samuele: “But Alice’s code, Alice’s code is like this: 
straight, turn, straight (pointing to the three arrows, looking at Samuele), not like this”. This puzzles 
Samuele, who struggles with the gap between what he is imagining and what he sees.  

Focus on this episode engaged the participants in a rich discussion concerned with the classroom 
dynamics that were nurtured by the activity design. We point out two main aspects raised in the 
discussion: 1) the turning arrow requires a change in perspective implying a rotation instead of a step 
in the movement; 2) the technology is somehow troubled on the way it works, appearing to do what 
it prefers instead of what the children want. These aspects appeared problematic with respect to the 
children’s understanding of temporality and spatial displacement, which are embedded in the code, 
and are worth of further research. On a theoretical level, another key point was the difference between 
the linearity and discreteness of the code, versus the freedom and continuity of the bodily movements. 
The participants also questioned the role of the teacher in exploiting the different registers which are 
used to imagine, speak of, and enact the robot movements, another promising line of investigation. 
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In Denmark, the concept of Allgemeinbildung is embedded in the curriculum, but it is difficult for 
mathematics teachers to translate this aim into actual teaching practices. The inclusion of digital 
technologies in mathematics teaching might comprise new potentials for Allgemeinbildung. Through 
a hermeneutic literature review, this paper investigates how the inclusion of digital technologies in 
mathematics education may contribute to Allgemeinbildung/mathematical literacy. 113 search 
results were transferred to abstract screening, which resulted in all 20 texts to review. These were 
categorised into four groups: Mathematics and technologies for work-life, for everyday life, critical 
aspects, and digital literacy concerning mathematical literacy. It is concluded that the inclusion of 
digital technologies in mathematics education comprises potentials and challenges for mathematical 
literacy and Allgemeinbildung. Directions for further research are suggested.  

Keywords: Allgemeinbildung, digital technologies, digital tools, mathematical literacy, numeracy.  

INTRODUCTION 
In Denmark, it is a task for elementary education to contribute to students’ citizenship (Blomhøj, 
2001; Niss, 2000). The concept Allgemeinbildung is embedded in the national curriculum, and it has 
been for decades (Hansen, 2009). It is, however, difficult to translate into actual teaching practices. 
Denmark, at the same time, is far ahead with the inclusion of digital technologies, both in teaching in 
general (Bundsgaard et al., 2019), and in mathematics teaching particularly (e.g. Jankvist et al., 2019). 
The question is, however, if this comprises new potentials for students’ Allgemeinbildung.  

The notion of Allgemeinbildung is primarily employed in the Scandinavian countries and Germany, 
and it is difficult to translate into English (Biehler, 2019). In Germany, there is a rich and old tradition 
to discuss the notion concerning mathematics education (e.g. Vohns, 2018; Biehler, 2019; Jahnke, 
2019). Even though the notion cannot be translated properly, there are significant similarities with 
that of Mathematical Literacy (e.g. Niss in Biehler, 2019). E.g. in “…fostering societal participation 
and active citizenship (…) a goal that is prominently addressed in both conceptions...” (Vohns, 2017, 
p. 1). This paper shows the results of a literature review of both Allgemeinbildung and Mathematical 
literacy concerning the inclusion of digital technologies in mathematics education. This paper aims 
to answer the research question: According to the research literature, how may the inclusion of digital 
technologies in mathematics (primary and lower secondary) education contribute 
to Allgemeinbildung/mathematical literacy? 

Allgemeinbildung and Mathematical Literacy 
As stated initially, Allgemeinbildung is an aim for mathematics education in the Danish school 
system. The purpose of Allgemeinbildung is that a democratic society needs Allgemeinbildete 
citizens (Niss, 2000). Allgemeinbildung connotates “holistic self-enculturation” and is contrasted to 
vocational Bildung (vocational education), which prepares for specific vocations. It concerns the 
formation of human beings in a society (e.g. Vohns, 2018; Biehler, 2019; Neubrand, 2015) and 
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comprises that subjects see a meaning in the way this formation takes place as a self-reflecting process 
(Vohns, 2021). Heinrich Winter is a prominent voice in the German literature on mathematics 
and Allgemeinbildung (Biehler, 2019; Vohns, 2018). He explicates Allgemeinbildung as 
“...competencies and knowledge that are essential to every human being as an individual and as a 
member of society independent of his/her gender, religion, (future) profession, etc.” (Winter, 1995 
translated in Biehler, 2019, p. 153). The substance of Allgemeinbildung focuses on the fundamentals 
of understanding nature, culture and society (Niss, 2019, as cited in Biehler, 2019).  

The concept of mathematical literacy stems from English speaking mathematics education 
community. It first occeurs in USA in mid-fourties (Niss & Jablonka, 2020). Mathematical literacy 
is defined in the latest PISA framework as: 

an individual’s capacity to reason mathematically and to formulate, employ, and interpret 
mathematics to solve problems in a variety of real-world contexts. It includes concepts, 
procedures, facts and tools to describe, explain and predict phenomena. It assists individuals to 
know the role that mathematics plays in the world and to make the well-founded judgments and 
decisions needed by constructive, engaged and reflective 21st-century citizens. (OECD, 2018, p. 
7) 

Jablonka (2003) states that promoting mathematical literacy, at the same time, is promoting certain 
social practices: It is always mathematical literacy for something. She elucidates the different social 
practices: Mathematical literacy for, respectively, developing human capital, cultural identity, social 
change, environmental awareness and evaluating mathematics.  

There is a long list of related literacies: numeracy, quantitative literacy, financial literacy, statistical 
literacy, mathemacy, matheracy and critical mathematical literacy. Some are related to specific 
content. Others are sometimes used as synonyms to mathematical literacy, sometimes definitions are 
distinguished (Niss & Jablonka, 2020). 

Even though mathematical literacy and Allgemeinbildung differs in meaning and origin, the two 
concepts address the same issues. According to Biehler (2019), mathematical literacy would be a 
subset of Allgemeinbildung. Diverging from mathematical literacy, Allgemeinbildung addresses the 
development of individuals’ personalities. Though, mathematical literacy 
and Allgemeinbildung intersect on the theme of active citizenship and on preparing students for the 
future as members of a society (Vohns, 2017). 

METHOD 
To answer the research question, I conducted a hermeneutic literature review (Boell & Cecez-
Kecmanovic, 2014). I selected four databases relevant to mathematics education research: Web of 
Science, Eric Proquest, Scopus and SpringerLink. The ladder was also pertinent to secure getting 
German-language literature. It is relevant because of the tradition for Allgemeinbildung in German 
mathematics education research. For the same reason I reviewed all issues of Mittelungen der 
Gesellschaft für Didaktik der Mathematik. The phrases Allgemeinbildung, mathematics, 
mathematical literacy and digital technologies were combined with Boolean operators and 
truncations. 113 results were transferred to abstract screening. In this process, I have focused on 
primary and secondary education. It excludes education for certain vocations such as engineering and 
financial education. Both digital technologies and different notions of mathematical literacy 
or Allgemeinbildung should be part of the abstract. Because quantitative literacy and numeracy 
sometimes are used as synonyms for mathematical literacy, I was open to this use in the screening. 
Mathematical literacy is sometimes used only as a synonym for mathematical knowledge (Jablonka, 
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2003). In these cases, the literature was excluded. References were used for snowballing. It resulted 
in 18 texts for review. In the review process, Allgemeinbildung and mathematical literacy was 
handled as synonyms and did not give rise to a subdivision of the results. Though, the balance between 
the amount of literature addressing, respectively, Allgemeinbildung and mathematical literacy, is 
addressed in the discussion of this paper.  

CATEGORISATION OF THE IDENTIFIED LITERATURE  
Three categories related to different spheres of life, respectively work-life, everyday life and critical 
aspect related to citizenship could be identified. One category addressed a discussion about digital 
literacy.  

The group of literature about stundents’ future work-life identifies how digital technologies changed 
mathematical practices in workplaces, and it discusses curricular consequences. The group of 
literature about preparation for everyday life comprises considerations about how the inclusion of 
digital technologies in mathematics teaching can enhance numeracy practices and how digitalisation 
affects what future needs mathematics teaching should respond to. The literature about critical aspects 
of citizenship problematises the digitalisation and the demathematisation of society. The last group 
discusses the notion of digital literacy or Digitale Bildung concerning mathematics teaching. Two 
results treated mathematics and technologies as aspects of both work-life and everyday life, 
Gravemeijer et al. (2017) and Geiger et al. (2015a). 

Mathematics and 
technology: 
Preparation for 
work-life 

Mathematics and 
technology: 
Preparation for 
everyday life 

Mathematics and 
technology: Critical 
aspects 

Digital literacy and 
mathematical 
literacy - potentials 
and constraints 

Geiger et al. (2015a) 
Gravemeijer et al. 
(2017) 
Hoyles et al. (2010) 
Zevenberger (2004) 
 

Geiger et al. (2015a) 
Geiger et al. (2015b) 
Geiger et al. (2020) 
Gravemeijer et al. (2017)  
Novita and Herman (2021) 
Steen (1999) 
Steen (2001) 

Forgasz et al. (2010) 
Gellert & Jablonka 
(2007) 
Gellert & Jablonka 
(2009) 
Keitel et al. (1993) 
Straehler-Pohl (2017) 

Dofkavá (2016) 
Hirscher (2018) 
Nocar et al. (2019) 
Vohns (2021)  

Table 1. An overview of the literature ordered in four categories 

Mathematics and Technologies – Preparation for Work-Life 
Today’s society is deeply influenced by digital technologies and digitisation, and there is a paradox 
in the fact that mathematics at the same time is invisible and pervasive. The role of mathematics in 
society is growing, and mathematics is increasingly carried out by machines. Even though 
mathematics has this central role in society, only a few master it (Gravemeijer et al., 2017). 
Technologies have transformed the mathematics used in workplaces (Geiger et al., 2015a; 
Gravemeijer et al., 2017). According to Zevenberger (2004), the technologising of workplaces and 
society influences how young people work mathematically and must influence mathematics teaching: 
the focus of accuracy and precision in calculations is redundant, and there must be a retheorising of 
mathematics education to promote more global aspects of problem-solving. Gravemeijer et al. (2017) 
point out that, on the one hand, calculations in real life are carried out by computers. On the other 
hand, calculations are the main focus of school mathematics. Instead, the mathematics taught should 
focus on three overall mathematical competencies: 1) Applying and modelling, such as recognising 
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where mathematics is applicable and translating practical problems into mathematics. 2) 
Understanding. A conceptual mathematical understanding is needed to understand the underlying and 
hidden procedures of digital technologies. 3) Checking. It is necessary to evaluate the computer-based 
results. Not by repeating the calculations by hand but by checking if the results seem plausible. 
Working with computers requires that phenomena from the real world translate into numerical 
quantities. There is a need for deep understanding of how these processes are carried out and an 
awareness of which information gets lost in such translations (Gravemeijer et al., 2017). Gravemeijer 
et al. (2017) stress the need for not just handling the artefact but for an explicit focus on the 
instrumentation.  

Hoyles et al. (2010) derive the term Techno-mathematical Literacy from mathematical literacy to 
cope with the needs for modern work life and to address the specific needs for mathematics in this 
context where mathematics is expressed through an artefact.  

Mathematics and Technologies – Preparation for Everyday Life 
Steen (1999, 2001) points out that society is “data-drenched”. Therefore, it stresses the need for 
citizens who can cope with numerical information. Numeracy practices can be enhanced by the 
efficient integration of digital tools in mathematics teaching practice. The “collection, recording, and 
analysis of real-world data are real; comparing tools in mathematics teaching can enhance numeracy 
practice the features of relevant data sets; critiquing a situation or making judgements.” (Geiger et 
al., 2015b, p. 538). Digital technologies influence how mathematics is relevant in society. Since big 
data is growing, the need for statistical literacy is increasingly important (Gravemeijer et al., 2017; 
Geiger et al., 2020). Also, the need for space geometry becomes relevant to handle 3D technologies 
(Gravemeijer et al., 2017).  

Geiger et al. (2015a) investigate empirically how the use of digital tools can support numeracy 
teaching and learning. They focus on students’ development of “technology-integrated mathematical 
capacities” and how these can prepare them for future work and citizenship. For this purpose, they 
present a model that integrates the context with mathematical knowledge, dispositions and tools. 
These relations are embedded in a critical orientation “as the fundamental purpose of numeracy in 
practice is that it empowers individuals with the capacities to evaluate and to make judgements and 
decisions about their options and opportunities in the lived-in world.” (Geiger et al., 2015a, p. 1123). 
In a Design-Based Research-study, students investigate an overall question of what level of physical 
activity is required to maintain good health. The students used different digital tools to track, gather 
and represent data relevant to their question. In addition, the digital tools gave rise to reflections on 
what measures were necessary and critical examination of their situation.  

Novita and Herman (2021) find, in a literature review, that consistent use of technology might play 
an essential role in developing mathematical literacy. They point out that integration of digital 
technologies in mathematics teaching should be accompanied by pedagogical considerations about 
three different uses of technology in mathematics teaching: instructive, manipulable and constructive 
digital technologies. 

Mathematics and Technology – Critical Aspects  
In the following perspectives, the ways technology and mathematics influence society are addressed 
as a democratic problem. Mathematics and technologies act as black boxes in ways that make them 
invisible and impenetrable for citizens.  

Because of technological development, mathematics affects all parts of society. Mathematics is 
mostly invisible or just recognised on the surface, and the technology functions as black boxes. A 
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demathematisation of society is taking place as a consequence of technological development. The 
mathematical skills needed before are now taken over by technology. This concerns with social 
availability of mathematical knowledge. The power relationship between constructors, operators and 
consumers of technologies is problematic for democracy (Gellert & Jablonka, 2007; 2009). Keitel et 
al. (1993) call this black-boxing of mathematics and technology for implicit mathematics. Thus, 
specific needs for mathematics education emerges and influences the way mathematics and 
technology should be taught. To develop democratic competence, it is not mathematical nor 
technological knowledge that is needed. “An extension of mathematical or technological knowledge 
does not automatically lead to a reflection about the use or function of technologies nor about the 
underlying mathematical models” (p. 270). Instead, reflective knowledge is needed.  

Straehler-Pohl (2017) stresses the need for recovery of critical distance toward the demathematisation 
on the school agenda. For this purpose, he suggests three agendas for school mathematics: 1) 
reflective knowledge (as stated by Keitel et al., 1993) on the uses of technology and mathematics, 2) 
let students experience the opportunity to reject the use of mathematics for solving problems, and 3) 
“the entanglement of de|mathematisation with capitalism should be explicitly brought on the agenda 
of mathematics classrooms” (p. 17). 

Based on the perspective that all citizens should have access to powerful mathematical ideas, Forgasz 
et al. (2010) examine issues of equity concerning mathematical learning with digital technologies. 
They focus on access and agency and conclude that the availability of resources for mathematical 
learning with digital technologies varies according to economic status and cultural and educational 
values and beliefs. 

Digital Literacy and Mathematical Literacy – Potentials and Constraints 
In the following perspectives, digital literacy (or digital Bildung) as an objective in mathematics 
education is discussed. The discussion relates to curricular reforms and public debate about 
implementing digital literacy. Dofkavá (2016) and Nocar et al. (2019) recognises great potentials for 
mathematical and digital literacy to complement each other. Their finding is made in the context of 
curricular reforms in the Czech Republic. In the German debate, Vohns (2021) and Hirscher (2018) 
criticises the terminology of Digitale Bildung (equivalent to the notion of digital literacy). Their 
criticism concerns the meaning of Bildung.  

Bildung is tied to the subject and human consciousness (Hirscher, 2018). Bildung is more than 
learning and requires reflective processes and awareness about self-development (Vohns, 2021). 
Hirsher (2018) promotes a model that combines methodology, proficiency and reflection related to 
the implementation of media in mathematics education. Vohns (2021) points to the constraint about 
digital Bildung through 7 theses. Some of these relate to diverging understandings in policy, 
mathematics education and mathematics communities. Social implications and the development of 
“critical digital literacy” are, according to Vohns (2021), underexposed. 

DISCUSSION 
The initial aim of this review was to answer the research question: According to the research 
literature, how may the inclusion of digital technologies in mathematics (primary and lower 
secondary) education contribute to Allgemeinbildung/mathematical literacy? The research literature 
could be classified into four groups. The first three relate to different spheres of life: work life, 
everyday life and citizenship. The last group relates to a present discussion about including digital 
literacy in mathematics education. Digitalisation changes society and the way mathematics is 
practised. This is a common point for all four headings.  
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The way mathematics is practised in workplaces changes the needs in mathematics education. 
Mathematics teaching should focus on global aspects such as problem-solving and modelling and 
making sense of results given by the digital tools. To enhance numeracy practices of everyday life, 
digital technologies comprise potentials. Digital technologies may contribute to students exploring 
questions about a good and healthy life. The technologies support the students in flexible reasoning 
and investigations of different measures. The digitalisation of society also creates new educational 
needs. E.g. statistical literacy becomes necessary to cope with a data drenched society. As for critical 
aspects, digitalisation challenges democracy. Due to digitalisation, society is “demathematised”. 
Mathematics and technology function as black boxes and becomes invisible powers. Thus, 
mathematics education must enhance student’s reflective knowing in terms of mathematics and 
technology in society.  

The notion of digital literacy is trending. This raises questions about the relationship to mathematics 
teaching. The literature points out joint potentials for mathematical and digital literacy. Yet, the 
literature is not very specific about actual teaching practice. The German literature accentuates that 
Digitale Bildung does not embrace the richness of the meanings of Bildung (or Allgemeinbildung).  

The inclusion of digital technologies in mathematics teaching does comprise potentials for 
mathematical literacy (or numeracy). But digitalisation of society does also comprise some 
educational challenges related to democracy.  

This review comprises a much greater amount of English-language literature. This means an emphasis 
on mathematical literacy (or synonyms to mathematical literacy). Allgemeinbildung comprises some 
other facets, e.g. self-enculturation, development of student's personalities and self-reflection. If these 
facets of Allgemeinbildung shall be addressed in connection with the digitalisation of mathematics 
teaching, then there is a need for further research.  

Only one article comprised empirical research connected to actual mathematics teaching. As stated 
initially, Allgemeinbildung is difficult and demanding to turn into actual teaching practice. Therefore, 
further empirical research on the connection between Allgemeinbildung and digital technologies in 
mathematics education is needed. 
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This paper draws on data from TIMSS 2019 to investigate an approximate relation between Danish, 
Swedish, and English teachers’ in-service training in computational thinking (CT) and their students’ 
TIMSS scores as compared to students whose teachers had only received training in digital 
technology (DT) or problem solving (PS). To that end, we developed a proxy for CT combining PS 
and DT, based on recent definitions of CT in mathematics education. The results indicate that, in 
England, in-service CT training is associated with systematically better student TIMSS scores as 
compared to students whose teachers received only DT or PS training, but the best scores were 
achieved by teachers who did not participate in any of the three forms of training. In Denmark, CT 
training was found to have a negative effect on TIMMS scores while in Sweden, the effect of CT 
training was difficult to assess. 

Keywords: Computational thinking, mathematics teachers, professional development, TIMSS. 

INTRODUCTION 
Following Papert’s (1980) work during the 1970s, ideas linking computational thinking (CT) and 
mathematics education have recently attracted renewed interest. The CT research literature has grown 
steadily since Wing (2006) reintroduced the concept, and several countries, including Sweden and 
France, have already revised mathematics curricula to incorporate programming/CT. Then as now, 
the integration of CT in mathematics is based on the assumption that this enables students to more 
fully engage with and express mathematical ideas (Papert, 1980; Benton et al., 2018), ultimately 
improving their mathematical proficiency. However, implementing CT in mathematics education 
entails a number of significant challenges, including how best to prepare teachers to teach CT, what 
specific links should be established between CT and mathematics, and what pedagogical approaches 
should be applied. Among these, a central challenge is the need for pre- and in-service teacher training 
to teach the subject. Although it is often argued that there are significant overlaps between CT and 
mathematics—for example, in relation to logical structures and modelling (Ejsing-Duun & Misfeldt, 
2015; Pérez, 2018)—existing research suggests that mathematics teachers cannot be expected to teach 
CT or programming without additional inputs beyond their pre-service training (Misfeldt et al., 2019). 
Although this need is widely acknowledged (Bocconi et al., 2016), most research to date has focused 
on issues related to teachers’ beliefs about CT in mathematics, their readiness to teach CT, and 
effective formats for training multiple teachers quickly. However, less attention seems to have been 
paid to the question of whether CT training for mathematics teachers actually has any positive effect 
on students’ mathematical achievement. As the integration of CT in mathematics curricula is 
relatively recent, data supporting direct measurement of any such effect remain scarce. However, 
researchers continue to make progress toward defining the components of CT in mathematics 
education contexts (Pérez, 2018; Weintrop et al., 2016; Kallia et al., 2021). Building on this work, 
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the present paper explores 1) whether CT can be related to aspects of the available TIMSS data and 
2) the nature of the relationship between mathematics teachers’ CT-related professional development 
and students’ Trends in International Mathematics and Science Study (TIMSS) scores in Denmark, 
Sweden, and England. To that end, we constructed a CT proxy, building on definitions of CT in 
mathematics education by Kallia et al. (2021) and others. Using this proxy, we identified teachers in 
Denmark, England, and Sweden who have received in-service training in PS and DT and compared 
their students’ TIMSS scores to those of students whose teachers have received in-service training in 
digital tools (DT), problem solving (PS), or none of these. The study addresses the following research 
questions.  

RQ1: How can we relate CT to PS and DT elements of the TIMSS teacher survey in order to construct 
a proxy for in-service CT training?  

RQ2: Using this proxy, what can we learn about the relationship between mathematics teachers’ CT-
related professional development and their students’ performance in Denmark, Sweden, and 
England? 

To begin, we summarize existing research on CT training for teachers. We then introduce our 
definition of CT and how this informs our choice of data, hypotheses, and analytic approach. Finally, 
we present our results regarding the relationship between students’ TIMSS scores in mathematics for 
teachers trained in CT as defined and the TIMSS scores of students whose teachers have only received 
training in PS or DT, or in none of these. In conclusion, we reflect on the strengths and limitations of 
our approach and what further data are needed to develop a more precise understanding of these 
effects and the underlying mechanisms.   

EXISTING RESEARCH ON TEACHERS’ CT TRAINING 
As interest in CT as a K-12 subject has increased in recent years, a growing body of literature has 
focused on CT as an element of teachers’ professional development. Given the scale of teachers’ 
training needs, a number of these studies have explored the potential of online formats (Toikkanen & 
Leinonen, 2017; Sentence & Humphrey, 2015). In one Finnish study, Toikkanen and Leinonen (2017) 
found that teachers regarded MOOCS as an appropriate format for the development and sharing of 
CT teaching materials, while an English study (Sentance & Humphrey, 2015) showed that teachers 
there favored blended formats combining online and face-to-face elements. The Finnish study 
reported low completion rates of less than 20% for purely online formats (Toikkanen & Leinonen, 
2017), indicating that such formats may be problematic.  

Another strand of this research addresses beliefs about CT and perceived readiness to teach it among 
pre-service teachers with no formal training in the area. There is evidence that pre-service teachers 
differ widely in their understanding of CT, and that CT is often conflated with the more general use 
of technology or programming (Yadav et al., 2014; Bower & Falkner, 2015; Carbrera, 2019) while 
failing to consider other aspects such as problem solving. Yadav et al. (2014) found that teachers who 
had received CT training were more confident about teaching CT to their students and had developed 
a better understanding of CT as a teaching topic. In their overview study, Bocconi et al. (2016) found 
significant differences across European countries in terms of responsibility for teacher CT training, 
how it is organized, and its format and content. However, little is known about the effects of such 
initiatives on teaching or on student learning. This is a significant issue for mathematics education, 
as arguments for incorporating CT relate to benefits for learning (Papert, 1980; Benton et al., 2018). 
As an approximate measure based on TIMSS data, we constructed a proxy of CT encompassing 
problem solving and use of digital technology in mathematics, as described below.          
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THEORETICAL BACKGROUND: CT AND ITS RELATION TO MATHEMATICS 
Since Wing (2006) reintroduced and redefined CT, several definitions of CT have emerged. While 
Wing’s definition treated CT largely as a topic in its own right, other definitions relate specifically to 
CT in mathematics education contexts (e.g., Barr & Stephenson, 2011; Weintrop et al., 2016; Pérez, 
2018; Kallia et al., 2021). Wing’s seminal paper stimulated renewed interest in CT, but many 
definitions within mathematics education and beyond incorporate problem-solving and the use of 
digital technologies. Wing (2006) argued that computer science provides a theoretical basis for 
exploring how computers and other digital technologies can support problem-solving by 
decomposing and representing the problem and evaluating preliminary solutions. Barr and 
Stephenson (2011) argued that while most K-12 education curricula include problem solving, CT can 
help teachers and students to understand and solve problems using computation and digital tools. 
Weintrop et al.’s (2016) taxonomy of CT in mathematics and science education identifies 
computational problem solving as a key practice and argues that the use of digital technologies is a 
key element of CT. In their taxonomy, computational problem solving includes preparing problems 
for solution by computational means, assessing different computational solutions, and debugging 
flawed computational solutions to mathematical problems (Weintrop et al., 2016). In all of these 
examples, PS and DT are viewed as crucial components of CT. In a recent Delphi study, Kallia et al. 
(2021) asked 25 mathematics and computer science experts about the nature of CT in mathematics 
education. Their answers referred most frequently to problem solving and the use of technologies to 
solve problems. While it can be argued that CT includes elements other than PS and DT, it seems that 
these are considered central. Based on the definitions of CT outlined above, we therefore viewed the 
combination of PS and DT as a reasonable (though imperfect) proxy for CT. In the next section, we 
describe the TIMSS data used to address our research questions. We specify how this CT proxy relates 
to the TIMSS survey data, and we describe how we examined the relation between teachers’ in-
service CT training and their students’ performance.     

DATA AND METHOD 
As stated in the Introduction, the present analysis is based on TIMSS data from Denmark, Sweden, 
and England. We were motivated in part by our involvement in an ongoing research project 
comparing the implementation of programming and CT in those three countries (Misfeldt et al., 
2019). The comparison is interesting because the three differ significantly in terms of how long CT 
has formed part of the curriculum and how it is integrated in the school system. England was the first 
in Europe to do so, having implemented computing as a new standalone subject in 2014. Sweden 
incorporated programming as part of the curriculum’s core algebra and problem-solving content in 
2018 (Misfeldt et al., 2019). Denmark has not yet implemented CT in compulsory schools, but a pilot 
project currently running in 46 schools will inform the final decision regarding implementation 
format. These distinct settings provide an interesting context in which to explore differences and 
similarities using the CT proxy. Investigating the relation between mathematics teachers’ in-service 
training in CT and students’ TIMSS scores clearly requires both student and teacher data. Below, we 
describe the clustered nature of these data sources, how they are collected in TIMSS, and how we 
used the CT proxy to address our second research question. 
 
Measurement of Student Achievement 
The present study draws on TIMSS data from 2019 (Mullis et al., 2020). TIMSS’ stated mission is to 
assess 4th and 8th grade students’ mathematics and science achievements internationally, based on an 
elaborate design involving approximately 175 distinct mathematical items (Martin et al., 2017). In a 
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matrix sampling design, all students are randomly attributed a subset of the items. Using multiple 
imputation methods, students’ mathematics achievements are then estimated, and these values serve 
as the outcome measure in the analysis. Achievement is assessed on a scale constructed by the IEA 
to facilitate comparison across countries and over time; the center point (500) corresponds to the 
TIMSS mean in 1995, when the scale was developed (Mullis et al., 2020). 

Measurement of Teacher Training 
The inclusion of a teacher survey enables TIMSS to measure whether teachers have received training 
within the past two years, and in what sub-branches of their subject. In the case of mathematics, sub-
branches include mathematical content, pedagogy/instruction, curriculum, integrating technology 
into mathematics instruction, improving students’ critical thinking and problem-solving skills, 
assessment, and addressing the needs of individual students (TIMSS teacher questionnaire, 2019, p. 
11). TIMSS data on student achievement can be paired with data from the teacher survey, including 
mathematics teachers’ training. In the next section, we examine whether these sub-branch data in 
combination with data on student CT achievement provide an adequate proxy for exploring the 
relation between mathematics teachers’ CT training and students’ mathematical achievement. 

Toward a TIMSS-Based Proxy for Teacher Training in CT  
As indicated above, TIMSS does not explicitly measure mathematics teachers’ training in CT. 
However, it does measure the seven sub-branches of mathematics education listed above, including 
“improving students’ critical thinking or problem-solving skills” (PS) and “integrating technology 
into mathematics instruction” (DT). As previously argued, PS and DT can be considered central 
elements of CT in mathematics education; for that reason, we sought to identify teachers from 
Denmark, Sweden, and England who had received training in the two central elements of CT in the 
two years prior to TIMSS. The TIMSS data set also facilitated investigation of the relation between 
teachers’ training in various configurations of PS and DT (including both and none) and their 
students’ achievements in mathematics. Figure 1 below visualizes this approach. 

                                         

Figure 1. Overview of research design.  

Table 1 below shows the distribution of teachers across the four categories in the three countries.  

 DT PS CT None  

DK 10 8 12 96 
SE 25 8 13 91 
ENG 2 28 10 19 

Table 1. Number of teachers who participated in professional development in DK, SE, and ENG 
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In Denmark and Sweden particularly, most teachers had not participated in any of the three forms of 
professional development. In England, most teachers had participated in problem-oriented math, but 
about a third had not participated in any such training. Using a data set originally developed for a 
completely different purpose naturally has several limitations, and the advantages and disadvantages 
of this approach will be discussed toward the end of this paper. 

Variables 
We were mainly interested in the effect on student achievement of teachers’ participation in both 
types of professional development. The variables are listed in this table.  

Analysis: Multilevel Model 
The analysis employed three linear multilevel models of data from England, Sweden, and Denmark. 
This multilevel modelling enabled us to identify data clustering at two levels: classes and students 
(Snijder & Bosker, 2012). This mirrored the clustered design of the TIMSS survey, enabling us to 
test our cross-level hypothesis regarding the relation between teacher professional development 
(class-level) and student achievement (individual-level). In the model, all variables have been grand-
mean centralized (unless already dummies) to make the results easier to interpret, as the estimates 
then show the effect for the grand-average (Gelman & Hill, 2007). Because TIMSS uses a multiple 
imputation method to assess students’ mathematics achievements, the model was re-estimated using 
each of the five plausible values from the publicly available data (IEA) (Laukaityte & Wiberg, 2017). 
To average the effect and calculate standard errors according to the imputation structure, we estimated 
the model using the EdSurvey R-package. Incomplete observations have been removed listwise. The 
final Danish dataset comprised 1,976 students, clustered in 126 classes; the Swedish dataset 
comprised 2,422 students, clustered in 137 classes; and the English dataset comprised 1,171 students 
in 59 classes. The mean number of observations per teacher’s class was 18. 

RESULTS 
We compared the estimated effects of professional development in the three countries. As these 
estimates are based on the reference model, they deviate slightly from the TIMSS mean in the IEA 
report (Mullis et al., 2020). Our main focus was the change associated with teacher participation in 
the different forms of professional development for the average student in each country (rather than 
the estimate itself). Table 2 summarizes the results of the analysis, which are elaborated below. 

Professional development DK SE ENG 
Average for reference 
group (intercept): 

530.52* 517.82* 570.16* 

Standard error 4.68 517.82 9.10 

Problem solving (effect): 2.78 8.95 -13.90 

Standard error 10.11 7.73 8.92 

Use of digital tools (effect): -4.56 15.64* -35.53* 

Standard error 10.05 7.79 9.65 
Computational thinking 
(interaction effect): 

-19.15 -0.95 44.50* 

Standard error 18.32 12.86 17.53 
*Indicates significance at 5% level 

Table 2. Effects of in-service training across the three countries 

https://www.researchgate.net/publication/351450063_Variables
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In Denmark, students’ estimated TIMSS scores were highest in classes where teachers had 
participated in PS-related professional development (533.29). These were also the only students to 
score higher than those whose teachers received none of the three forms of training. Participation in 
CT-related professional development in Denmark was associated with the lowest estimated TIMSS 
score (509.58). None of the estimated effects of professional development in Denmark was significant 
at the 5% level and must therefore be considered unsystematic. 

In Sweden, estimated TIMSS scores were highest in classes where teachers had participated in CT-
related professional development (541.46). Sweden was the only country where this form of 
professional development produced higher estimates than non-participation in any of the three forms. 
However, as the effect was not significant at the 5% level, and the standard error was 12 times the 
effect size, it is highly unsystematic. The estimated effect of participation in DT-related professional 
development was significant at the 5%-level (with a standard error of 7.79), implying a systematically 
positive effect on students’ TIMSS scores. 

In England, estimated TIMSS scores were highest where teachers did not participate in any of the 
three forms of professional development (570.16), closely followed by teachers who participated in 
CT-related professional development (565.24). Teacher participation exclusively in DT-related 
professional development had the lowest estimated effect on student achievement (534.63). Both DT 
and CT were significant at the 5% level, indicating that the effect is systematic.  

As CT is included as an interaction, the effect reported in Table 2 refers to the change in students’ 
scores when their teachers participated in both PS and DT rather than in only one of these. The 
significant effect of teachers’ CT training in England implies that it differs from the sum of PS and 
DT training. As the table shows, these results are quite different across countries.  

DISCUSSION AND CONCLUSION 
The present findings suggest that in-service CT training systematically achieves better TIMSS scores 
in England as compared to DT or PS training alone but is still inferior to non-participation in any of 
the three forms of training. The effect of CT training is negative in Denmark and is difficult to assess 
in Sweden. Although this CT proxy based on the available TIMSS data does not reflect all elements 
of CT, there are notable differences across these three countries, which have adopted very different 
approaches to implementing CT in their respective curricula. While this suggests that the differences 
across countries relate to CT implementation stage and approach, several issues arise regarding the 
proxy-based approach adopted here. While previous research on CT-related teacher training focused 
primarily on training formats and teachers’ preconceptions, the present study instead addressed the 
issue of content. Nevertheless, the issues of format, teachers’ beliefs, preconceptions, and related 
factors seem likely to affect student performance, but these data were not available from the TIMSS 
survey. Additionally, the mere co-occurrence of PS and DT cannot be regarded as equivalent to CT, 
which commonly entails a more symbiotic integration of PS and DT. Ideally, the survey items should 
be chosen and developed to correspond more closely to the relevant measures (in this case, CT) rather 
than having to subsequently compile selected parts of the data to align with a concept unrelated to the 
original survey design.  

What, then, is the point of such an analysis? First, in the absence of ideal data sources, this 
experimental research design pragmatically addresses a key question: the extent to which in-service 
CT training for mathematics teachers can positively affect students’ mathematical proficiency. We 
believe that ongoing theoretical advances in our understanding of CT in mathematics education can 
help to clarify whether and how existing data sources can provide a meaningful basis for addressing 
this question. While these advances can and should inform future large-scale surveys to determine 
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how in-service CT training of mathematics teachers affects students’ mathematical achievement, such 
studies demand substantial researcher and practitioner resources. Moreover, while such studies may 
be able to measure the effects of future in-service CT programs, they cannot investigate the effects of 
past initiatives. However, by building on theory-informed proxy constructs of the kind described here, 
we can hope to approximate and indicatively measure the effects of such initiatives. By prompting 
reflection on how data fall short of the ideal, such experiments can, in turn, inform future decisions 
about the data needed to answer these and other important questions.  
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Mathematical thinking is about the processes carried out when doing mathematical activities, and 
digital technologies offer many opportunities for supporting such activities in the teaching and 
learning of mathematics. This paper presents the results of an initial literature review, at the moment 
including nine studies, on the use of dynamic geometry environments (DGE) and Computer Algebra 
Systems (CAS) in relation to learners’ mathematical thinking and mathematical thinking competency. 
The studies are analysed from the perspectives of Thinking Mathematically and the mathematical 
thinking competency of the Danish competency framework. The results indicate that when using CAS, 
mathematical thinking and mathematical thinking competency is activated prior to and after the CAS 
use. Differently, when using features of DGE such as dragging and measuring, mathematical thinking 
and mathematical thinking competency can be activated during the enquiries in DGE. 

Keywords: Computer algebra systems, dynamic geometry environments, mathematical competency, 
mathematical thinking. 

INTRODUCTION 
Since the 1990s, the interest in using digital technologies for mathematics education has increased, 
both in the classrooms and in the field of mathematics education research (e.g., Trouche et al., 2013). 
Simultaneously, a shift from focussing on mathematical skills and knowledge to mathematical 
competencies has been taking place (Niss et al., 2016). To investigate the use of digital technologies 
in relation to mathematical competencies, specific competencies of the Danish competency 
framework (KOM) (Niss & Højgaard, 2019) have been focal points to specify the study, for instance, 
the reasoning competency (Højsted, 2020) and the representation competency (Pedersen et al., 2021). 

The activities of mathematical thinking cover a wide spectrum of mathematical processes (e.g., 
Drijvers et al., 2019; Mason et al., 2010; Tall, 1991). The mathematical thinking competency of the 
KOM framework focus on the activities involved in mathematical inquiries (Niss & Højgaard, 2019), 
which can be interpreted somewhat narrower than the general term of mathematical thinking. With 
the heavy introduction and emphasis on digital technologies in mathematics education, this paper 
reports on a pilot literature study with the purpose of investigating the use of Dynamic Geometry 
Environments (DGE) and Computer Algebra Systems (CAS) in relation to the mathematical thinking 
competency. The two phases, entry and review from the Thinking Mathematically framework (Mason 
et al., 2010) have the potential for investigating the processes related to the mathematical thinking 
competency. Therefore, this paper addresses the question: Which features of DGE and CAS can be 
identified, in mathematics education literature, as useful tools for mathematical thinking competency 
through the lens of ‘entry’ and ‘review’ from the Thinking Mathematically framework? 

First, I account for the mathematical thinking competency and the theoretical background of the 
study. Then I explain the review process for the initial literature search, on which this paper is based. 
Finally, I analyse the literature results with the notion of entry and review of Thinking mathematically 
(Mason et al., 2010) in relation to the mathematical thinking competency (Niss & Højgaard, 2019). 
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THE MATHEMATICAL THINKING COMPETENCY OF THE KOM FRAMEWORK 
The KOM framework is a characterization of mastering mathematics across educational levels and 
subject matter (Niss & Højgaard, 2019). The framework consists of eight distinct but non-disjoint 
competencies, where a mathematical competency is defined as “someone’s insightful readiness to act 
appropriately in response to a specific sort of mathematical challenge in given situations” (Niss & 
Højgaard, 2019, p. 5). Other than the mathematical thinking competency, the remaining seven 
competencies are the reasoning, problem handling, modelling, representation, symbol and formalism, 
communication, and aids and tool competencies.  

The mathematical thinking competency concerns the activities involved when engaging in 
mathematical inquiry. It comprises the ability to relate and pose generic questions characteristic of 
mathematics and to relate to the nature of the answers to such questions. Furthermore, the competency 
comprises the ability to distinguish between different types and roles of mathematical statements, 
such as definitions and if-then, for all and existence claims, as well as navigate with regard to the 
logical connectives and quantifiers (Niss & Højgaard, 2019). If you cannot distinguish between the 
mathematical claims, it can be difficult to understand what an answer to a given question would be. 
Moreover, the competency involves relating to the varying scope of a mathematical concept in 
different contexts. For instance, the scope of the number concept is expanded from the domain of 
natural numbers to rational, real and complex numbers. Finally, the competency includes the ability 
to propose generalizations of claims and abstractions of concepts and theories, as well as to relate to 
generalization and abstraction as processes of mathematical activity (Niss & Højgaard, 2019). 

Due to the distinction between the eight mathematical competencies in the KOM framework, 
reasoning, problem handling, modelling, dealing with representations etc., are not part of the 
mathematical thinking competency, but interfere with it when doing and dealing with mathematics. 
For instance, the mathematical thinking competency is strongly interwoven with the problem 
handling and the reasoning competencies (Niss & Højgaard, 2019). Thus, at times, it can be difficult 
to distinguish these three competencies during mathematical activities. However, this distinction is 
an important point of the KOM framework. 

Considering the role of digital technologies, Niss (2016) argues that digital technologies might 
enhance or replace mathematical competencies. For instance, digital technologies can help students 
experience mathematical processes and phenomena, and be part of explorative platforms for 
investigating mathematical concepts. With multiple representation views and features such as 
dragging and measuring, DGE and CAS have great potential for studying mathematical concepts and 
their relations (Pedersen et al., 2021). Digital technologies can produce static and dynamic 
representations of mathematical concepts and processes, create connections between different 
representations of the same concept and help perform symbolic manipulations (Niss, 2016). However, 
because digital technologies are able to perform mathematical activities for students, the tools can 
easily replace parts of the mathematical competencies rather than enhance them, if not used carefully 
(Pedersen et al., 2021). 

MATHEMATICAL THINKING 
Mathematical thinking is a broad term and is often related to mathematical learning and reasoning. 
One of the main contributions to the subject of mathematical thinking is ‘Thinking Mathematically’ 
by John Mason and colleagues (2010). This book is practice-oriented, focusing on the reader to use 
the given tools and take the time to work on the problems given throughout the book. In the preface 
of the first edition, the authors explain thinking mathematically as mathematical processes to carry 
out when doing mathematics (Mason et al., 2010). In their second edition, they change this view on 
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processes to be about natural powers, which, in the authors’ view, we as human beings all possess. 
However, the powers need to be provoked for us to use and develop in contexts of mathematical 
thinking (Mason et al., 2010). In total, they present 10 of these powers, here specializing and 
generalizing are two out of four main powers. Specializing is to try with examples and to consider 
special or simpler cases of the problem. Generalizing is the move from the few instances, the special 
cases, to guessing about the relationship for a class of cases. These two processes are intertwined, 
which the authors illustrate with the slogan: “seeing the particular in the general; seeing the general 
through the particular” (Mason et al., 2010, p. 232). I shall return to the other two main powers shortly. 

The ten natural powers are part of three phases of work when faced with a question. Each of these 
three phases is complex and comprises sub-activities. Roughly speaking, the first phase, entry, is to 
really read and understand the problem. It is often in this phase the first cases of specializing are used, 
as specializing can help to understand the core of the question and set the foundation for the second 
phase, attack. The attack phase starts when you really understand the question and it has become your 
own and ends when you have resolved or abandoned it. In this phase, the two other main powers, 
conjecturing and convincing, come into play. Based on specializing, you can now start conjecturing 
on and convincing yourself and others of the solution to the given question. The third phase is the 
review phase, which is to look back and reflect upon the resolution and strategies, as well as to extend 
the question for new contexts. It is often in this phase when generalizing takes place. The phases and 
natural powers do not follow strict linear working progress, as illustrated in Figure 1. 

 
Figure 3: Three phases of work when tackling a question (Mason et al., 2010, p. 26) 

Tall (1991) defines a similar cycle of activities in advanced mathematical thinking, going from 
considering a problem to formulating conjectures and finally to refinement and proving. He states 
that these activities also are part of elementary mathematical thinking, referring to Mason and 
colleagues’ work, but distinguishes the two forms of mathematical thinking by viewing it as the 
transition “from describing to defining and from convincing to proving in a logical manner based on 
those definitions” (Tall, 1991, p. 20). Dreyfus (1991) consider advanced mathematical thinking and 
how it differs from elementary mathematical thinking in the same way. In addition, Dreyfus consider 
mathematical thinking as a set of different learning processes, with representing, abstracting, 
generalizing and synthesising as the main ones. Yet, another model of mathematical thinking is the 
triad consisting of problem solving, modelling and abstraction, presented by Drijvers and colleagues 
(2019). Thus, considering mathematical thinking as presented in mathematics education research, it 
includes many different mathematical activities. In relation to the KOM framework and the 
mathematical thinking competency, mathematical thinking, as a general term, covers much more than 
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just the mathematical thinking competency. The different views on mathematical thinking also 
include aspects of the other competencies of the KOM framework. Thus, to specify the broad 
perspective of mathematical thinking in relation to the mathematical thinking competency, I find that 
the entry phase including the natural power of specialising and the review phase with generalizing 
(Mason et al., 2010) are more in line with the aspects of the mathematical thinking competency 
focusing on the nature of mathematical questions and answers, on the conditions and on generalisation 
and abstraction. Whereas the attack phase, including the natural powers of conjecturing and 
convincing, is more related to the problem handling and the reasoning competency.  

REVIEW METHOD 
I conducted the first initial literature search, on which this paper is based, in WebofScience in spring 
2021. With the focus on educational uses of CAS and DGE in relation to mathematical thinking, I 
searched for either of the following words in title or abstract: “Dynamic software”, “Dynamic 
geometry”, DGS, DGE, GeoGebra, CAS, “Computer algebra”, “Symbolic calculator”, “Graphical 
calculator”, Nspire, Maple, and for “mathematical thinking” also in title or abstract. To make sure to 
get results of mathematics education, I combined the above search words with math* AND educ* as 
Topic. The search was restricted to English, but otherwise, there were no restrictions regarding type 
or year of publication. This search gave 16 results, of which nine were included for the review. 
Screenings of title and abstract (2 excluded) and of full text (5 excluded) followed the two inclusion 
criteria: 

1. The study uses some kind of definition or explanation of ‘mathematical thinking’ (implicit 
or explicit). The study should focus on mathematical thinking as a means or a goal and not 
only use the term in an unspecified manner. 

2. The study uses DGE or CAS. DGE and CAS should be part of the focus for the study, and 
not just be part of the empirical setting with the study focusing on other aspects. 

The included studies were classified in relation to whether the study is theoretical or empirical; the 
purpose; research method and objects; mathematical content; name and type of tool; which theoretical 
construct/approaches are used, if any; and implicit or explicit definition of the term “mathematical 
thinking”. Subsequently, the studies were coded from the perspective of Mason and colleagues’ 
(2010) terminology of phases of work. However, as I do not find the attack phase the most relevant 
for the mathematical thinking competency, the analysis focuses on how DGE and CAS are used for 
the entry and the review phase of thinking mathematically. This was done by analysing where the 
tool was used in the problem-solving or investigating process. If the tool was used as part of 
investigating a given problem or a certain mathematical concept, it was coded as the entry phase. If 
the tool was used for finishing or studying a resolution to a problem, or for expanding or generalising, 
it was coded as the review phase. In this way, I attempt to keep the focus on the mathematical thinking 
competency and avoid analysing tool use for competencies such as reasoning and problem handling. 

ANALYSIS AND RESULTS  
All nine included studies are empirical with participants from lower secondary school, pre and post 
teacher programmes and first year of engineering. All nine papers are peer-reviewed, eight are articles 
in journals of mathematics education, and the last is a conference paper. Three of the studies make 
use of CAS, and the remaining six use DGE. In the following, I analyse which papers illustrate tool 
use as part of the entry phase (five studies), and as part of the review phase (all nine studies). 
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The entry phase and the use of DGE and CAS for mathematical thinking 
Two of the studies (Ismail et al., 2014; Zeynivandnezhad & Bates, 2018), which use Maxima, a CAS 
program, apply the mathematical thinking powers (Mason et al., 2010) as the framework for their 
analyses on students’ mathematical thinking when using CAS for solving problems with differential 
equations. In both studies (Ismail et al., 2014; Zeynivandnezhad & Bates, 2018), the authors find that 
the students use specializing powers to identify which procedures and commands to use for solving 
the differential equation. Hence, the use of CAS becomes a part of the attack phase to solve the task 
and justify the solution rather than part of the entry phase itself. In these cases, Zeynivandnezhad and 
Bates (2018) find that the students, transfer their procedures of pen-and-pencil to the CAS 
environment. Hence, the students’ mathematical thinking of the entry phase influences their way of 
using CAS for the given problem. 

In total, three studies (da Silva et al., 2021; Reyes-Rodriguez et al., 2017; Santos-Trigo & Reyes-
Rodriguez, 2016) use DGE as part of the entry phase. None of the studies using CAS applies it directly 
in the entry phase. For the three studies, DGE is used for visualization and in an explorative manner. 
da Silva and colleagues (2021) illustrate a situation where the problem-solvers start by investigating 
the problem using DGE, GeoGebra, as part of the entry phase, before they move to Microsoft Excel 
for the attack phase. In this way, the tool influences how they understand the problem and go about 
it. The visualization and exploration starting in GeoGebra help them enter the question, by which 
they can navigate on their understanding of what a good answer would demand, which indicate 
aspects of the mathematical thinking competency. 

Letting the students start by working with DGE can be helpful in two ways when considering and 
solving geometric problems (Reyes-Rodriguez et al., 2017; Santos-Trigo & Reyes-Rodriguez, 2016). 
(1) The problem solver can use the DGE to explore the given initial conditions for the problem by 
constructing them geometrically and then from here start working the problem. As for the example 
above, the DGE makes it easy to construct the given geometric object to explore before starting 
solving the task. (2) Another way is by relaxing the conditions and then by dragging elements of these 
constructions in the tool, the problem solver can relate and explore how specifying the conditions can 
lead to the wanted construction. For these two strategies, as for the example above, using DGE can 
take part in the entry phase and help to devise a plan for the further process and to focus on the 
conditions for the problem. In the perspective of the mathematical thinking competency, this is related 
to the ability to distinguish between different mathematical claims, as they need to understand the 
role of the conditions, and to relate to the nature of the expected answer to a given question. 

The review phase and the use of DGE and CAS for mathematical thinking 
Like in the entry phase, the use of DGE or CAS is not necessarily part of the review phase, but rest 
upon the explorations carried out with the tool. For instance, in the two studies using Maxima (Ismail 
et al., 2014; Zeynivandnezhad & Bates, 2018), findings indicate that the visualization capabilities of 
the tool help the students to understand the solution to a given differential equation. Here, Maxima is 
used in the problem-solving process itself. The students are able to conjecture after experimenting 
with different provided differential equations in Maxima, and they use the tool for visualization to 
verify and convince themselves of the solution, as well as a self-checking tool. Thus, as argued for 
the entry phase, the findings of these two studies illustrate how students show mathematical thinking 
competency to reflect upon CAS. Also in the study by Fonger (2018), CAS is used in the attack phase, 
which is emphasized by the principle of predict-act-reflect-reconcile, where act is the activity of using 
CAS. Here, CAS is used to make the students focus on the review phase, where the students are 
encouraged to go back to check and reflect upon their results of the prediction and of CAS. 
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For the studies using DGE as part of the review phase (da Silva et al., 2021; Fonseca & Franchi, 2016; 
Reyes-Rodriguez et al., 2017; Santos-Trigo & Reyes-Rodriguez, 2016; Turgut, 2019; Yao & 
Manouchehri, 2019), the features of dragging (including using sliders) and measuring are the most 
emphasized tools for supporting mathematical thinking in the included literature. Yao and 
Manouchehri (2019) find that the students’ generalizations are shaped by how they use the tool and 
for what purpose. For instance, they find examinations of empirical cases by dragging and measuring 
in DGE can facilitate generalizations upon the single cases. Working with dynamic representations 
controlled by a slider representing a central variable can help students represent and visualize the 
concept of convergence of sequences (Fonseca & Franchi, 2016). Such visualization and flexibility 
of switching between different representations, such as algebraic, numeric and various kinds of 
graphic ones, contributes to the abstraction of concepts and thus, to their transition from elementary 
to advanced mathematical thinking (Fonseca & Franchi, 2016). 

Santos-Trigo and Reyes-Rodriguez (2016) emphasize the review phase by arguing that finding the 
solution to a given problem should not be the end of the process. Instead, students should be 
encouraged to look for multiple ways to represent and solve the problem. For this, DGE makes it 
possible to construct and explore different dynamic models of a problem and to extend the problem 
from one context to another. Exploring a problem with DGE can support learners in questioning the 
task and the given conditions, if the learning environment, the teacher and the tasks support it. Such 
questions often come on the background of extending the conditions or context the original problem 
is given in (Reyes-Rodriguez et al., 2017). Working with DGE for problem solving in these ways can 
support aspects of the mathematical thinking competency, such as the ability to pose generic 
mathematical questions and to relate to the scope of the involved concepts in new contexts. However, 
it is important to emphasize that working with DGE itself does not make new solution paths and 
questions emerge. The students need to be encouraged to look for such new paths and questions. 

The study of da Silva and colleagues (2021) illustrates how studying different solution paths of 
estimating 𝜋𝜋 by squaring the circle can lead to further exploration of cubing the sphere. Similarly, 
Turgut (2019) finds that by dragging and focusing on the specific coordinates of the Cartesian plane 
of DGE, students can consider co-variation of independent and dependent variables as a 
transformation from ℝ2 to ℝ3, which can lead them to extend the concept of mapping from being a 
function to a matrix transformation. Such extensions are important aspects of the review phase, and 
relates to the aspects of the mathematical thinking competency, such as generalizing and the ability 
to relate to the scope of a given concept within different contexts. 

CONCLUSIVE DISCUSSION 
The results of the included literature illustrate that the visual and explorative possibilities of DGE and 
CAS have potentials relating to different aspects of mathematical thinking. The three phases of entry, 
attack and review (Mason et al., 2010) cover thinking involved in all kinds of mathematical activities, 
including problem solving, reasoning and representing. Compared hereto, the mathematical thinking 
competency (Niss & Højgaard, 2019) is narrower, as the aspects of this competency are primarily 
connected to the phases of entry and review, why literature was coded from the perspective of these 
two phases and not the attack phase. By focusing on entry and review and on the mathematical 
thinking competency, the analysis concentrates on these specific aspects of mathematical thinking. 

In relation to the entry and review phases, the use of DGE and CAS is not necessarily directly 
involved. This holds in particular for CAS, where the entry phase relates to the use of CAS in the 
forms of which techniques and commands to apply in the attack phase. In the review phase, the 
reflections are upon the results and visualizations provided by CAS, which then can make it possible 
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to extend and generalize the question, concepts and processes. On DGE, the literature results indicate 
that constructing visual representations, dragging and measuring are advantageous for the entry and 
the review phases. Dynamically exploring a mathematical question, its conditions and the involved 
concepts and properties can help to understand the question, questioning the conditions and relating 
to the expected answer. Hence, dragging and measuring in the entry phase may support aspects of the 
mathematical thinking competency. Similar actions in DGE throughout the attack phase can lead to 
a review phase including aspects of the mathematical thinking competency, such as questioning the 
initial situation, the context or domain it is given it, and relating the involved concepts and their 
varying scope in different contexts. Furthermore, such inquiries can support generalizing and 
abstracting, reflecting upon the different instances and representations examined in the DGE. Thus, 
the results of this study indicate that DGE and CAS, respectively, may have different potentials for 
different aspects of the mathematical thinking competency, which should be investigated with a more 
thorough literature search in other databases and proceedings of mathematics education conferences. 

This paper is based on an initial search as a pilot study to investigate the application of the Thinking 
Mathematically phases ‘entry’ and ‘review’ to capture processes of the mathematical thinking 
competency of KOM. That the search only provided 16 studies can be the result of the search words. 
I did not use ‘digital technology’ or similar general terms, as I wanted to narrow down the results to 
be about DGE and CAS. Furthermore, studies concerning elements of mathematical thinking or 
mathematical thinking competency but not explicitly written into this theme may not have been found 
using this strategy, which should be taken into consideration for the searches of further work. 
Applying the mathematical thinking competency in more detail for the analysis of the future literature 
review could provide a categorization of using DGE respectively CAS in relation to specific aspects 
of the mathematical thinking competency. 
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This communication aims to analyze the resolution of a task with the artifact, graphing calculator, 
where it was intended to make a connection between the domains of Geometry and Function. We 
sought to understand how the student promoted artifact signs through the development of usage 
schemes and instrumented action schemes. Later, in the collective discussion, we sought to analyze 
how the teacher promoted the transition from artifact signs into mathematical signs. Using a 
qualitative research methodology of an interpretive and descriptive nature, a case study modality 
was used focusing on the work of two pairs of students. The results show that the graphing calculator 
worked as an instrument of semiotic mediation and the teacher’s orchestration in the collective 
discussion was essential to the development of the semiotic potential of this artifact, resulting in the 
construction of mathematical knowledge. 
Keywords: Graphing calculator, instrumented action schemes, semiotic mediation, semiotic potential 
of the artifact, usage schemes. 

INTRODUCTION 
According to the Principles and Standards for School Mathematics (National Council of Teachers of 
Mathematics [NCTM], 2007), calculators and computers influence the way the subject of 
Mathematics is taught and they improve students’ learning. They are devices that enable the 
visualization of mathematical ideas, the organization and analysis of data, the making of calculations 
in an efficient and accurate manner and may serve to support students’ investigations in any area of 
Mathematics, namely in Geometry and Measurement, Statistics, Algebra, Numbers and Operations. 
On the other hand, they enable a softening of some existing boundaries in these areas, allowing 
students to use their ideas about a certain area to better understand another area of Mathematics. And 
yet, teaching that values interrelationships between various mathematical ideas, promotes a deeper 
and lasting understanding, and students, in addition to learning mathematics, also learn to recognize 
the usefulness of mathematics. According to NCTM (2017), which is a Mathematics program of 
excellence, it promotes the use of technology as it favors learning, the understanding of mathematical 
ideas, mathematical reasoning and the communication of reasoning. 

In this communication, we analyze the resolution of a task that took place in the 7th grade of 
elementary education or middle school (Portugal’s education system), within the scope of a broader 
teaching experience, in a public school in the district of Setúbal, in Portugal. An innovative, learning 
environment of an exploratory nature was promoted, using the Texas Instruments TI-nspire graphing 
calculator, at a level of education where the use of this artifact is not foreseen, according to the 
curriculum prescribed in this country (Ministério da Educação e Ciência, 2013). However, in a recent 
study carried out by the first author, she concluded that the performance of tasks with the graphing 
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calculator, in elementary education, allows students to reason, reflect, learn and understand 
mathematical ideas (Pedro, 2020). 

We intend to analyze and understand how the integration of the mediating artifact, graphic calculator, 
promoted the construction of mathematical meanings in the resolution of a task, in which a connection 
was made between the domains of Geometry and Functions. 

The theoretical lines that make up the theoretical frameworks of Instrumental Genesis and the Theory 
of Semiotic Mediation supported the data analysis. In this sense, we have as goals: 1) to understand 
how the usage schemes and instrumented action schemes mobilized by the students contributed to the 
development of the semiotic potential of the artifact, graphing calculator and how 2) in the collective 
discussion, the teacher guided the evolution of personal meanings, related to the task and the artifact, 
graphic calculator, to mathematical meanings. 

THEORETICAL FRAMEWORK 

Instrumental Genesis: Usage Schemes and Instrumental Action Schemes 
Instrumental genesis translates into a process through which the subject appropriates an artifact and 
transforms it into an instrument in solving tasks (Drijvers et al, 2010). The construction of an 
instrument is characterized by a mixed entity, composed by the appropriation of an artifact, material 
or symbolic, by the subject, through schemes (Rabardel, 1995). For Drijvers and Trouche (2008) the 
usage schemes are directed towards the management of the artifact, and the instrumented action 
schemes are mental schemes whose actions are directed towards the accomplishment of the task. 
Mental schemes emerge according to the subject’s personal meanings and can be spontaneous or 
mathematical. 

Theory of Semiotic Mediation: Semiotic Potential of the Artifact and Didactic Cycle 
The Theory of Semiotic Mediation aims to describe and explain the process triggered by a student, 
which begins with the use of a specific artifact to perform a task and leads him to the appropriation 
of a specific mathematical content (Mariotti & Maffia, 2018). In carrying out a task, when the 
transformation of the artifact into an instrument occurs, signs associated with the usage schemes can 
emerge (Mariotti, 2002). In this sense, the artifact plays a dual role, both as a means of accomplishing 
a task and as a semiotic mediation tool to fulfill a didactic objective (Mariotti & Maffia, 2018). 

From an individual point of view, personal meanings (signs of the artifact) arise that are related to the 
use of the artifact, namely in what the goal of carrying out the task is concerned. On the other hand, 
from a specialist’s point of view, mathematical signs emerge that may be related to the artifact and 
its use. In this sense, there is a double semiotic relationship articulated by the artifact, called the 
semiotic potential of the artifact, which is characterized by the easiness it has in associating 
mathematical meanings evoked by its use, culturally determined, with personal meanings that each 
subject develops when using the artifact (instrumented activity) while carrying out specific tasks. The 
teacher is responsible for the development of the semiotic potential of the artifact. In the collective 
discussion, the production of signs of the artifact must be promoted, and the evolution of these signs 
should be guided by mathematical signs, using two pairs of complementary actions: action of 
returning to the task and the focalization action and soliciting a synthesis and offering a synthesis 
(Mariotti & Maffia, 2018). This process, called semiotic mediation, develops through the iteration of 
Didactic Cycles (Figure 1). 
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Figure 1. The Didactic Cycle (Mariotti & Maffia, 2018, p. 53) 

 

METHODOLOGY 
Using a qualitative research methodology of an interpretive and descriptive nature, the case study 
modality was adopted, focused on the work of two pairs of students (Creswell, 2012). The fictitious 
names of Maria and Berta were used for one group and José and Pedro for the other group. 
The task focused on a connection between the domains of Geometry and Functions and was carried 
out with the mediating artifact graphing calculator. The goal was to understand how the semiotic 
potential of the artifact graphing calculator was developed through the mobilization of 
usage schemes and instrumented action schemes by the students. And also how the teacher 
orchestrated the collective discussion promoting the transition from personal meanings related to the 
task and the artifact into mathematical meanings. 

The task was carried out in the natural environment of the class, in a class of the 7th grade of 
elementary education (Portugal’s education system), with 29 students. The students were informed 
that they had to solve the empirical part of the task in pairs and make an individual report. After 
analyzing the individual productions of each student, a collective discussion was developed. 
The analysis of the data focused on the analysis of the audio recordings recorded, of the images of 
the graphic representations of the screens of the graphing calculator, of the reports written by the 
students and the field notes recorded in the logbook. The rules regarding the ethical issues involved 
in the entire data collection and treatment process were observed (Creswell, 2012). Regarding the 
activities with the artifact and individual production / small group of signs, it was analyzed how the 
students developed the semiotic potential of the artifact, graphing calculator, through the visualization 
tool and the dragging tool. The students promoted signs of artifact, through the development of usage 
schemes and instrumented action schemes, in the mobilized communication between peers, with the 
teacher and in the written reports. In what the collective production of signs - mathematical 
discussion, inherent to the collective discussion is concerned, the data analysis focused on the way 
the teacher promoted the transition from artifact signs into mathematical signs, according to the two 
pairs of complementary actions, fostering the construction of mathematical knowledge inherent to 
the didactic goal of the task (Mariotti & Maffia, 2018). 

The Task Presented to Students 
The goal of the task (Figure 2) was based on the distinction between inscribed angle and central angle 
in a circumference. And yet, in the recognition that the measure of the amplitude of an inscribed angle 
is half the measure of the amplitude of the central angle, which corresponds to it, in a circumference, 
having been asked for a mathematical model to suit the situation. 
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Figure 2. The task presented to the students 

According to the theoretical frameworks that supported the analysis of data in this study, in terms of 
semiotic mediation, the students were expected to:  
In question a), according to the calculator’s semiotic potential regarding the visualization tool and the 
dragging tool, the students were expected to mobilize the personal meaning of the angle concept and 
construct the mathematical meaning of inscribed angle and central angle in articulation with the 
Euclidean Geometry. 
In question b), the students were expected to bring out the personal meaning of the concept of 
measurement of the amplitude of an angle, which aims at encouraging the transition from the 
geometric meaning of an angle to the meaning of measurement of the amplitude of an angle. When 
faced with a numerical system, they were expected to establish a possible relationship between the 
numbers that would appear as a result of the measurement process, which would be automatically 
performed by the graphing calculator. The personal meaning of division would then emerge, and the 
students would operationalize this calculation to relate the measurement of the amplitude between 
the inscribed angle and the measurement of the amplitude of the central angle which corresponds to 
it. Through the semiotic potential of the graphing calculator, a dragging, optimized by a Dynamic 
Geometry System (DGS), when dragging the figure on the screen, students were expected to realize 
that all properties intrinsic to the construction procedures remain invariant, in other circumferences. 
In this sense, they were expected to conjecture that there is a relationship that applies to any 
circumference: “In any circumference, the measurement of the width of an inscribed angle is half the 
measurement of the amplitude of the central angle, which corresponds to it”. 
In question c), according to the function of displaying on the screen of the graphing calculator, the 
students were expected to bring out the personal meaning of graphical representation and symbolic 
representation of a linear function. In this sense, the students were expected to bring out the personal 
meaning of a linear function of the property conjectured in question b), and were expected to take 
into account the relationship of dependency between the variables, that is, the abscissa (independent 
variable) and the ordinate (dependent variable) at each coordinate of the points represented on the 
Cartesian. And so the students were expected to conclude that the mathematical model that fits this 
situation is f (x) = 1

2
 x or  f (x) = 2x. 

ANALYSIS OF RESULTS 
Regarding question a), students developed usage schemes when they opened Page 1.1 on the graphing 
calculator and when building the circumference, they resorted to the Geometry app. They clicked: 
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menu - shapes - circumference. To place points A, B and C, they clicked menu - points and lines - 
point on an object and after, they clicked menu - actions - text. To build the ABC and AOC angles, 
they clicked menu - points and lines - semi-straight. 

Later artifact signs emerged through the development of instrumented action schemes evidenced by 
the visualization tool, by mobilizing the personal meaning of the angle concept. Then, there were 
instrumented action schemes evidenced by the dragging tool where the students checked their 
conjectures on other circumferences and proceeded to construct the “definition” of central angle and 
angle inscribed on a circumference. 

However, it was only in the collective discussion that students correctly constructed this definition. 
José pointed out the personal sign “cut” and the teacher, through a focalization action, made the 
transition to the mathematical signs, “intersect” and “secant”. 

Teacher: Very well! What about the sides of those angles? What can you conclude? 

José: They always “cut” the circumference in two points. One is the vertex, and the other 
point also belongs to the circumference. 

     Teacher:          (…) What does it mean to cut? I do not know, what is it? 
     José:                Oh, teacher! It means that it “Intersects” the circumference in two points. 
     Teacher:          Ah! OK! Now I understand! And what does it mean to intersect the  
                             circumference in two points? 
     José:                Is it secant to the circumference!? 
In view of the students’statements, the teacher requested a synthesis, and Berta made the following 
intervention: 

Berta:              So teacher: “In the inscribed angle ABC, the vertex B is over the circumference and 
the sides of the angle are secant to the circumference. At the central angle AOC, the 
vertex O is the center of the circumference, and the sides of the angle are secant to 
the circumference”. 

With the teacher’s insistent orchestration, Berta realized that each side of the central angle is 
constituted by a semi-straight line originating in the center of the circumference, whose extension 
intersects it at a single point. 

In question b) it was intended that students related the measurement of the amplitude of an inscribed 
angle ABC and the measurement of the amplitude of the central angle AOC, which corresponded to 
it. Still on Page 1.1 of Geometry app, students developed signs of the artifact. They evidenced 
instrumented action schemes when they brought out the personal meaning of the concept of 
measuring the amplitude of an angle, with the goal of making the transition from the geometric 
meaning of angle to the meaning of measurement of the angle amplitude. They developed usage 
schemes by clicking on menu - measurement - angle to measure the amplitude of the inscribed angle 
ABC and the central angle AOC, to be able to define the variables o and b. Subsequently, they 
developed usage schemes inherent to the definition of variable b, for the amplitude of the inscribed 
angle ABC and variable o, for the amplitude of the central angle AOC. In this sense, they pointed the 
cursor to the value of the measurement of the angle amplitude and clicked on var - save var and 
wrote b and / or o, respectively, and then clicked on enter. Subsequently, the students were faced 
with a numerical system resulting from the measurement of the angles’amplitudes, which was done 
automatically by the calculator. Then, they developed instrumented action schemes based on the 
personal meaning of the concept of the division operation between 2 variables, o and b or b and o, in 
order to relate the measurement of the amplitude between the inscribed angle and the measurement 
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of the amplitude of the central angle which corresponds to it. In order to operationalize these schemes, 
they used usage schemes to calculate 𝒃𝒃

𝒐𝒐
  and / or  𝒐𝒐

𝒃𝒃
  . They clicked on menu - actions - text and wrote 

𝒃𝒃
𝒐𝒐
 or  𝒐𝒐

𝒃𝒃
 and then clicked on menu - actions - calculate. Finally, they developed instrumented action 

schemes, based on the dragging tool, when changing the dimensions of the circumference or moving 
the points A and C, belonging to the sides of the angles and concluded that the 𝒃𝒃

𝒐𝒐
 and 𝒐𝒐

𝒃𝒃
 relationships 

applied to any circumference and remained constant (Figure 3). 

 
Figure 3. Resolution on the graphing calculator (use of the dragging tool) of item b) of the task, by 

Pedro 
Mathematics signs appeared when the students found that the measurement of the amplitude of an 
inscribed angle ABC is half the measurement of the amplitude of the central angle AOC, which 
corresponds to it. (Figure 4). 

 

 

 

 

Figure 4. Pedro’s handwritten resolution for question b) of the task 

In question c), the students followed the suggestions of the statement and developed usage schemes 
inherent to the manipulation of the graphing calculator. They built Page 1.2 - Lists and Spreadsheets 
app and captured the values of variables o and b, designated by ango and angb, respectively (Figure 
5). To build Page 2, they clicked ctrl - + page - Lists and Spreadsheets. To make a data capture in 
relation to the values of variables b and o, they clicked menu - data - data capture - automatic. 
Subsequently, students developed usage schemes when they built Page 1.3 - Data and Statistics app 
(Figure 6) and defined variables b and o as independent or dependent variables. In Maria’s, José’s 
and Pedro’s resolutions, artifact signs emerged through the development of instrumented action 
schemes. The students mobilized the personal meaning of the symbolic and graphical representations 
of a linear function and related question b) (Figure 4) with question c) and defined a linear model that 
adjusted to the situation. 

 
Figure 5. Resolution in the graphing calculator (data capture, in the Lists and Spreadsheet 

application), in paragraph c), by José 

[follows English translation of Pedro’s 
Portuguese handwriting: When we divide the 
AOC angle by two, the result will always be ABC 
angle; or if we multiply the ABC angle by two, 
we will obtain the AOC angle, even if we move 
the geometric figure.]  
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The students outlined the model: 𝑦𝑦 = 0,5 𝑥𝑥 (𝒃𝒃 = 𝟎𝟎,𝟓𝟓 𝒐𝒐)  and developed usage schemes, when they 
placed the cursor on the various points of the function and found that the value of the dependent 
(ordered) variable was always half the value of the independent variable value (Figure 6). 

 
Figure 6: Resolution on the graphing calculator, question c) of the task, by Maria, in the Data and 

Statistics application 

However, Berta randomly placed the variables. When a representation on the graphing calculator 
screen appeared, similar to the graphical representation, of the analytical expression of a linear 
function, the student developed the personal meaning of linear function. She established a relationship 
with the answer given in paragraph b) and defined the linear model. 𝑦𝑦 = 2𝑥𝑥 (𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 = 𝟐𝟐 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚) The 
student showed an absence of critical thinking. She did not realize that the placement she made of the 
variables or that the model that adapted to the situation would be 𝑦𝑦 = 0,5 𝑥𝑥 (𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 = 𝟎𝟎,𝟓𝟓 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚). 
The student did not verify the relationship that existed between the abscissa and the ordinate, in the 
respective points of the graph. She only interpreted the image that appeared on the graphical calculator 
screen without taking into account the relationship between the variables, which she had highlighted 
in question b). However, this ambiguity was clarified in the collective discussion, with the teacher’s 
orchestration through a focalization action. 

Teacher: Berta (…) taking into account the mathematical model that you defined, where are 
the independent and the dependent variables located? I mean, the variables b and o 
(…) ango and angb, respectively? 

Berta:              (…) What I did was y = 2x, because (…) the line passed through the origin of the 
reference, so it could only be a linear function (…) because in point b) I concluded 
that the measurement of the angle amplitude to the center is double the measure of 
the amplitude of the inscribed angle. I should have said that ango is the dependent 
variable and angb is the independent variable. But I know I was wrong! In the Data 
and Statistics application, my mistake was to have put the variables backwards and 
I didn’t notice that the value of the abscissa is always half the value of the ordinate, 
in this clear situation! 

CONCLUSION 
The analysis of the data showed that the students, when taking advantage of the graphing calculator, 
mobilized usage schemes and instrumented action schemes based on the visualization tool and 
dragging tool, promoting the development of the semiotic potential of the artifact, graphing 
calculator. The increase in the collective discussion with the teacher’s orchestration was decisive for 
the construction of the mathematical knowledge (mathematic signs). The graphing calculator artifact 
functioned as a semiotic mediation instrument where students validated the mathematical meanings 
of “central angle”, “inscribed angle”, “relation between the measurement of the amplitude of central 
angle and inscribed angle”, “representation graph of a linear function”, “dependent variable” and 
“independent variable”. According to the didactic goal of the task, the students showed ease in 
moving between the various representations: geometric, tabular, graphical and algebraic, having 
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promoted the connection between the domains of Geometry and Functions. The graphing calculator 
is not a tool used in elementary education in Portugal, but its DGS facilitated the formulation of 
conjectures and their verification.The students learned mathematics with an understanding of it.  
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DISCREPANCY BETWEEN THE ROLE OF PROOFS IN MATHEMATICS CLASSROOMS 
AND MATHEMATICS AS A SCIENCE 

Analyses of curricula and final secondary-school examinations in Germany have shown that the status 
of proofs in mathematics classrooms changed in the last decades enormously. Whereas in the 1970s 
and 1980s, proofs had a permanent place in curricula for school mathematics as well as in related 
examinations, they are only marginally addressed in classroom activities since the Standards for 
General Certificate of Secondary Education were developed in 2003. They disappeared during the 
2000s – except for a few exceptions – from classrooms completely (Brunner, 2014). However, proofs 
in mathematics as science are one of the most important instruments for gaining and verifying 
knowledge. Like Rav (1999, p. 6) said: “Proofs, I maintain, are the heart of mathematics, the royal 
road to creating analytic tools and catalysing growth.” Therefore, in order to show learners an 
authentic view of mathematics, proofs should play a crucial role in mathematics classrooms as a tool 
for gaining knowledge in mathematics. Proofs should be taught with a view to conviction, 
explanation, systematisation, discovery as well as communication (de Villiers, 1990). It follows that 
mathematics teachers in the future need to have first-hand experience with proofs and acquire didactic 
approaches to teaching them at school. Thus, proofs have to play an important role both in the 
technical and in the didactic training of mathematics teachers because they need to make experiences 
in finding and proving theorems to develop ideas for teaching proofs at school themselves. 

CAS-ASSISTED PROOFS IN UNIVERSITY-LEVEL MATHEMATICS 
Because the usage of computer algebra systems (CAS) is widely recommended in secondary school 
(it is mandatory in Thuringia), freshmen at university already have digital skills related to solving 
mathematics problems assisted by CAS. Resorted to their existing skills and knowledge related to 
digital technology, students can get access to high-level theorems and their proofs because, from a 
didactical point of view, both above-mentioned processes (finding and proving theorems) can be 
supported by using calculators with CAS. At the same time, students gain insight into the proving 
process and develop some didactical approach to assist the proving process by CAS in mathematical 
classrooms. In this way, the usage of CAS can bridge the gap between school mathematics and 
university-level mathematics in both directions. 

Calculators with CAS can effectively produce many examples of a mathematical situation, and hence, 
they can help students find theorems inductively. The analysis of the calculations can also suggest 
proving ideas for the assumed theorem. This process will be demonstrated below on a special property 
of Fermat numbers as an example, but the poster presented more examples affecting the number 
theory (divisibility of Fermat numbers, Fermat´s little theorem) and linear algebra (fundamental 
theorem of algebra, properties of the determinant). A usual topic in number theory at university is not 
just the definition, but are also various properties of Fermat numbers. Investigating their products 
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systematically—the calculation can be carried out by using CAS—, one can easily find the hypothesis, 
each Fermat number equals to the product of the previous Fermat numbers plus 2 (Figure 1).  

 

Figure 1. Comparison of the nth Fermat number with the product of the first n-1 Fermat numbers 

Especially because the hypothesis is obviously valid for the first few Fermat numbers, using 
mathematical induction is suggested. That can also be carried out by using CAS. After defining the 
values of the Fermat numbers (Fermat(x)) and their products (Produkt(x)) (Figure 2), it should be 
shown, that Produkt(x)+2 equals Fermat(x+1). Using the induction hypothesis that Produkt(x-1)+2 
equals Fermat(x), the factorising of Produkt(x)+2 leads actually to Fermat(x+1).  

 

Figure 2. Proof based on mathematical induction, the CAS carries out the induction step 

In general, one can conclude that CAS can assist in finding theorems by generating examples for 
certain mathematics situations at the university level. It can also assist in finding proving ideas in 
some of those situations. However, CAS has its limits if the corresponding idea is more complex and 
needs different strategies than exclusively algebraic transformations. 
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The Danish national curriculum, the so-called Common Goals, for mathematics in primary and lower 
secondary school is based on the Danish mathematics competencies framework (KOM), which 
describes eight different mathematical competencies. Two of these, the thinking competency and the 
reasoning competency, were merged together in the Common Goals. From a practice point of view, 
this is expected to have the consequence that the mathematical thinking competency may be addressed 
less explicitly as part of everyday mathematics teaching. In this paper, we present two empirical 
examples from a teaching experiment in 7th grade involving historical primary (so-called original) 
sources and a dynamic geometry environment (GeoGebra). The interplay between the original source 
and GeoGebra appeared to create a ‘space’ for activating and developing students’ mathematical 
thinking competency. 

Keywords: Dynamic geometry environments, mathematical reasoning competency, mathematical 
thinking competency, original sources. 

INTRODUCTION 
The Danish mathematics competencies framework, the so-called KOM-framework, saw the light of 
day some twenty years ago (Niss & Jensen, 2002) as part of a ministerial project. Since then, it has 
entered into the Danish mathematics programs at practically all levels from pre-school through 
tertiary programs involving mathematics. The KOM-framework defines eight distinct yet mutually 
related mathematical competencies. Two of these concern mathematical thinking and mathematical 
reasoning, respectively. Although these two competencies may be more closely related than other of 
the eight competencies, they are certainly not the same. While mathematical reasoning concerns the 
production and analyses of arguments, e.g. in the form of chains of statements, supporting a 
mathematical claim, mathematical thinking concerns the very types of questions and answers 
characteristic for mathematics, e.g. in the form of propositions, definitions, etc., also involving the 
scope of these. 

Nevertheless, as part of an attempt to make the KOM-framework’s competencies descriptions more 
digestible for practitioners, the 2014 revision of the national mathematics curriculum, the so-called 
Common Goals, for primary and lower secondary school, reduced the eight competencies to six 
(Børne- og Undervisningsministeriet, 2019). This was done by clogging competencies together. 
Hence, mathematical reasoning and mathematical thinking became one competency. Although the 
official arguments related to this ‘merger’ of the two competencies were related to elements of 
simplicity and implementability, it is not far fetched to argue that the embedment of the thinking 
competency into the reasoning competency may have had the effect that teachers in practice can 
‘cover’ this competency by now focusing on reasoning alone [1]. 

Acknowledging that the competency of mathematical thinking may be a hard nut to crack as part of 
one’s everyday teaching practice, we offer two empirical examples from a 7th-grade class to illustrate 
how elements of mathematical thinking may be put on the agenda in a setting of reading primary 
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historical texts by past mathematicians, so-called original sources, in combination with the use of a 
dynamic geometry environment. The two empirical examples stem from the first author’s PhD project, 
which, at its outset, is concerned with developing students’ mathematical reasoning competency 
through students’ work with the content of original sources in GeoGebra. Yet, when analysing data 
from this project, it became evident that in some situations, mathematical thinking competency 
became a necessity for mathematical reasoning due to the content of the original sources and the 
context of GeoGebra. It is not a new finding that historical original sources can play a central role in 
students’ learning of mathematics (e.g., Fauvel & van Maanen, 2000; Clark et al., 2018), nor is the 
fact that students’ work with original sources can do so by contributing to the development of their 
mathematical competencies (Clark, 2015; Jankvist & Kjeldsen, 2011). Some studies also show the 
promising potential of the combination of students’ work with original sources and the use of digital 
technologies (e.g., Chorlay, 2015; Jankvist et al., 2019; Thomsen & Olsen, 2019). The contribution 
of this paper is to exemplify the fostering of mathematical thinking among elementary school 
students, by having them work with Euclid’s postulates and letting them convince each other through 
geometrical arguments while working with GeoGebra. 

THE DANISH COMPETENCY FRAMEWORK 
As mentioned, the KOM-framework (Niss & Højgaard, 2019) identifies and defines eight 
mathematical competencies. Besides the thinking and reasoning competencies, these are the 
mathematical competencies of: problem handling; modelling; representation; symbols and 
formalism; communication; and aids and tools. A mathematical competency is defined as “someone’s 
insightful readiness to act appropriately in response to a specific sort of mathematical challenge in 
given situations” (Niss & Højgaard, 2019, p. 14). Each competency has both a ‘receptive facet’, where 
one, for example, “may think of following and assessing an alleged mathematical proof” and a 
‘constructive facet’, where “the focus is on the individual’s ability to independently invoke and 
activate the competency to put it to use for constructive purposes in given contexts and situations” 
(p. 19).  
As already mentioned, we are, of course, particularly interested in the competencies of mathematical 
thinking and reasoning. The mathematical thinking competency concerns being able to pose and relate 
various kinds of questions characteristic of mathematics as a discipline, as well as the nature of the 
answers expected to these questions. This also involves the varying scope of mathematical concepts 
and terms within different contexts. It involves “distinguishing between different types and roles of 
mathematical statements (including definitions, if-then claims, universal claims, existence claims, 
statements concerning singular cases, and conjectures), and navigating with regard to the role of 
logical connectives and quantifiers in such statements, be they propositions or predicates” (p. 15). 
Finally, it is also related to the work of proposing abstractions of mathematical concepts, terms, and 
theories as well as to the generalisation of mathematical claims, theorems, etc. The mathematical 
reasoning competency concerns the analysis and production of arguments—that is, “chains of 
statements linked by interferences”—written as well as oral, to justify mathematical claims. “The 
competency deals with a wide spectrum of forms of justification, ranging from reviewing or providing 
examples (or counter-examples) over heuristics and local deduction to rigorous proof based on logical 
deduction from certain axioms” (p. 16). Niss and Højgaard (2019) describe wherein the reasoning 
competency differs from that of thinking: 

In contradistinction to what is the case with the mathematical thinking competency, the reasoning 
competency deals with the ability to analyse and carry out specific reasoning meant to provide 
justification for mathematical claims. Whilst such reasoning does indeed make intensive use of 
logic it goes far beyond logic by also implicating mathematical substance. It is important to stress 
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that the kinds of claims at issue in this competency are not confined to “theorems” or “formulae” 
but comprise all sorts of conclusions obtained by mathematical methods and inferences, including 
solutions to problems. (p. 16) 

There is, of course, a relationship between the competencies and mathematical subject matter areas. 
Yet, it is up to the individual teacher, or task designer, to combine a competency (or several 
competencies) with a subject matter area (or several areas): “competencies and subject matter areas 
constitute two independent but interacting dimensions of mastery of mathematics. In the same way, 
as the competencies cannot be derived from subject matter areas, these cannot be derived from the 
competencies” (p. 22). The subject area of the following empirical examples is that of Euclidean 
geometry. 

THE EDUCATIONAL SETTING OF AND THE DESIGN BEHIND THE EXAMPLES 
Following the KOM framework’s matrix structure of combining mathematical competencies with 
mathematical subject areas, the Danish Common Goals mathematics curriculum combine its (reduced 
number of) six competencies with three subject matter areas: Numbers and algebra; Geometry and 
measurement; and Statistic and probability. The examples we present, analyse and discuss in the 
following stem from a teaching experiment designed to take place in the matrix cell of: (mathematical 
thinking and reasoning) × (geometry and measurement). They stem from the first quarter of the school 
year in a 7th-grade Danish mathematics classroom consisting of a teacher and 22 students. The 
teaching experiment was a combination of students working in pairs with computers, paper and pencil 
as well as individual work and classroom discussions led by the teacher. The data collection consisted 
of students’ screencast, their written answers to the assignments and video recordings of the 
classroom. From the data collected during the teaching experiment, we have identified two examples, 
which we analyse from the perspectives of the mathematical thinking and reasoning competencies. 
These examples concern students’ work with Euclid’s second postulate from Book I and Proposition 
6 from Book IV: To inscribe a square in a given circle. 

FIRST EMPIRICAL EXAMPLE: EUCLID’S SECOND POSTULATE  
The first example concerns the classroom discussion, which built upon the students’ work with 
understanding and explaining the five Postulates from Book I. Prior to this discussion, the students 
had used GeoGebra to visually support their explanations and understanding of each of the five 
postulates. The case concern the discussion about Postulate 2: Any straight line segment can be 
extended indefinitely in a straight line. In the discussion, the teacher used GeoGebra on the classroom 
screen:  

Student 1:  [The student reads Postulate 2 aloud] Any straight line segment can be extended 
indefinitely in a straight line.  

Teacher:  What does that mean? 

Student 1:  [Pointing to the line drawn in GeoGebra, while they were talking about Postulate 
1] If you have a line, as the one at the bottom, then you can extend it as far as you 
want to.  

Teacher:  So, you can make it as long as you want to. How do you do that? 

Student 1:  Yes, just straight ahead...  

Teacher:  What means straight ahead? 

Student 1:  Indefinitely.  
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Teacher:  So, if I should try and show it up here. How could I do it then? 

Student 1:  You can just drag in one of the points.  

Teacher:  Drag in one of the points. [Does it until it reaches the end of the screen.] Now we 
cannot go further here. However, I could zoom in—or rather zoom out. [Zooms out 
at the screen and drags the line further out.] So, you claim that you can drag into 
infinity?  

Student 1:  Ehm… 

Teacher:  Does someone disagree with that?  

Student 2:  It might be, for example, that the paper stops at some point. 

Teacher:  Yes, so we can say that there are some physical limitations. Can we call that 
theoretical?  

Student 2:  Yes, you can. 

Student 3:  Actually, the program also stops at some time. We cannot keep doing it inside the 
program either.  

Teacher:  That is correct... I cannot remember; were you the ones who tried to zoom out? 

Student 3:  Yes, that was us […] 

Teacher:  So, at one time, the program cannot zoom out any longer. You can say that the 
program’s ‘paper’ ends. 

The students’ work with this task can be characterised as supporting their activation and development 
of the mathematical thinking competency. This competency, in particular, since they discuss if it is 
possible to extend a straight line into infinity or not, while at the same time touching upon the 
limitations of different tools (paper and GeoGebra) as opposed to what is going on ‘in theory’.  
They did not go further into the discussion of infinity as a concept, but this was not the aim of the 
task either. The aim was to put the students in situations where they, on the one hand, had the 
possibility to reach an (initial) understanding of the role of Euclid’s postulates within Euclidian 
geometry, which they could use later in their work with reasoning and proving. On the other hand, 
the aim was to make them familiar with working with an original source in interplay with GeoGebra. 
More precisely, they were to use GeoGebra to explore the content of the postulates,  and hence 
enhance their understanding of this. In the example above, it is, of course, GeoGebra’s dragging 
functionality that comes into play. The idea behind the design of the teaching experiment was that 
this activation of the mathematical thinking competency would provide the students with a better 
foundation for their future work with both the ‘receptive facet’ and the ‘constructive facet’ of the 
reasoning competency.  

SECOND EMPIRICAL EXAMPLE: EUCLID’S PROPOSITION 6 FROM BOOK IV 
The second example stems from a situation involving parts of Euclid’s 
Proposition 6, Book IV (Figure 1). In pairs, the students had constructed an 
inscribed square in a given circle in GeoGebra. Next, they were to describe, in 
their own words, how Euclid proved base AB equal to base AD, and, following 
the same line of thought, BC equals to CD [3]. The students also used 
GeoGebra to find and formulate arguments, which convinced them of 
AB being equal to AD. The task was that the students had to find 

Figure 1: Illustration for 
Proposition 6, Book IV 

(Eibe, 1897b, p. 73). 
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arguments for why AB is equal to AD, and then why BC and CD also are equal and equal to AB and 
AD. The students did not necessarily have to use Euclid’s proof of the proposition. They could, if 
they wanted to (and understood it). Rather, the aim of the task was to see how the students would 
handle reasoning and proving in the setting of GeoGebra. We present a downstroke in the work where 
students 4 and 5 provide their reflections supported by a progression of figures they constructed in 
GeoGebra (see Figure 2).  

Picture 1 Picture 2 Picture 3 Picture 4 Picture 5 

     

Figure 2: GeoGebra screen captures 

Picture 1 in Figure 2 is a screenshot from when the students began their discussion. Student 4 begins 
by reading the task: “So, baseline AB equal to baseline AD”. They then base their arguments on it 
being a square, so that baseline AB has to be equal to baseline AD, arguing that if the baselines were 
not equal, then it would not be a square but a rectangle. Next, they continue to BC and CD being 
equal to AB and AD. 

Student 4:  See, for instance, this line segment, which goes directly through [the diagonal]. You 
can see that they are equal at both sides. Otherwise, it would still not be an 
equilateral square.  

Student 5 asked how you could see this and they have a few exchanges on this. Student 4 then added 
the figure in picture 2 of Figure 2. 

Student 5:  Why is this a rectangle? 

Student 4:  Because the sides are not equal. 

Student 5:  Why did this [the figure] come into our conversation? 

Student 4:  Because we said that this one… If it was like this. [Begins to draw picture 3 of line 
segments put together]. […] 

They continue discussing. Student 4 mainly argues by referring to the length of the sides in the figure, 
and whether one can see if they are or are not alike. Student 5 keeps asking how it is possible to be 
convinced, if one does not ‘see’ it. Student 5 suggests that they can measure the sides and find the 
‘measure-button’ in GeoGebra and begins to measure the lengths of the different sides (picture 4 in 
Figure 2). 

Student 5:  This is not true. [Laughs friendly.] 

Student 4:  Arhh. It is actually really close. These two are equal. [Points at RQ and RO. Picture 
4, the new figure based on picture 3.] 

Student 5:  You see? You thought it was a square. How can you be sure then that the one you 
have constructed in the circle is, in fact, a square? You thought that the one you just 
measured was a square. 
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Student 4:  See. [Measures the line segments in the circle in the lower right corner of picture 
4.]  

Student 5:   But what if you can not be sure without measuring? How can you then know for 
sure? 

Actually, the two students did not come closer to a conclusion. We interpret this example as focusing 
on the reasoning competency even though the students ended up discussing and arguing around the 
concepts of a square and a rectangle. Student 4 reasons by referring to previous knowledge about 
different types of squares and about the diagonal dividing a square into two equal triangles, although 
‘triangle’ is not mentioned explicitly, and Student 4 does this by using GeoGebra both as a tool to 
draw and as a tool to measure length.  
Student 4 also use different examples of squares to build “chains of statements linked by inferences” 
by saying and showing that if this is not the case, then it would be like this. This, of course, is not a 
chain of statements that goes deeper into an actual proof. Yet, it is a chain of similar types of 
statements, and thereby similar types of inferences. Student 5 activates the reasoning competency by 
asking: “How can you be sure then that the one you have constructed in the circle is, in fact, a square? 
You thought that the one you just measured was a square.” This question opens possibilities for 
Student 4 to bring the circle into play, i.e. to unfold and deepen the chain of statements related hereto—
even though this did not actually happen. Instead, they ended up using the measuring tool in 
GeoGebra as a way to attempt to justify and prove [4] that the square had equal lengths of the 
baselines. Hence, the students did not formulate a strictly deductive proof, nor did they refer to 
Euclid’s proof in Proposition 6, Book IV, connecting that baseline AB is equal to baseline AD. 

DISCUSSION 
In the excerpt of the classroom discussion in example 1, there is no direct evidence of an activation 
and development of the students’ reasoning competency. Rather we witness prerequisites for future 
reasoning by becoming acquainted with and understanding Euclid’s postulates, i.e. elements that are 
more closely connected to mathematical thinking and deductive proving. Even though we cannot 
directly deduce that the students in the second example draw on knowledge from the first example, 
Student 4 might draw on this by building up arguments as chains of statements. More precisely, by 
constructing the new squares and reasoning about what would have been the case, if it was not a 
square. We also see how Student 5’s questions support Student 4’s reasoning and argumentation. In 
other words, this questioning can be seen as a product of Student 5’s ability to use the receptive facet 
of the reasoning competency, and thereby support Student 4 to activate the reasoning comptency’s 
productive facet.  
Activation of the thinking competency is a major part of the classroom discussion in example 1. In 
particular, we see this when: 1) the teacher caused Student 1’s explanation and claim that line can be 
dragged into infinity; 2) Student 2 brings the argument into the discussion that it might not be the 
case, because the paper stops at some point; and 3) Student 3 states that GeoGebra also will stop at 
some point. In example 2, one might say that Student 4’s arguments on several occasions balanced 
on the edge between the thinking competency and the reasoning competency. This happens when 
Student 4 continuingly is circling around the definition of a square as being the main argument, yet 
finds it difficult to go deeper into this. When Student 5 asks: “Why did this [the figure] come into our 
conversation?” Student 5 is actually questioning the way Student 4 builds up the argumentation. 
Recall that the teacher in example 1 actually draws attention to the difference between ‘in theory’ and 
‘in reality’ when discussing the extension of the line into infinity, where reality also is closely 
connected to the use of tools. This may be seen as one of the reasons that Student 5 keeps asking how 
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Student 4 can actually be sure. Both students of example 2 appear to have an awareness that what 
they are doing cannot be characterised as general proof when they end up measuring in GeoGebra. 
Hence, the receptive facet of the reasoning competency is in play, although the productive facet of 
the competency falls short.  

CONCLUSION 
In our analysis, it appears that the activation of the students’ thinking competency acts as a foundation 
for them to put on a certain kind of ‘spectacles’ through which to interpret and analyse a given 
mathematical claim or statement. In this case, the spectacles concern the Euclidian geometry of both 
the Elements and GeoGebra, while working with justifying why the baselines in an inscribed square 
in a given circle has equal lengths. This also seems to support the students in developing an awareness 
of the types of reasoning, argumentation and proving—even though they did not fully succeed in 
carrying out a deductive proof. This conclusion, of course, draws on the full dataset from the teaching 
experiment, not only the two examples presented in this paper. Still, the two examples presented here 
made us realise the potential of the designed activities in relation to bringing students’ mathematical 
thinking competency into play. This in particular in relation to how the students’ mathematical 
thinking competency come to support the activation and development of their mathematical reasoning 
competency. From a strictly mathematical point of view, it may not be so surprising that mathematical 
proofs, i.e. reasoning, must rest on an understanding of the nature of mathematical axioms and 
definitions, i.e. mathematical thinking. Still, axioms and definitions, or even theorems and proofs, are 
not usually on the agenda in Danish lower secondary school. Yet, the work with Euclid’s Elements 
put this on the agenda, while the use of GeoGebra provided the students with a familiar and natural 
setting for addressing the mathematical content of postulates and propositions in play. This is to say, 
the interplay between the original source, in this case, the Elements, and the dynamic geometry 
environment, in this case, GeoGebra, provided a possibility for the mathematical thinking 
competency to unfold. Still, this interplay between original sources and digital tools is not sufficient 
in itself; it requires didactical attention of both teachers and task designers. Nevertheless, the interplay 
between the history of mathematics and modern-day digital technology offers a fruitful opportunity 
for nourishing students’ mathematical thinking—and in the process, perhaps make the notion of the 
mathematical thinking competency more ‘accessible’ to practitioners.  

NOTES 

1. The other two competencies, which were clogged into one, were the representation competency and the symbols and 
formalism competency. To some extent, this makes sense since symbols also are mathematical representations, yet the 
formalism aspect of this competency has probably suffered a similar fate to that of the thinking competency. 

2. Students worked with Eibe’s (1897a; 1897b) Danish translation of Euclid’s Elements. 

3. Working with one of Euclid’s propositions in this way is inspired by Olsen and Thomsen (2017). 

4. It is well described in the literature that such use of dynamic geometry environments’ functionalities, e.g. measuring 
and dragging, may cause the students to ‘jump to conclusions’ at the expense of more formal, deductive reasoning and 
proving (e.g. Mariotti, 2006; Mason, 1991). 
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AN EXAMINATION OF PRESERVICE MATHEMATICS TEACHERS’ 
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The world’s first Online Laboratory School (OLS) under the roof of a university was founded during 
COVID-19 pandemic. The OLS provided high-quality free mathematics courses to hundreds of low 
socioeconomic status (SES) students and internship opportunities for preservice teachers (PSTs). In 
this study, we present the structure of OLS and experiences of 43 PSTs (first, third and fourth year) 
who participated during Fall 2020. Third and fourth-year PSTs planned and taught middle school 
mathematics lessons under the guidance of supervisors for eight weeks, while first-year PSTs 
conducted observations. We administered a survey including some open-ended questions to inquire 
PSTs’ views on their experience at the OLS. PSTs gave specific examples related to their professional 
development, and we were able to track those instances from video recorded teaching sessions. We 
found that this experience was an effective introduction to the profession for first-year PSTs and all 
others who learned about online mathematics teaching.  

Keywords: Internship, online laboratory school, preservice teachers, teaching experience. 

INTRODUCTION 
It is widely acknowledged that teachers should develop competencies in order to meet ever changing 
needs of students in the 21st century. As teachers are recommended to practice student-centered 
approaches (National Council of Teachers of Mathematics, 2014), teacher education programs must 
also adjust their programs to meet the needs of preservice teachers (PSTs). In order to support PSTs 
in student-centered practices, it is recommended that teacher education programs should provide 
opportunities to integrate theoretical and practical knowledge for PSTs (Grossman et al., 2009). 
Internship is considered as a fundamental aspect of teacher education in order to bridge the gap 
between theory and practice, and where teacher candidates have the opportunity to be in the real 
world of the classroom (Flores, 2016). In line with the research recommendations, the researchers 
implement a teacher education model with rich internship experiences. Within the scope of the 
University within School Model (Özcan, 2013), teacher candidates are required to complete 1400-
2000 hours of face-to-face internship experience with frequent opportunities for observation, 
reflection and feedback cycles. These experiences are intended to help PSTs to step into the teaching 
profession more easily. With the global spread of the COVID-19 pandemic, the Turkish Higher 
Education Council (2020) made a decision to interrupt practicum and internships in March 2020. 
There were several approaches both in Turkey and globally to address internship problems for PSTs 
who were approaching graduation and to maintain the quality of teacher education (Ersin et al., 2020; 
Vu & Fisher, 2021). For instance, in some cases, PSTs viewed videos of teaching and provided 
reflections (Vu & Fisher, 2021); others implemented microteaching practices where PSTs taught 
lesson plans for their peers (Ersin et al., 2020). During the COVID-19 pandemic, it was obvious that 
the quality of internship practices and lack of cooperation between school mentors and teacher 
educators became problematic (Özüdoğru, 2020).  

In order to solve this problem and to provide teacher candidates with “teaching” experience during 
the pandemic period, we founded an Online Laboratory School (OLS) under the roof of a university 
in Turkey. Similar to Laboratory Schools (Mayhew & Edwards, 2007), OLS is founded and directed 
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by the Faculty of Education, where teacher educators and experienced teachers collaborate as 
supervisors in order to guide PSTs’ practices. OLS provides teaching practice opportunities for PSTs 
who are expected to act as reflective practitioners (Schön, 1987) and work in collaboration with peers 
and supervisors in the implementation of new models of teaching. OLS is a virtual school where the 
teacher candidates’ pedagogical and practical knowledge are supported, and classroom management 
skills are strengthened as they work with real middle school students in simultaneous and interactive 
teaching. In order to support PSTs’ professional development in their online teaching competencies, 
there is a need to investigate PSTs’ experiences and how they view such experiences. In this way, the 
programs can be improved according to the experiences and perspectives of PSTs.  

Situated Learning and Technological Pedagogical Content Knowledge 
Internship practices in the context of the University within School model (Özcan, 2013) and the OLS 
experiences, in particular, are designed by considering situated learning perspectives (McLellan, 
1996). Similar to the realistic teacher education perspective (Korthagen, 2010), teacher candidates 
learn the profession of teaching not by thinking of teaching but by actively engaging in core practices 
of teaching in a gradual way and by reflection on such practices. PSTs need to interact with authentic 
contexts and real students in an online mathematics class and experience virtual teaching as a member 
of a group with similar goals and values in order to grow professionally in virtual teaching of 
mathematics (Kennedy & Archambault, 2012). In the context of OLS, PSTs share increasing 
responsibilities of conducting observations, engaging in planning and reflection meetings, acting as 
a teaching assistant, and as a teacher according to their cohort. In this way, different cohorts of PSTs 
(first, third or fourth year) have the opportunity not only to observe but also to participate, collaborate 
and reflect on some of the core practices of teaching, including planning lessons, preparing 
assessments, using interactive software to enhance student participation and teaching meaningful 
mathematics by considering student thinking in a synchronous way.  

The realistic approach to teacher education (Korthagen, 2010) puts emphasis on interactions between 
teacher educators and PSTs as well as interactions among PSTs. It is also important that PSTs engage 
in systematic reflection practices as a group of learners. OLS provided a context for building an online 
learning community (McLellan, 1996) and fostering reflection during the core practices of teaching 
as it was easier to plan, observe, teach and reflect as a group of learners as a result of a virtual context 
without limitations of transportation and place.  

An important goal in teacher education, particularly in today’s world, is to develop PSTs’ 
technological pedagogical content knowledge (TPACK). Competent teaching with technology 
requires much more than knowing how to use technological tools (Mishra & Koehler, 2006). TPACK 
refers to the knowledge needed for teaching with technology which  

requires an understanding of the representation of concepts using technologies; pedagogical 
techniques that use technologies in constructive ways to teach content; knowledge of what 
makes concepts difficult or easy to learn and how technology can help redress some of the 
problems that students face; knowledge of students’ prior knowledge and theories of 
epistemology; and knowledge of how technologies can be used to build on existing knowledge 
and to develop new epistemologies or strengthen old ones (Mishra & Koehler, 2006, p. 1029).  

While engaging in collaborative virtual teaching activities has been found to support teacher 
candidates’  technological pedagogical content knowledge (TPACK) (Grandgenett, 2014), there is 
still much to learn about how to prepare PSTs for online teaching. In order to support PSTs in 
developing TPACK, researchers and teacher educators need to investigate the effectiveness of 
different types of experiences provided during teacher education and how PSTs perceive such 
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experiences (Lantz-Andersson et al., 2018). While this study did not investigate PSTs’ TPACK, their 
answers to the survey questions together with the OLS teaching experience example demonstrate how 
PSTs’ TPACK and beliefs about their knowledge and competency as virtual teachers may have been 
supported by the OLS experiences. Based on the gap in the literature and considering situated learning 
perspectives and online learning communities, the specific research questions guiding the study are 
the following: 

How do PSTs view their experiences of internship in the OLS in terms of professional development? 

How do PSTs’ views of and experiences in the OLS change based on the cohort they belong to (i.e., 
first, third, and fourth-year PSTs)?  

METHODS 

Context and Participants 
During Spring 2020, we conducted a pilot project of the OLS for five weeks. Realizing its success in 
providing teacher candidates opportunities to engage in high-quality virtual mathematics teaching 
experiences, the OLS is continued for the 2020–2021 academic year. For the Fall 2020 semester, the 
OLS admitted 232 children (4th, 5th, and 6th-grade students) from all over Turkey, and seven university 
supervisors and 43 PSTs participated in this school for a duration of 8 weeks (see Table 1 for the 
curriculum in the OLS for 5th grade as an example, the first week was orientation). University 
supervisors and PSTs decided on the mathematics topics together before OLS began. The PSTs were 
from different years (first, third, and fourth year), and they did different tasks (first years only obliged 
to observe classes whereas third and fourth years had to do lesson plans and teach middle school 
mathematics lessons).  

Grade 05.11.20 12.11.20 19.11.20 26.11.20 03.12.20 10.12.20 17.12.20 

5th  Numbers 
and 
operations 

Operations 
with whole 
numbers  

Operations 
with whole 
numbers  

Operations 
with whole 
numbers  

Fractions  Fractions  Fractions  

Table 1. The mathematics curriculum of eight-week OLS 

There were 15 virtual mathematics classes with 10-15 children in each class. These classes were held 
as an extracurricular activity outside of the children’s formal mathematics class hours. In the OLS, 
we used Blackboard (BB) Collaborate as a platform where supervisors could support PSTs during 
PSTs’ online teaching using a moderator chatbox communication tool not seen by children. This tool 
was also helpful for giving feedback to the children. Planning meetings, each took about 1.5 hours, 
started four weeks ahead of the teaching schedule. All PSTs joined these planning sessions and took 
the responsibility of planning the lessons under the close guidance of two supervisors. Later all fourth 
and most of the third year PSTs taught their lessons, and first-year students observed and assisted the 
lesson implementations. Following the observed lesson, a short reflection meeting took place with 
the PST, teaching assistants and a supervisor. Every week, a general meeting was also held for all 
PSTs and supervisors to discuss the implemented lessons in each class and grade level. All of the 
meetings and classroom sessions were video recorded. 

Data Collection and Analysis 
At the end of the OLS in Fall 2020, we designed and administrated surveys for all stakeholders: 
children, parents, PSTs and university supervisors to understand their experiences related to OLS. 
There were 43 PSTs, including ten fourth-year, 13 third-year, and 20 first-year PSTs participated in 
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OLS. In this study, we report the survey results of 33 of them who filled the survey (Seven fourth-
year, 12 third-year, and 14 first-year). The survey had 15 items, about a third of which were Likert 
type. 

For this study, we focused on the answers to the survey questions given below, which aligned most 
with our research questions, understanding PSTs views and experiences related to OLS. Also, we 
were able to track those instances from their video-recorded teaching sessions. Two of us did a content 
analysis (Cohen et al., 2007) and created themes related to PSTs’ answers to the open-ended 
questions.  

The four survey questions used in the evaluation of PST’s OLS experience are as follows: a) In what 
ways did you improve professionally in your OLS experience?  b) Provide at least one detailed 
example that helped you improve during the OLS experience. c) How was your OLS experience 
different from your traditional/regular internship experience at public or private schools? d) How do 
you think OLS can play a role in PST education? What would you recommend for the future?  

RESULTS 
In this section, we report the results of the survey especially focusing on these four questions. The 
views of the students are supported by experiences from the OLS. For Question a) asking the ways 
that PSTs improved the most professionally, technology use (f = 26; 79%) and online teaching 
methods (f = 27; 82%) were the two areas that PSTs think they improved themselves the most through 
this experience (see Figure 1). 

 

Figure 1. The result of PSTs’ answers to a survey question (33 PSTs) 

OLS Learning Experiences  
For question b) asking PSTs to provide one example that helped them improve during the OLS 
experience,  fourth-year PSTs mostly gave examples related to how they improved in anticipating 
and managing children’s different approaches to problems in class as well as using that information 
in planning lessons in order to build on children’s thinking. As an example, one PST wrote in the 
open-ended item of the survey: 

For example, I learned a lot when I planned a lesson related to how to calculate a fractional part 
of a quantity.  It was difficult for me to be prepared for children’s possible incorrect solutions. But 
when I created a plan where I thought through this situation, I realized that my teaching went well. 
I used problems where they calculated unit fractional parts of quantities, and it went as I planned. 
So I think I improved in teaching fractions (Teacher RK). 

On the other hand, third-year PSTs mentioned more general aspects of their learning. For instance, 
they experienced how to communicate with students or manage a classroom that was usually 
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accessible to them in theory before OLS. Similarly, first-year PSTs gave general comments, but the 
foci were how their perceptions related to teaching or teaching profession  changed, such as how to 
communicate with students, how to manage students and how to create lesson plans using technology. 

Differences between OLS and Traditional Internship 
For Question c) asking how PSTs’ OLS experience was different than their traditional internship, 
generally both fourth and third year PSTs stated that OLS provided them opportunities to be more 
active such as when preparing lesson plans and being responsible as a classroom teacher compared 
to their experience at traditional internship schools. For example, one PST wrote in the open-ended 
item of the survey: 

The biggest difference is that in the traditional internship (face-to-face) you are an assistant teacher 
or candidate teacher, and you are bound to the mentor teacher. However, you are a teacher in the 
OLS. And we, as preservice teachers, have the right to make the decisions. We discuss everything 
from planning to the teaching, and we design them. While we taught once in the face-to-face 
internship in the whole semester, I taught every week in the OLS, and I was the teacher. 

Furthermore, 79% of PSTs mentioned that OLS provided them opportunities for using more 
technological tools than their regular internship experience. Similarly, some fourth, third, and first-
year PSTs responded that OLS was helpful for either receiving feedback from their supervisors during 
the class or having an opportunity to discuss their observations after the class in a more regular setting, 
in comparison to their traditional internship experience. For example, one PST wrote in the open-
ended item of the survey:  

It was very different in many aspects. For example, the most important one was that I was able to 
get feedback (via moderator chat boxes) while I was teaching on the spot. By this way, I think the 
lessons were more effective. This was the most positive and enhancing aspect of the OLS setting. 

Considering Future Role of OLS on PST Learning 
Finally, for Question d) asking how OLS can play a role in PST education, most PSTs explained that 
OLS could provide PSTs opportunities to have online teaching experience and to feel like a real 
classroom teacher, and online internship should be embedded in the 4-year program even after 
COVID-19. The remaining fourth-year PSTs reported that OLS would be helpful in terms of getting 
feedback from supervisors about PSTs’ teaching performance or evaluating their own teaching 
performance by watching their teaching videos. The remaining third and first-year PSTs explained 
that OLS could help PSTs learn how to integrate technology into their classes and support PSTs’ 
lesson planning process, such as how to create and revise lesson plans. For example, one PST wrote, 
“It helps raising a new generation of teachers who knows how to use technology (for teaching).”  

Technology use and Online Teaching Experience in OLS 
Based on the analysis of the four survey questions mentioned above and a review of the other 
questions in the survey, we noticed that PSTs placed high emphasis on technology use and online 
teaching experience in OLS. As an example of how PSTs used technology in OLS, we present a 
lesson excerpt on simplifying and expanding fractions in a 5th-grade mathematics class that a fourth-
year PST taught. In this video recorded lesson, using Math Playground activity (and Conceptua Math 
website), the PST showed equivalent fractions on a rectangle and discussed simplifying and 
expanding with interactive figures.  
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Figure 2. Placing (a) fraction symbols and also other representations,  (b) green circles for 1/5. 

Later in the video, she used the activity in Figure 2.a, where she presented circles, rectangles and 
symbols and asked students to place equivalent fractions to the fraction represented with the first 
circle (meaning 1/5). Students said 1/5 and placed a rectangle with one part pink (see Figure 2.b). The 
PST asked whether there were other fractions equivalent to 1/5. Some students said 5/25 but could 
not explain why. The PST moved 5/25 on top of the circle, but since students could not explain it, 
she put it back to the common area and moved on to the circle with ten pieces with one piece shaded. 

(a) (b) 

Figure 3. Screenshots (a) of placing green circles for 1/10 (for the second purple figure), and (b) taken 
at the end of the class after interacting with students 

She again asked the children what fractions she should move on top of that circle. As she received 
the answers, she moved three green circles, 1/10 (first), a rectangle with one part shaded (second) and 
2/20 (see Figure 3.a) on top of the 1/10 circle. It was the last moments of the video recorded lesson, 
and the teacher quickly revisited the figure and students’ comments related to 1/5 and asked why she 
should have placed 5/25. Students talked about expanding the numerator and denominator of 1/5 by 
5 (meaning multiplying both by 5). Then after having the students’ approval, the teacher placed 5/25 
on that circle (see Figure 3.b).  PST placed 5/25 in Figure 3.b only after she made the discussion such 
that she showed 1/10 and 2/20 (by multiplying numerator and denominator by 2) were equivalent as 
1/5 was expanded to 5/25 in a similar way. With the affordances of this technological tool, PST could 
move and place fractions (symbols or representations) as she was conducting the discussion with the 
students. She used it in an interactive way and could show different representations (symbol, 
rectangle, circle) in the context of teaching equivalent fractions. This was a common classroom 
observation in all recorded lesson videos that with PSTs used technological tools, such as Web 2.0 
tools, Nearpod, Conceptua Math, GeoGebra, and so on. PST later reflected and mentioned in survey 
questions that the use of these technological tools in OLS helped them learn how to teach certain 
topics which were difficult to teach before. 

CONCLUSION 
Analysis of PSTs’ answers to the survey questions indicated that OLS provided a very productive 
environment for all PSTs, especially for fourth and first-year PSTs. Fourth-year students already did 

(a) (b) 
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a year of face-to-face internship before OLS. The third-year PSTs reported professional growth but 
also seemed to be ‘challenged’ with the experience because after two years of intensive courses, they 
were just starting their teaching internship, and it was online with the OLS. This experience provided 
opportunities to all PSTs to be independent, taking ownership of teaching while planning and 
implementing the lessons within a teamwork. They improved their confidence in technology use and 
also online teaching methods. Most of the PSTs benefited from the online support they received 
through moderator chat boxes. In addition, as indicated from PSTs’ answers to the survey questions, 
different groups of PSTs worked together as a team and were supported by many supervisors. 
Therefore, the OLS was a great opportunity to build a learning community which was difficult to do 
in the physical face-to-face internship. Lesson planning, technology integration to plans, and lesson 
implementations were also great opportunities, and PSTs lived these experiences in more focused 
ways compared to the face-to-face internship. All in all, PSTs recommended this experience to their 
peers and also suggested having part of the internship experience online even if things go back to 
normal. As consistent with PSTs’ answers to one survey question explaining that technology use was 
one area they improved themselves the most in OLS, we observed how technology use increased 
PSTs’ professional development on mathematics content such as fractions with opportunities to use 
different representations in an interactive way. As PSTs improved their teaching, the OLS represented 
an authentic context for PSTs to learn about not only technological tools but also pedagogical aspects.  

It appears that involving PSTs in the lesson plan design process of OLS motivated them to consider 
using a wide range of fraction representations, which is necessary for developing fraction 
understanding. PSTs began to consider how to enhance students’ conceptual understanding of 
fractions with multiple representations. This collaborative experience not only challenged but also 
encouraged PSTs to reflect on their technological, pedagogical skills and content knowledge (Hansen 
et al., 2016). 

Our results are similar to prior research indicating PSTs’ positive experiences and views related to 
the benefits of virtual internships (Jack & Jones, 2019; Kennedy & Archambault, 2012). We believe 
that the unique design of OLS, such as learning to implement interactive software and student-
centered mathematics lessons as well as supervisor guidance in the online chat, may have contributed 
to PSTs’ professional development. Furthermore, providing such experiences to PSTs in the context 
of a learning community of peers and supervisors was also found beneficial for PSTs, which confirms 
previous research recommendations of teacher learning as a group (Lantz-Andersson et al., 2018). 
This study provided insights into the PSTs’ perspectives and experiences related to professional 
learning in the context of a uniquely designed virtual internship. Future research is needed to focus 
on and assess the professional learning of PSTs’ as evident in their teaching and planning as a result 
of participating in the OLS.  
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A VIDEOGAME AS A TOOL TO ORCHESTRATE PRODUCTIVE 
MATHEMATICAL DISCUSSIONS 
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We structure an educational activity with a videogame starting from the hypothesis that technological 
tools could support in collecting data on students’ achievements and designing mathematical whole-
class discussions. In this paper, we present and discuss an example from our case studies, with the 
aim of analysing the role played by the videogame in supporting productive discussion concerning 
relational thinking. We conducted a whole-class discussion, and we noticed that the videogame could 
be a valuable tool for structuring the discussion. Indeed, the log files allow us to follow students’ 
achievements and difficulties in solving tasks, and the dedicated web interface permits students to 
upload their responses and share them immediately. 

Keywords: Educational videogames, web interface, mathematical discussion, relational thinking. 

INTRODUCTION 
Carpenter et al. (2005) define relational thinking as “looking at expressions and equations in their 
entirety rather than as a process to be carried out step by step” (Carpenter et al., 2005, p. 54). 
Furthermore, they sustain that “relational thinking involves using fundamental properties of number 
and operations to transform mathematical expressions rather than simply calculating an answer 
following a prescribed sequence of procedures” (Carpenter et al., 2005, p. 54). To develop this kind 
of thinking, the authors recommend going beyond traditional arithmetic practices and considering 
elementary arithmetic concepts as a bridge to learn algebra. Involving students in the solution and 
subsequent discussion of particular tasks seems crucial for focusing them on relations and 
fundamental properties of arithmetic operations, rather than focusing exclusively on procedures for 
calculating answers. In tune with this statement, the authors suggest engaging students in solving 
true/false and open number sentences, which provide a flexible context for representing relations 
among numbers and operations. As literature states (e.g., Lampert, 2001), involving students in well-
designed tasks is not enough, the role of the teachers is central in orchestrating productive discussions. 
Although Carpenter et al. (2003; 2005) mentioned the importance of teachers’ and students’ 
interactions, it seems that the role of teachers and how they could interact with their students are not 
clearly defined. Since, in most of their papers, the authors present examples of interviews with 
students and excerpts from discussions with the teacher, we think that classroom discussions are the 
core of the development of this kind of thinking. Recent research shows that teachers’ prompt for 
relational thinking had an immediate effect on students’ relational thinking (Lin et al., 2015). 

The aim of this paper is to develop technological tools that could support orchestrating productive 
class discussions. Our hypothesis is that these tools could help in collecting data on students’ 
achievement and in orchestrating productive discussions. With this aim, we design a set of materials 
for students (called “unplugged tabs”) and a digital tool for those who will orchestrate the 
mathematical discussion (called “monitoring web interface”). In this paper, after introducing the 
theoretical frame, we will present an example from our case studies. This example is aimed at 
investigating the role played by the videogame in supporting productive discussion concerning 
relational thinking and focusing on how we plan and implement it. 
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THEORETICAL FRAMEWORK 
To reach our goal, we need to define what we mean by designing productive mathematical 
discussions. Thus, it seems crucial to identify the strategies for orchestrating productive mathematical 
discussions (Stein et al., 2008).  

Stein and colleagues (2008) design a pedagogical model of five practices for discussion facilitation. 
They constructed this model based on the hypothesis that teachers need to perform a set of practices 
to prepare themselves for discussions and gradually learn how to become better discussion facilitators 
over time (Stein et al., 2008). The authors describe the following five key practices:  

- anticipating likely students’ responses to cognitively demanding mathematical tasks, 
- monitoring students’ responses to the tasks,  
- selecting particular students to present their mathematical responses, 
- purposefully sequencing the student responses that will be displayed, 
- helping the class make mathematical connections between different students’ responses and 

between students’ responses and the key ideas. 

The authors view each of the practices as “drawing on the fruits of the practices that came before it” 
(Stein et al., 2008, p. 321); together, these practices help to make discussions more likely, and teachers 
will be able to use students’ responses to advance the mathematical understanding of the class as a 
whole.  

Anticipating Students’ Mathematical Responses 
The first practice consists in trying to imagine how students might mathematically approach the tasks 
that they will be asked to engage in. Anticipating students’ answers involves “developing anticipation 
about how students might mathematically interpret a problem, the array of strategies—both correct 
and incorrect—they might use to tackle it, and how those strategies and interpretations might relate to 
the mathematical concepts, representations, procedures, and practices that the teacher would like his 
or her students to learn.” (Stein et al., 2008, pp. 322–323)  

In activating this practice, the authors suggest teachers to draw both on their knowledge of particular 
students’ mathematical skills and understandings and on their knowledge of the research literature 
about typical students’ responses to the same or similar tasks. For this reason, the study by Carpenter 
and colleagues seems to be appropriate to this practice (see, for example, Carpenter et al., 2003): they 
present lots of examples that illustrate teaching and learning activities focusing on tasks, students and 
teachers.  

Monitoring Student Responses 
Monitoring students’ responses means paying attention to the mathematical thinking in which 
students engage as they work on tasks. This practice is commonly done by walking between the stalls 
while students work. The goal of this practice is to identify the mathematical learning potential of 
particular strategies or representations used by the students. In tune with this aim, observations and 
thinking-aloud procedures offer opportunities for gathering knowledge about students’ thinking and 
ways of solving tasks, and these opportunities can be enhanced through technology.  

In the literature, the use of computers to follow and register the students’ working is often emphasised; 
for example, software that record audio and screen or produces log files (which consist of a list of 
events carried out by students) are available for education. For the teacher, however, observing 
student recordings could be time-consuming, while analysing the log files (or observing the analysis 
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produced by the software) could be a good compromise to enrich the practice of monitoring (Van den 
Heuvel-Panhuizen et al., 2011). 

Purposefully Selecting and Sequencing Student Responses for Public Display 
In these practices, teachers can select and then sequence particular students to share their work with 
the rest of the class. A typical way to select students’ responses could be calling on specific students 
(or groups of students) or asking for volunteers to share with the class. The purposeful selection of 
students makes it more likely the mathematical ideas will be discussed by the class. Careful selection 
of students to present strategies could allow the ideas to be illustrated, highlighted, and then 
generalised. 

After the selection of particular students’ responses, teachers can then make decisions about how to 
sequence the students’ presentations with respect to each other. Stein, Engle, Smith and Hughes 
(2008) present some examples: teachers could 

• select the strategy used by most students and then those used by some of them;  
• start with a particularly easy-to-understand strategy; 
• begin with strategies that are based on common misconceptions or errors; 
• relate or contrast right or wrong strategies. 

The main goal of these two practices is to lead teachers to present in a particular sequence 
mathematical ideas to make a discussion more coherent and predictable.  

A well-designed software could allow students to upload their responses and send them immediately 
to the teacher. Teachers can promptly read students’ responses, select and then cluster/sequence some 
of them for sharing and analysis in the whole-class discussion (see, for example, FaSMEd project; 
e.g., Aldon et al., 2015). In this way, teachers could promote the comparison of different selected 
solutions. 

Connecting Student Responses 
Finally, teachers can help students to draw connections between the mathematical ideas that are 
reflected in the strategies and representations that they use. Stein et al. (2008) stress that having 
mathematical discussions consists of separate presentations of different ways to solve a particular 
problem: the main goal is to have student presentations build on each other to develop powerful 
mathematical ideas. 

Research Aim 
Starting from the theoretical framework presented by Stein and colleagues, we can better formulate 
the goal of this paper: exploring whether and how a videogame can facilitate in using the five key 
practices for designing productive mathematical discussions.  

METHODOLOGY 
In line with the theoretical framework just presented and with the goal of our research, we structured 
several activities in order to: involve students in tasks related to relational thinking, monitor students’ 
responses and collect their productions to promote productive mathematical discussions. 

Field Trial and Sample 
We carry out a field trial divided into three activities: students play the “SuperFlat Math” videogame 
individually; then they work in small heterogeneous groups on unplugged tabs, and at the end, they 
participate in a whole-class discussion.  
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The sample is a grade 4 class from an Italian Primary school in Mantova. The class is composed of 
13 students (five females and eight males). The study was carried out in January and February 2021 
during school hours. Unfortunately, the field trial was interrupted by the pandemic situation: in 
February 2021, all Italian schools were mandatorily closed. We conducted the whole-class discussion 
remotely through the Google Meet platform available to the school. 

SuperFlat Math Videogame 
We use a skill and drill videogame called “SuperFlat Math”, which was designed and developed by 
Prof. Leonardo Guidoni, from University of L’Aquila, starting from the free and open-source version 
of Minetest[1]. It is a sandbox videogame that enables primary and lower secondary school students 
to explore a blocky, procedurally generated 3D world. “SuperFlat Math” presents a list of 
mathematical tasks, and it provides a message on the correctness of the answers when the player gives 
the solution of each task. If the answer is correct, players gain points that could be converted into 
rewards. 

The videogame also includes a web interface, which is designed to monitor the classroom’s 
achievements by gathering information like access and play time, scores, number of correct answers, 
number of wrong answers, tasks and so on. The main goal of this system is to provide 
teachers/researchers with information that support anticipating and monitoring practices. By 
examining such web interface, teachers and researchers could immediately identify students’ correct 
and wrong answers as well as the provided solutions to the tasks. Finally, students can upload their 
mathematical productions, tasks and other files to share them with teachers, researchers or mates. 
This feature can be useful for selecting and sequencing students’ responses.  

Proposed Activities 
“SuperFlat Math” is divided into several games on different mathematical topics, such as Fractions, 
Equalities, Operations, Number line, Prime numbers and so on. Each game is composed of several 
minigames which are composed of a set of short puzzles at increasing levels of difficulty. To access 
the videogame, each student must have a personal account, which is also used to track his or her 
progresses in the web interface. Specifically, we consider two games: Parkour (Figure 1) and 
Swimming pools (Figure 2), on the mathematical topic of Equalities. 

  

Figure 1: screenshot by Parkour minigame Figure 2: screenshot by Swimming pools minigame 

The Parkour minigames is of a perilous uphill path, which presents number sentences or expressions 
with two possible solutions. As already explained, Parkour minigames are at increasing levels of 
difficulty: the first half of minigames present number sentences in which students should find the 
correct solution, whereas the second half contains equivalence between two expressions.  

In Swimming pools minigames, there is a pool full of number blocks from 0 to 100: on one side of 
the pool, there is an open number sentence. The player has to find the correct number block in the 
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pool to complete the sentence. As in the first activity, these minigames are at increasing levels of 
difficulty: the first half of the minigames contains open number sentences with two operations, 
whereas the second half has expressions with parenthesis and two or more different operations.  

Unplugged Tabs  
Drawing on the work of Carpenter and colleagues (2003), we design unplugged tabs including 
true/false and open number sentences (as in “SuperFlat Math”) to engage students in relational 
thinking by focusing them on specific properties and ways of thinking about number operations 
(Table 1). For each task, we ask students to justify their answers so that teachers and researchers could 
understand their way of reasoning. For example, 38 + 47 = 47 + 38 focuses on the commutative 
property of addition. Students might figure out that the number sentence is true by carrying out the 
addition on each side of the equal sign, but more commonly, they immediately conclude that the 
sentence is true because the order of the numbers has been changed. This can lead to a discussion of 
whether this relation generalises to all numbers and whether it is true for other operations.  

Examples of true/false sentences Examples of open number sentences 

8 = 3 + 5 

3 × 4 = 3 × 4 + 3 

2 × 3 × 5 = 6 × 5 

25 + 32 = 27 + ⋯ 

8 × 3 + 8 = 8 ×. .. 

2 ×. . .× 7 = 14 × 5 

Table 1: example of tasks in the unplugged tabs 

RESULTS AND DISCUSSION 
In the first part of the field trial, all students play the videogame. The web interface shows parameters 
like play time and scores (Figure 3).  

 

Figure 3. Screenshot of log files analyses in the web interface 

The software allows us to know what and how many tasks students solved, to discover correct and 
wrong answers and the number of attempts. In Figure 3, we see that student S.1 made three attempts 
for solving task 1 giving two correct answers; for the same task, student S.2 made six attempts with 
only one right answer. The web interface also permits to have a detailed list of all the answers given 
by students. 

Such information could be useful for the anticipating and monitoring strategies. The tasks in 
“SuperFlat Math” are presented in increasing levels of difficulty, and so the first ones could be useful 
for the anticipating practice then the last ones for the monitoring strategy. However, these collected 
data does not highlight the mathematical thinking in which students engage as they work on tasks. 
On the one hand, the web interface gives us an updated snapshot of students’ performances; but on 
the other hand, it does not provide information about their mathematical processes.  
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The goal of the monitoring and anticipating practices is to identify the mathematical learning potential 
of particular strategies or representations used by the students, and so their mathematical thinking 
should not be ignored. For this reason, walking between the stalls while students work seems to be 
the best strategy for monitoring students, but the web interface snapshot could be useful to rapidly 
select which students to observe without walking around randomly. 

Since students’ strategies are not visible from the web interface and circulating between the stalls is 
not always possible, we administer to small groups of students the unplugged tabs, in which we 
require them to motivate each answer. We create small heterogeneous groups according to their game 
scores: in the same group, we include students with high, low and medium scores. We promote 
teamwork to encourage students to share their strategies and make autonomous mathematical 
discussions in small groups. Once they solve tabs, students use the web interface to share them with 
us. The possibility to instantly share the answer allows us to reach a big amount of information 
without waiting that all students finish to solve their unplugged tabs. 

All the answers to tabs are correct, but justifications and group strategies differ. For example, 
concerning the following task: 𝟐𝟐𝟐𝟐 + 𝟑𝟑𝟑𝟑 = 𝟐𝟐𝟐𝟐 + ⋯, some groups reveal the use of relational thinking 
in the justification: “We have chosen 30 because 25+2=27 and it [27] is what I already have, then on 
the other side, I took off 2 from 32, and I add it to 25, that results 27 and 32-2 equals 30 and I put it 
[30] beside 27.” 

Conversely, other students use computational strategies. For instance, another group writes: “We have 
chosen 30 because we’ve computed 25+32=57 and so 27+30=57.” 

The analysis of these answers allows us to select and then sequence them for designing the whole 
class discussion. We start by selecting the computational strategies, and then we sequence them with 
the ones that reveal relational thinking. The web interface permits to rapidly collect students’ 
responses, so we have the possibility to quickly plan the whole-class discussion while students are 
still engaged with tabs. 

We conduct a mathematical discussion based on the anticipating (by using the web interface) and 
monitoring practices (by using the web interface and the unplugged tabs). According to our data, we 
select and sequence students’ answers following these criteria: 

1. we make sure to select at least one response from each group in order to allow all students to 
participate in the discussion; 

2. we choose those correct answers that reveal different strategies by also checking selected 
groups’ achievements in the videogame; 

3. we first present the answers that show computational strategies and then those revealing 
relational thinking so as to reflect on similarities and differences.  

Unfortunately, due to the pandemic situation, we interrupt the field trial. For logistical reasons, we 
conduct the discussion remotely. Nevertheless, all students participated in the whole-class discussion 
and those who showed computational strategies in the tabs discussed with their mates about relational 
strategies.  

CONCLUSION 
We structure activities with a videogame starting from the hypothesis that technological tools could 
support teachers/researchers in collecting data on students’ achievement and in planning and then 
orchestrating productive discussions. We present and discuss an example from our case studies, with 
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the aim of analysing the role played by the videogame in supporting the design of a discussion 
concerning relational thinking. 

The goal of this paper is to explore whether and how a videogame can facilitate the planning of 
mathematical discussions using the five key strategies (Stein et al., 2008). Concerning our research 
aim, we notice that the videogame could be a valuable tool for the following three reasons. first, the 
web interface makes the anticipating and monitoring practices possible by uploading the log files, 
through which we follow students’ achievements and wrong/correct answers. Second, the log files do 
not show students’ strategies and ways of thinking, so we need also to walk between the stalls while 
students work. However, the web interface data are useful to rapidly select which students to observe 
without walking around randomly. Finally, the web interface also makes the selecting and sequencing 
practices faster: the ability to retrieve single items speeds up and facilitates the discussion 
orchestration while students are still working on tabs. 

Thus, the web interface seems to be a helpful tool for promoting four of the five key practices 
described by Stein and colleagues (2008) and for this reason, we suppose that technological tools 
could provide an added value compared with activities in a paper and pencil environment. All students 
participate actively in unplugged tabs and the discussion. During the activities, the teacher states that 
almost all students enjoy playing the videogame and the subsequent activities.  

Therefore, it seems that the videogame plays both a motivational and a methodological role. 
Reflecting on log files and retrieving the tabs is essential, because otherwise, we would carry out the 
discussion by calling on students randomly, without considering their progress. Without these tools, 
the collection of data concerning students’ performances, strategies or ways of thinking would be 
more time-consuming. So, the time between play time, tabs activities and the discussion would be 
too long, because we would need a lot of time to collect and organise students’ data.  

There are some important aspects not explored in this paper that are crucial for future research. We 
describe the methodological advantages of a videogame in planning and orchestrating mathematical 
discussions, but we do not consider its mathematical effectiveness in terms of development of 
relational thinking. We present a first reflection on our tools and materials by trying them out in small 
class activities. The future research will be based on successive cycles of design, observation, analysis 
and redesign of classroom sequences (Design-Based Research Collective, 2003) in order to design a 
set of materials for students and teachers. The analysis of mathematical effectiveness of such 
materials and tools needs a longer period and a greater set of activities involving more than one class 
and one teacher. It will also be interesting to study the usability of these materials and tools by 
teachers without our support. 

Finally, we do not consider the role of feedback provided by the videogame. The scores inform 
students whether their answers are correct or not; in addition, the message returned by the videogame 
when students give a wrong answer could allow him or her to reflect on his or her strategy. In Figure 
3, students made some attempts in the first task (S1 made three attempts; S2 made six), whereas they 
gave the correct answer in the next tasks. This suggests that the videogame could be used as a tool to 
support students in formative assessment practices (e.g., Aldon et al., 2015). 

The activities described in this paper is conducted face-to-face, but they could also be carried out 
remotely. This is another interesting feature of technological tools that could be explored in future 
research: they offer the possibility to design intriguing activities to support teaching and learning 
mathematics in different scenarios. 
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NOTES 
[1] https://www.minetest.net/ 
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TE(A)CHING TO COLLABORATE: AUTOMATIC ASSESSMENT-BASED 
GROUPING RECOMMENDATIONS AND IMPLICATIONS FOR 

TEACHING 

Shai Olsher 
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Sharing and communicating mathematical ideas is fundamental to learning and teaching 
mathematics. This paper focuses on fostering mathematical collaborations between students through 
the lens of topic-specific learning analytics (TSLA). Using example-eliciting tasks, I harness 
technology to analyze different characteristics of a students’ submitted answers and to characterize 
different types of relationships between various students’ mathematical work. I introduce possible 
schemes for grouping students according to the goal of the task, and demonstrate recommendations 
for student pairing and how they are used by teachers to improve the collaborations and the teachers' 
orchestration of group work in an online environment for the benefit of students’ learning outcomes. 
Keywords: Example-eliciting tasks, online collaboration, student grouping recommendations, topic- 
specific learning analytics. 

COLLABORATION OVER WHAT? 
Collaborative learning is considered to be productive for learning (Dillenbourg, 1999). The range of 
tasks that students collaborate over is wide, from conventional tasks to open inquiry and projects. 
Students may engage in solving problems together, peer assessing work, devising questions, 
developing answers, and more. Technology can facilitate many forms of collaboration mentioned 
above. The ability to communicate and share work efficiently and seamlessly enhances processes that 
may limit the ability to collaborate. A classic example is peer assessment, when we are asked to 
exchange our tasks with the people next to us, or discuss some issue with them: this location-based 
collaboration might be at the expense of other, less constrained forms of grouping students. 

Communication and cooperation are not the only ways in which technology can be used to facilitate 
group work. Computer-supported collaborative learning studies go beyond these functionalities and 
explore the role of technology also as a mediator, a tool, and an instrument. Technology can be the 
curator of student work or of a teacher’s work, and it may also be the assessor if a platform provides 
some type of feedback and reports. This paper is aligned with the research branch that uses data and 
learning analytics to facilitate the process of grouping students and providing teachers with 
recommendations (Chen, 2005; Mavrikis et al., 2019). To achieve an effective, student-centered 
practice that provides personal characterizations of student work that can be used for grouping, we 
need automatically assessed tasks that enable students to express their ideas in an open manner.   

Example-eliciting tasks (EETs), which require students to provide examples as answers, are a good 
starting point. Students’ construction and use of examples have been a focus of many studies 
(Zaslavsky, 2019). I use Zaslavsky’s working definition, “mathematical objects are considered to be 
an example only when the learner and/or teacher perceive it to be an instance of a phenomenon, 
property, class, or idea” (Zaslavsky, 2019; p. 247). Automatic assessment of learner-generated 
examples (LGE) has been demonstrated in a digital geometry environment (DGE) (Leung & Lee, 
2013) and provided insights about the learners that were verified through interviews. In EETs we 
harness both examples and exemplifying within the process of mathematical reasoning, therefore 
LGEs can reveal conceptions of mathematical objects or concept images (Vinner, 1983). These 
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conceptions manifest in students’ example spaces, which are sets of examples provided by students 
for a certain goal (Watson & Mason, 2006). Example spaces can also inform us about possible 
difficulties and inadequacies of student work and student knowledge (Zazkis & Leikin, 2007). 

One of the challenges we face in EETs is that we need them to be automatically assessed. There are 
platforms that show that students solve different tasks, in which the students argue about their answers 
mostly textually or symbolically. The answers are presented to the teacher (Clark-Wilson, 2010; 
Tabach, 2021), who as a curator, must work with the submissions usually in the moment, but not 
necessarily. This is a demanding task. In EETs we design tasks that can provide us with automatic 
assessment of the student work. If we cannot assess it automatically, an EET has less of an advantage 
over a regular mathematical task that can be assessed manually by a teacher. It does not mean that 
EETs cannot be accompanied by verbal explanations by students, but this is not the core of the task. 
To handle different types of mathematical activity that we want to capture within EETs, we developed 
six design patterns that accompany different mathematical ideas and actions. 

(A) Exemplify existence: Construct an example of a definition. Given a definition, the student is 
asked to construct an example that exemplifies that the definition can exist with an object that satisfies 
the definition (Olsher et al., 2016); (B) Validate a claim: Associate the claim with the identification 
of a pattern of existence, or of a contradiction. A claim could state: “There is a triangle with a right 
angle.” Is this claim true? Initially, students need to choose whether it is true or not based on what 
they know. In addition, they are asked to provide an example of a right-angled triangle. Such tasks 
assess not only the student’s decision whether the claim is true or not, but also the student’s ability to 
exemplify it, which is a different type of competence (Olsher & Yerushalmy, 2017); (C) Classify: 
Set the conditions that would allow a claim to be true. Students are presented with a set of conditions, 
not just one, and they need to choose either all of them or a subset of them that they think could 
coexist, and exemplify them in a mathematical object. These tasks are used to create interaction with 
the relations between the different characteristics that the teachers aim to address (Yerushalmy, 
2020); (D) Separate: Articulate the variables that support various examples (to validate or to 
exemplify). Students are asked to either exemplify and give multiple examples that are as different 
as possible from one another, or to point out the difference between two given examples. Students 
must find a characteristic that can distinguish between the two examples (Yerushalmy et al., 2017); 
(E) Generalize: Refer to a mathematical object created by a set of examples. If we ask students to 
give a large set of examples, they may be able to reach a general rule (Olsher & Lavie, 2021); and 
finally (F) Verify a claim using examples at the beginning of the deductive process or as part of the 
abductive process. Examples play a key role even if the goal is to generate a deductive proof. The 
mathematical practice to understand the claim is usually to construct an example where this claim 
exists, constructing a contradicting example could also be an initial stage of the deductive process 
(Cusi & Olsher, 2021). 

EET EXAMPLE: SEPARATION TASK 
The focus of this paper is on the separation design pattern: Submit examples that demonstrate 
controlled variability. In Figure 1, the student needs to decide whether there exists for this case a 
triangle that can be constructed by moving the three points. The brackets contain mathematical objects 
that can be modified. If the answer is positive, students are asked to submit an example to support 
their answer. But not just one example: three examples that are as different as possible. 

1. Decide whether there exists a [TRIANGLE] that [COULD BE CONSTRUCTED BY 
MOVING THESE 3 POINTS]. 
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2. If your answer is positive, submit an example to support your answer. 

3. Submit a total of three examples that are as different as possible.   

 

Figure 1: A separation EET 

In the applet shown in Figure 1, the student can move any of the points. The starting position is a line. 
When students work on this type of a task, they must think how to separate the examples: What is the 
characteristic (or characteristics) of the triangles that the students retain, and what are the 
characteristics that the students change between examples? This activity gives us some information 
about the student. A good EET has an infinite number of correct answers because what we try to 
assess are characteristics presented by a particular student. When having to produce an example, each 
student plays the role of a curator, which allows us to assess something personal. It is not a task with 
the answer “42,” so that if two students answer 42 we have nothing different to say about them. If we 
ask for an example, the examples we receive from different students are usually different. If they turn 
out to be similar, this may tell us something about the teacher’s practices and the teacher’s choice of 
examples. The information that we obtain when assessing the students’ answers is more student-
centered, and we can do it automatically. 

EETs can provide evidence of mathematical reasoning and student work. In another task (Figure 2), 
students received a multi-linked representation (MLR) with a given point. They could press the “new 
point” button to get a different point that was semi-randomly generated (Bagdadi, 2019). The 
algorithm placed points on the x-axis, the y-axis, or on neither of the axes. Students were asked to 
construct three linear functions that pass through the given point.  

 

Figure 2: Linear function through a point EET 
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The different representations in the applet were on-demand. Students entered a symbolic expression, 
and if they checked the box next to the expression, the graph appeared. On a table of values, students 
could see a selected set of values for the functions they entered symbolically. They could choose a 
certain value, which could be the critical value, in this case x = eight, to see the value for each one of 
the functions they entered. This provided students with tools for verification, but also for 
argumentation. If they showed these graphs, the graphical representation was for verification. But we 
do not know whether the graph actually passes through the point; it may be just close to it. If students 
wanted to exemplify whether the function went through the point, they could use the table of values 
and plug in the x value of the point to verify, and also to argue about a particular solution.  

We can identify work methods of students. Figure 2 shows two different examples. Figure 2a has all 
correct examples, and Figure 2b has one incorrect example. It is the same task and the student that 
submitted only correct functions is not necessarily demonstrating more than the student that has one 
incorrect example. In Figure 2a we can see that all the slopes of the submitted functions are positive, 
and the functions are of the same type: x-3, 2x-6, 3x-9. Figure 2b shows a wider variety of linear 
functions in terms of slope, and also in terms of verification tools. Figure 2b shows the use of the 
table of values to verify the answers, although not in all cases. These characteristics can be analyzed 
automatically based on the submitted responses, without the need to have logged the student actions 
during the solution process. 

GROUPING THE STUDENTS 
Group learning is a fundamental practice in mathematics education and teachers have general criteria, 
which they use to group students. Some of these are rooted in interpersonal relations, as noted before, 
including location and personal relationships between friends or peers (Cohen, 1994). Another type 
of information considered for grouping purposes is whether a student is high- or low-achieving 
(Johnson & Johnson, 2002; Maqtary et al., 2019). Homogeneous and heterogeneous are also known 
types of groupings, describing students who are grouped based on whether they are similar or 
different in a certain characteristic. There are also encompassing and complementary types of 
grouping. Encompassing refers to grouping students who know all (or most of) the content the teacher 
wants them to learn with students who have a wider knowledge gap to fill. In complementary 
grouping, two students contribute to each other’s process of learning (Abdu et al., 2021). When 
operationalizing the work of students in groups, we use dialogic theory to focus on relationships 
between interpersonal interactions and individual learning (Bakhtin, 1984). The dialogic view of 
learning is similar to a sequence of changes in perspective that emerges through interactions with 
different types of agents (Wegerif, 2011). A dialog consists of voices. A voice is “the intentions […] 
individual speakers present in each utterance” (Barwell, 2016, p. 335). Voices are situated and always 
about something, some mathematical object, idea, or feeling. Voices are situated in a setting and are 
dynamic because of their interaction with the contextual or the social settings and agents that 
participate in this dialogue (Wegerif & Major, 2019).  

A dialogue happens when and where two different voices interact. In a classroom, a teacher, a peer, 
or a technology can express different voices (Webb, 2009). To describe the setting of the dialog, we 
use the term dialogic space. A dialogic space (Wegerif, 2011) is a construct that helps us define what 
makes a certain group better than another group when trying to define two groups that involve a 
dialogue between learners. When we want to see the different implications of these dialogues, we 
need to make sense of the dialogic space that exists within this learning. A dialogic space is not like 
a regular space: it is multi-dimensional and can be expanded to different dimensions; we can define 
different contextual characteristics for it to happen. We use the dialogic space to bring the existence 
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of the teacher into the dialog. The teacher’s voice stands apart from the two learners who interact and 
make their voices heard. In the dialog, the fundamental role of the teacher is to coordinate, orchestrate, 
or facilitate this dynamic dialogic space where the learning happens. How do we widen the dialogic 
space? How does a teacher open it up? Maybe teachers need to narrow it down somewhat if they want 
to focus the students? These are the constructs that we use in dialogic learning. 

To create a dialogic space and promote dialogic learning, we suggest the use of EETs as a basis for 
grouping students according to the mathematical characteristics of their submissions. In Figure 3, I 
present the tasks from Abdu et al. (2021). Task 0 is quite similar to the one presented in Figure 2, but 
it contains only one function. The aim is to get the students acquainted with the platform and its tools, 
and promote a process of instrumentation that will assist them in the more complex tasks. Task 1 is 
for individual work by the students, who are asked to construct a quadratic function that passes 
through the given points, with the points restricted to the axis.   

When students solve this task they provide us with examples we can analyze to determine the 
relationship between two student submissions. We divide the task characteristics (Figure 4a) into 
categories of aspects (Abdu et al., 2021). Next, we can define states for each aspect. For this quadratic 
function task (Figure 4a), we can check whether it has roots. The number of roots is a characteristic 
of the answer: 0, 1, or 2 roots. The type of extreme values can be minimum or maximum. The 
symbolic form that the student uses can concern the polynomial, vertex, or intercepts. The number of 
correct examples can be up to three.  

    

 

Figure 3: Linear function through a point EET 

This mapping might seem specific to the task, but it is not. When using a method similar to that in 
the triangle task (Figure 1), we can automatically analyze examples submitted by students to see what 
kind of separation is present in students’ work (Figure 4b). Were they separating on angles: acute, 
right and obtuse? Were they separating on sides: equilateral, isosceles, and no equal sides? We also 
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learn about their work methods. Did they submit many prototypical examples, having a vertical or 
horizontal side? And we know the number of correct examples. When we use an EET and define the 
characteristics that are relevant for the students’ work, we can base our grouping on those aspects and 
characteristics that can be automatically determined.  

a      b  

Figure 4: Linear function through a point EET 

After characterizing student submissions for Task 1, students were assigned to work in pairs on Task 
2 (Figure 3), which had two points with the same y-value, and the students needed to construct three 
examples of quadratic functions that pass through those points. Task 3, which had a random point 
and one that could be moved to any location (Figure 3), was carried out later individually. Figure 5 
(edited from Abdu et al., 2021) shows examples of different relations between students. The 
characteristics present in each student submission are colored, and the empty rectangles are 
characteristics that do not apply to that submission. For example, student A, had all of the 
characteristics of the peer for Task 1, but also some that the peer did not have (e.g., a function with 
one root). Thus the relationship between student A and the peer can be defined as encompassing. 
Similarly, student B’s relationship with the peer can be defined as encompassing. Submissions by 
student C and the peer’s have complementing characteristics, that is, some characteristics that appear 
in the submission of one, do not of the other, and vice versa. Thus student C’s relationship with the 
peer can be defined as mutuality. Finally, student D’s submission has exactly the same characteristics 
as that of the peer, therefore the relationship can be defined as similarity. 

This was a separation task. The goal was to expand the number of characteristics that students showed 
in their work. Abdu et al. (2021) shows that when grouping students, mutuality resulted in 
significantly higher increase in the average number of characteristics than did the encompassing and 
similarity pairing strategies, which is what we expect in a separation task.  
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Figure 5: Student comparison (Abdu et al. 2021) 

As shown above, not all EETs are separation tasks (or classification and generalization, which we 
assume can also benefit from a mutuality grouping strategy). In tasks that ask to exemplify existence, 
I hypothesize that pairing a student who succeeded in demonstrating the existence with one who did 
not provide an example can lead to peer learning, benefiting from encompassing/encompassed 
strategy for grouping. In tasks that ask for generalizations, I hypothesize that grouping based on a 
similarity relationship can be beneficial because group members will face a similar challenge, which 
is preferable to one partner showing the correct ideas to the other. These hypotheses require validating 
through research, but the guiding principle is that the goal of the group activity should be a key factor 
in determining the grouping strategy to be used for an activity. 

IMPLICATIONS FOR TEACHERS’ WORK 
In another study, we examine how teachers facilitate group work in various settings (Shalata, 2021). 
We investigated how teachers manage the dialogic space between the two voices of students to make 
it into a productive one? We followed three teachers who carried out the quadratic function activity 
(Figure 3) in their classrooms. Following the analysis of Task 1 submissions, we grouped the students 
in each classroom into pairs according to the 3 grouping strategies: encompassing, similarity, and 
mutuality. Note that we did not give teachers strict pairings but merely recommendations because the 
teacher's perspective is important, and we wanted them to be able to overrule our recommendation. 
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The teachers made a few changes in pairings, but these were not based on the students’ work but 
rather on the relationships between students.  

We had roughly the same number of groups for each grouping strategy. The lessons were conducted 
online because of pandemic restrictions on face to face teaching, and the teachers used Zoom software 
and breakout rooms. When teachers were in a room, everything they did was specific to this group 
and related to the dialogic space that existed at that moment. The students solved Task 2 in pairs. The 
interactions within the breakout rooms were coded into four categories: (A) Technical – related to 
problems with the platform, connectivity; (B) Interpersonal – how students worked together and 
whether they cooperated; (C) Topic-specific – related to the topic of quadratic function; and (D) 
General understanding – related to clarifying task requirements and how to exemplify. 

Although there were no significant differences between the classrooms with respect to the categories 
(one class had more technical difficulties), the different grouping types provided some enlightening 
insights about the teacher’s role as a facilitator of the dialogic space. The main finding was that 
encompassing pairs had significantly more interpersonal interactions than did other pairs. This finding 
was supported by the teachers:  

“In some pairs, there was good cooperation without me instructing them… others worked 
separately so it led me to ask them to cooperate… I fit myself to the pairs according to what I saw 
and in most cases, I had to intervene a lot it was because the weaker student was lost, so I tried to 
move them towards working together and in that way lead to learning of both of them” (Teacher 
Taleb, Interview, 19.12.2020). 

This finding can be explained by the fact that when grouping students using a mutuality or similarity 
strategy, both students have voices that can contribute to the dialog in meaningful, content-related, 
ways. When using an encompassing grouping strategy, the teacher must facilitate the dialogic space 
and the interaction of voices to help students interact with each other, and not only next to each other. 
Different grouping strategies can benefit students in different types of activities. Our findings suggest 
that there is no one general grouping strategy that benefits different activities in the same way. We 
must keep in mind that the way we group students may implicate teacher actions, and consider what 
is required from a teacher to facilitate group learning. In the case of the encompassing grouping 
strategy, teachers must pay attention to the collaboration more than in other grouping strategies. In a 
similarity grouping strategy, teachers may have to focus on topic-related interaction.  

Finally, the data about student work, which includes not only an abundance of information produced 
by the students but also various analytics and measures, needs to be handled by teachers in their 
decision making. This may be a lot to handle, but this data can also be handled automatically if we 
choose the right task design pattern and define the relevant characteristics for our teaching goals. 
Among these characteristics could be familiar mistakes, but also mathematical characteristics and 
descriptions of student answers that we want to introduce to the students’ mathematical discourse. In 
these cases, we can use the data to explore different students’ voices and to enhance the dialogic space 
and the group learning process. 
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Earlier studies found that the use of digital tools and empractical mathematical communication are 
deeply related, showing mechanical or random ways of using the tool as well as a lack of conceptual 
mathematical understanding. However, with respect to Dynamic Geometry Environments (DGE), 
students may address the tool at least in two different ways, tool-embedded and tool-idling, providing 
various possibilities of communication. In this paper, we report on a case of two students’ 
communication and their communications competency as they use DGE in these two ways.  

Keywords: Communication competency, dragging, empractical talk, GeoGebra, instrumentation. 

INTRODUCTION: TOOL-BASED MATHEMATICAL COMMUNICATION 
In Denmark, the KOM framework has been introduced to teaching and learning mathematics. This 
framework includes eight mathematical competencies; among others mathematical communication 
competency and aids and tools competency, involving digital tools (Niss & Højgaard, 2019). It is 
expected that students develop both competencies in mathematics, also related to each other. 
Regarding mathematical communication, two perspectives communicating to learn or 
communication as a goal in itself (Erath et al., 2018) are relevant when using digital tools and 
developing competencies. With respect to this distinction, we aim to investigate in what ways 
communicating to learn mathematics with a digital tool, and communicating as a goal when using 
digital tools allow students to show communication competency? (Niss & Højgaard, 2019).  

Using digital tools in mathematics classrooms potentially support students’ mathematical discussions 
(Drijvers et al., 2016). Yet, there is a risk that students end up communicating empractically, which 
means that mathematical communication is very context-dependent focusing on the use of the tool 
rather than the mathematics in play (Jungwirth, 2006). Earlier studies (Bach & Bikner-Ahsbahs, 
2020) found that students’ use of GeoGebra (a DGE) described from their instrumentation profiles 
(Guin & Trouche, 1998), is related to two distinct genres of mathematical communication: 
Empractical communication and conversation (O’Connell & Kowal, 2012). In a recent study (Bach 
& Bikner-Ashbahs, accepted), these two genres are empirically related to whether the communication 
is tool-idling (referring to DGE as a static object) or tool-embedded (referring to the dynamic features 
in DGE) resulting in four types of tool-based communication. Our data analyses show that only in 
tool-embedded mathematical conversation, mathematical communication competency is exercised. 
However, data on the two ways of empractical communication is scarce, specifically with respect to 
tool-idling communication. In this paper, we fill this gap by presenting cases of empractical 
mathematical communication when students use GeoGebra, aiming to answer the following research 
question: What characterises tool-embedded and tool-idling empractical mathematical 
communication and how do they relate to mathematical communication competency?  

MATHEMATICAL COMMUNICATION 
Based on psycholinguistics, we define communication as an activity that “brings persons together 
somehow by means of spoken discourse” (O’Connell & Kowal, 2012, p. 10). Two roles are here 
central: Listener and speaker. Listening is meant to be active as it responds to speaking (O’Connell 
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& Kowal, 2012). We distinguish between two verbal mathematical communicational genres applied 
to the field of mathematics (in Bach & Bikner-Ahsbahs, accepted): mathematical conversation and 
empractical mathematical communication. The former holds certain social qualities such as both 
listening and speaking, equal participation, turn-taking, open-endedness and verbal integrity. Open-
endedness involves bringing the conversation forward and verbal integrity involves an attempt to 
understand others’ speaking, and reviewing it fairly. Empractical communication does not hold the 
social characteristics of a conversation (O’Connell & Kowal, 2012), as it is a way of communicating 
embedded in practical acting that refers to itself and its purposes rather than social relatedness.  

We call any communication mathematical when it concerns mathematical contents – when discourse 
is mathematical. Yet, when students communicate empractically, there is a risk that mathematical 
issues are kept in the background whereas the tool is in the foreground (Jungwirth, 2006; Bach & 
Bikner-Ahsbahs, 2020). When mathematical communication is addressed as a learning goal, 
mathematical communication competency comes into play. This competency involves being able to 
express oneself mathematically and to understand and interpret others’ mathematical expressions. 
Both aspects involve different media (e.g., oral, written, visual and gestural), genres and discourses, 
related to different people (Niss & Højgaard, 2019). Our previous studies show that students 
communicating empractically while using digital tools do not show mathematical communication 
competency, whereas in mathematical conversations, this is more likely to happen (Bach & Bikner-
Ahsbahs, 2020; accepted).  

INSTRUMENTAL APPROACH IN MATHEMATICS EDUCATION  
We frame the use of digital tools by the instrumental approach involving several concepts: artefact, 
instrument, instrumental genesis, instrumentation and instrumentalisation. An artefact is a material 
object created by humans, thus, any digital tool is an artefact. Instrumental genesis is the process in 
which an artefact is transformed into an instrument for someone. It consists of two sub-processes: 
“instrumentation is the process by which the use of the artefact influences the activity of the subject; 
instrumentalization is the process by which the subject adapts/enriches the artefact to make it more 
efficient and more suited to their needs” (Artigue & Trouche, 2021, p. 8). In our previous studies 
(Bach & Bikner-Ahsbahs, 2020; Bach & Bikner-Ahsbahs, accepted), we applied the instrumentation 
profiles to GeoGebra (DGE), originally developed by Guin and Trouche (1998) involving Computer 
Algebra Systems (CAS). As the tools at play and instrumental geneses are closely connected to the 
conceptualization conducted (Trouche & Drijvers, 2010) and CAS and DGE differ, we include the 
dynamicity of DGE as its main difference in our analyses. Specifically, dragging is relevant as it 
“reveal[s] cognitive shifts from the perceptual level to the theoretical one and back in students' 
mathematical activity.” (Arzarello et al., 2002, p. 67). Guin and Trouche (1998) find five 
instrumentation profiles of a tool empirically with respect to three dimensions. Information tools: the 
ability to choose and get information, such as the tool, calculator, theoretical knowledge and peers. 
Understanding tools: the ability to use the information available in the given situation, such as 
comparisons and semantic interpretations. Command processes: The ability to choose and use 
understanding tools. Students with a random profile have trouble both using paper-pencil and digital 
tools. Often, they copy earlier work or perform trial-error strategies without verifying results. 
Students with a mechanical profile primarily use the tool and reason based on results stemming from 
the tool avoiding mathematical references. Students with a rational profile are primarily using paper-
pencil and show strong commando processes. Students with a resourceful profile explore all 
information tools available and reason based on comparison and confrontation. Finally, students with 
a theoretical profile do mathematical interpretation and verify mathematically based on the results 
provided by the tool (Guin & Trouche, 1998). When applying these profiles to DGE, we consider 
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utilisation schemes for dragging, as through dragging students link their use of a tool with 
mathematical content (Arzarello et al., 2002). 

METHODOLOGY  
In this paper, we present data from the second trial of a case study, which is collected in Denmark in 
an 8thgrade classroom. We reused a task developed for 9th grade, which leans on a study by Johnson 
and McClintock (2018). It is constructed to exercise communication competency when using digital 
tools. Conceptually, it focuses on linear functions as covariation, more specifically, to identify, use 
and conceptualize how two quantities are changing together in a functional relationship. Our task has 
eight subtasks, requiring separated individual as well as collaborative work. The task is given as a 
GeoGebra template (Figure 1). It provides exploring of how the area and the height of a rectangle 
change together when dragging point A and how this is translated into a graphical representation.   

 

Subtask 2. Alone. Explore the 
construction/template on your 
computers by dragging point A of 
the rectangle. Describe the 
relationship between point P and 
the shown figure (i.e., the 
rectangle). For point P, you have 
to describe what characterises the 
x- and the y-coordinate. Explain 
why this relationship exists. 

Subtask 3. Together. Compare 
and discuss your results from task 
2. Summarize here what you 
agreed upon. 

Figure 1. Left: illustration of the template in GeoGebra. The black arrow illustrates movements of 
point A. The dotted arrow shows P’s traces when moving A. Right: two subtasks. 

In the task sequence, students work in pairs having one computer each. Thus, the students’ ability to 
drag and make sense of what is happening with the tool mathematically becomes very important, 
which does not occur with CAS. As students drag point A in the rectangle ABCD, point P moves. The 
students are expected to find P’s coordinates as P=(height AB, area of ABCD).  

Data collection involved screencasts and videos of students working in pairs. Transcription is done 
in Danish verbatim and translated into English. In collaboration with the teacher, high achieving 
student pairs were selected based on their national test, hand-ins, and participation in class. The data 
are analysed by interpreting the data based on the theoretical concepts introduced in the framework. 

In the present paper, we focus on one pair solving subtasks 2 and 3. Subtask 2 is an individual part 
where students’ explore the task themselves. Subtask 3 is a collective one reflecting prior work on 
subtask 2. In subtask 3 we expect the students to show mathematical communication competency. 

PRESENTATION AND ANALYSES OF DATA: THE CASE OF ELIN AND DONNA  
In this section, we present the data followed by the analyses of the two students’ instrumentation 
processes and their mathematical communication. The data shows a dialogue on the students’ 
explorations related to subtask 2, divided into three smaller excerpts. 
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When analysing instrumentation profiles, we identify the students’ mathematical knowledge in play, 
how they come to know, the information tools used, and their strategies of solving the task (e.g., 
copy-paste). Analysing their communication, we identify their roles as listener and speaker; their use 
of media of communication (i.e., visual, oral, gestural or written); and the communication 
genre/discourse, including the mathematical language.  

Excerpt 1: Exploring the Construction  
Prior to the following dialogue, the two students have both been dragging on their individual 
computers. In the beginning, Donna identifies that D is related to A (as these are endpoints of one 
side of the rectangle). Their interaction addresses P’s y-coordinate, and the height of AB. Note that 
Donna does not interact with her own template in the following excerpt. 

1 Elin  Yes but when it stands at 4 [pointing at height of AB]; it is at 12 [pointing at 
P]. And so, this, this one here [A, red.] stands on 6, then, it is at 18 [P, red.]. 
And so, when it is at the double, 8, then it is at [she zooms in and out, trying 
to find P, that “disappeared” when she dragged point A].   

2 Donna It moves when the figure gets bigger, right? Then you can see the area.  
3 Elin Mmm [means probably maybe]   
4 Donna Isn’t it like that? 
5 Elin  I want to... I can’t… Mmm Yes [responding to Donna’s comment].  
6 Elin reads the task description again. 
7 Elin Okay. So P is connected to the square and it has a distance.   
8 Donna P… P.   
9 Elin It has a distance on… So it stands on 4 [A, red.] so it stands on (12,4).  
10 Donna But… But it will show what the area is.  
11 Elin  6 and then… Wait for a second... P related with the square by.. By ... the 

distance to the square will always be … will always be…  
12 Donna Isn’t it just that every time it is drawn longer up, then it is showing the area. 

It is doing it…  
Instrumentation profile. The task aims at identifying the characteristics of the x- and the y-
coordinate for P. Looking at the mathematical knowledge in play, Elin and Donna identify that P 
moves when dragging Point A, yet, they only focus on the y-coordinate for P. Donna finds that P is 
“showing the area” of the rectangle (lines 2, 10 & 12), which is the closed they come to the aim. Elin 
also talks about the distance between P and the rectangle (lines 9 and 11); it is evident that she 
identifies the distance from the rectangle to Point P in the template which is not the relationship aimed 
to find. Overall, the excerpt indicates a pre-functional understanding as it primarily focuses on one 
coordinate (Ellis et al., 2013). Covariation is not addressed, as the dynamic features are not exploited 
with regard to the characteristics of P’s coordinates. Informational tools: The template acts as an 
information tool, yet particularly from line 2 on it serves as a static representation that the two students 
do not interact with. Donna only exploits the dynamic features of the tool in relation to the geometrical 
properties, however prior to this excerpt. In addition, they do not utilise each other as resources. 
Strategies: The students follow two strategies, dragging at the beginning only and relating numerical 
features in the template in an unsystematic manner. Summing up, both Elin and Donna show parts of 
a mechanical and a random work method. The mechanical work method is identified when dragging, 
yet their difficulties relating Point P to the rectangle, both with or without the tool, indicates a random 
profile. 
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Mathematical communication. Listener and speaker: Both students are actively speaking, but they 
are not listening, as they are not building upon each other’s expressions. This shows a lack of turn-
taking and verbal integrity. Media of communication: The students communicate orally utilising the 
template. Communicational genre: Their communication is empractical as it is only understandable 
by observing their activity, as there is a lack of turn-taking, open-endedness and verbal integrity. Elin 
utilises the word square (lines 7 and 11), which is an incorrect name of the figure although she had 
earlier identified the figure as a rectangle. Elin’s way of using the template is static, visible in her 
expressions and use of the word “stands” (in line 9), thus indicating tool-idling empractical 
mathematical communication. Donna has embedded the dynamicity from the tool into her 
communication based on her dragging, and she shows tool-embedded empractical mathematical 
communication. In both ways of communicating, communication competency is not exercised. 

Excerpt 2: Negotiation and Further Investigation  
This dialogue is the sequel of excerpt 1, meaning that Elin responds to Donna (line 12) in line 13 

13 Elin 4... 12... what? [Elin drags point A]. Is it right what you are saying? Ups. [Elin 
drags accidentally point D].  

14 Donna You have to go back then [Donna points to the “regret”-button at Elin’s 
computer and the figure comes back to the original one].  

15 Elin Like this. Uh. If you put this one up to 8 [the height of AB is then 8]. So it is 
up on 8… times 3... So it is on [she moves around the coordinate making P 
visible]. 8, 16, 24… It is right! [Responding back to Donna].  

16 Donna Yes. What are we supposed to write then?  
17 Elin The relation is that Point P then stands on  
18 Donna On the area 
19 Elin The number there is  
20 Donna The area of the figure  
21 Elin  Yes [a bit doubting] 

Instrumentation profiles. Mathematical knowledge: In line 13, Elin becomes aware of the relation 
between the rectangle’s area and Point P’s y-coordinate. P’s x-coordinate is still not taken into 
account, but the rectangle’s width is implicitly used in the relationship between the height of the 
rectangle and the y-coordinate of y (line 15). Covariation is not addressed. Information tools: 
GeoGebra again serves both static and dynamic purposes. Elin utilises dragging to gain information 
about P and the rectangle (line 15). Then, Elin stops using the tool again and utilizes the template as 
a static representation again. Elin begins to listen to Donna, making each other into a resource. 
Strategies: The students identify numbers and compare them; they perform simple calculations and 
validate their results while dragging. Summing up, particularly Elin shows a mechanical work method 
in this excerpt based on simple investigations in GeoGebra and the accumulation of results stemming 
from dragging. Donna mainly participates on a practical level, while Donna shows Elin how to use 
the “regret”-button (line 14), indicating a random profile for Donna due to difficulties.   

Mathematical communication. Listener and speaker: In excerpt 2, Elin begins to listen to Donna 
(line 13), showing turn-taking and verbal integrity. However, there is also unequal participation, since 
Elin’s expression indicates the assumption that Donna understands wrongly. Media of 
communication: Oral communication and GeoGebra. Their oral communication is only 
understandable when seeing the use of the tool, as it is embedded in the practical activity. 
Communicational genre: The students communicate empractically as they are still immersed in the 
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practical activity. This induces that the communication competency is only exercised in a much-
reduced way. In parts of Excerpt 2, the tool is idle and dynamicity is ignored.   

Excerpt 3: Characterising the x- and the y-Coordinate 
This excerpt continues as excerpt 2 stops.  

22  Donna  [reading from task 3] summarize your results from task 2; write here what 
you agreed upon. 

23  Elin  But we also have to find out for point P what characterises the y- and x-
coordinate? [Referring back to subtask 2] 

24 Donna  What? 
25 Elin Side length times 3, because it says that it is 4, so 4 -8- 12, so if it is on 6, then 

it will be at 18 [Elin drags point A to get the height of AB to be 6, and P is at 
(6, 18)]. If I go to 8, it should be at 24 [she drags and tests again] 

26 Elin Side length for the rectangle. Side length for the rectangle times 3. n times 3. 
n times 3 equals 3.  

27 Donna Isn’t just like that  
28  Elin Wait a bit. I have an idea for a formula. If you say that n, n that is the side 

length. No x times 3 equals with.  No, wait. Now I am lost. Now I know what 
the area is. The area is x, y times 3 equals 3 y times 3 equals x. x squared 

Hereafter, the students keep trying to clarify the coordinates, yet without getting closer to the solution. 

Instrumentation profiles. Mathematical knowledge: In this excerpt, the students again try to make 
sense of the x- and the y-coordinate, when they take a numerical view. Yet, understanding is lacking 
as Elin mixes up the x- and y-coordinates (line 28). They still show a pre-conceptual understanding 
of functions. They do not address the concept of correspondence, as they mix up x and y. In addition, 
Elin also adds a new variable, n. Information tools: They use GeoGebra – again static and dynamic. 
Then, they bring n into the dialogue, which may relate to earlier work. Strategies: Dragging is utilised 
as a strategy to test conjectures (line 25). However, the students’ numerical view is reinforced by 
introducing the new variable, n, which normally is used for a natural number. However, the use of n 
could also be identified as a copy-paste strategy from earlier work involving formulas (line 26). 
Summing up, Elin works on the task showing characteristics of a mechanical and a random profile 
again. As Donna is not doing a lot of work, we cannot identify her profile in this excerpt. 

Mathematical communication. Listener and speaker: Again, both speak, but without listening to 
one another: As Donna believes that they are done, and Elin wants to keep on working, they do not 
share the same goal, hence, their dialogue becomes complicated. Media of communication: They are 
communicating orally based on the static elements in the template. Communicational genre: Their 
communication is still empractical. Terms are used as keywords to serve the identified pattern, which 
emerged during their practical activity: what they see is what they get without conceptualizing. 
Overall, the students’ communication ignores the dynamicity of the template; hence, it is tool-idling. 

DISCUSSION: TWO WAYS OF EMPRACTICAL MATHEMATICAL COMMUNICATION  
The purpose of this study was to gain a deeper understanding of two ways of empractical 
mathematical communication, tool-embedded and tool-idling, which we have previously identified 
(Bach & Bikner-Ahsbahs, accepted). To do so, we have analysed the students’ solving of a task 
focusing on functions as covariation supported by dragging, the key feature for the interactive 
dynamic environment of GeoGebra (Johnson & McClintock, 2018). The results reconfirm our 
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previous results showing that both kinds of empractical communication correspond to mechanical 
and/or random instrumentation profiles (Bach & Bikner-Ahsbahs, 2020; accepted). This seems to 
have consequences for activating mathematical communication competency and it reflects the 
students’ understanding of functions as covariation, which will now be explained. 

Originally, instrumentation profiles were developed for CAS (Guin & Trouche, 1998). As 
instrumentation processes vary depending on which tool is used (Trouche & Drijvers, 2010; Artigue 
& Trouche, 2021), the instrumentation profiles had to be adjusted for DGE due to its key feature of 
dragging (Bach & Bikner-Ahsbahs, accepted). Due to the tight relation of empractical communication 
to the practical activity with the tool, the two students’ communication is closely related to DGE and 
the instrumentation of dragging. In tool-embedded communication, the dynamic mathematical 
aspects are exploited by dragging, which makes the students’ expressions more dynamic potentially 
supporting the conceptualizing of functions as covariations. This is different for tool-idling 
communication as it rather refers to the template in an image-like static manner. Earlier research 
showed that dragging could support understanding functions as covariation (Johnson & McClintock, 
2018). However, in contrast to Johnson and McClintock’s result, Donna and Elin do not show an 
understanding of covariation as dragging does not serve as a resource for their understanding of 
functions (Arzarello et al., 2002). A possible explanation is that understanding what happens 
mathematically during dragging deeply depends on the type of instrumentation, which determines the 
level of conceptualizing. A random and mechanical way of using dragging is only superficially related 
to an in-depth understanding of covariation. 

Further, the analyses of the excerpts reveal that the students’ communication does not involve active 
listening. This is evidenced by the fact that the students’ oral expressions do not build on each other’s 
ideas, a key characteristic for empractical communication in general (O’Connell & Kowal, 2012). 
Therefore, their empractical communication cannot serve as a resource for learning, which normally 
is essential in an instrumentation process (Guin & Trouche, 1998). The students’ instrumentation 
profiles likewise force them to communicate empractically. Thus, we observe a mutual dependence 
between empractical communication and the instrumentation process, which adheres to the students’ 
conceptualization of functions as covariation on a pre-level. 

An essential part of mathematical communication competency is the ability to interpret and 
understand others’ expressions (Niss & Højgaard, 2019), but empractical communication does not 
support this because therein active listening is not practised (O’Connell & Kowal, 2012). When Elin 
and Donna show mechanical profiles, they tend to refer to the tool instead of mathematics, and when 
they show random profiles, they both experience difficulties with the mathematics in play and the 
tool. Therefore, the two instrumentation profiles do not include a precise mathematical language, 
hence, they do not exercise mathematical communication competency.  

All in all, neither tool-idling nor tool-embedded empractical mathematical communication exercise 
mathematical communication competency. In addition, our analyses also indicate why mathematical 
communication competency and the instrumentation of a digital tool cannot well be developed 
simultaneously. (1) Empractical communication hinders students to exercise communication 
competency and (2) random and mechanical instrumentation do not include the conceptualizing, such 
as functions as covariation, which is needed to further develop mathematical language for 
mathematical communication. Hence, empractical communication and random and mechanical 
instrumentation mutually impede each other, constraining mathematical communication competency 
to be developed. This result finally raises the question of what characteristics the design of a teaching-
learning arrangement should have to support mathematical communication as a goal in itself as well 
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as overcoming random and mechanical instrumentation profiles. As our research is limited to some 
case studies, further research is needed to explore this problem and solve this design issue. 
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Universities of technology are increasingly looking for ways to facilitate individual student study 
paths, moving away from a prescribed sequence of courses. In the envisaged modularised curricula, 
authentic engineering tasks or forms of Challenge-Based learning play an important role (Gallahar & 
Savage, 2020). Students may need particular mathematical knowledge in order to successfully solve 
these engineering tasks or problems. Modularisation of mathematics courses is considered a way to 
provide students with the required knowledge when they need it during their education at the 
university or even after their graduation. Modularisation involves dividing the learning process into 
relatively small independent curriculum packages (modules) (Kiliç & Pepin, 2020). Digital 
technology is used for their provision and access. 
In this poster presentation, we report on a study at a university of technology in the Netherlands. We 
posed the following research question: In which ways can modularised courses involving 
mathematics for engineering education be enhanced for the benefit of student learning? 
In terms of data collection, we observed a modular course requiring mathematical knowledge of 
statistics and probability. The course consisted of three modules, which were enacted sequentially 
and assessed separately. The first module addressed mathematical pre-knowledge that was required 
to understand the subsequent modules. The second and third modules concerned embedded systems 
and their modelling, and used knowledge from the first module. We conducted interviews with course 
instructors (N=5), selected students (N=6), and university employees (e.g., deans, education directors, 
teacher support) (N=4). In the interviews, we asked the course instructors and university staff about 
the conditions for effective modularisation of courses and their specific experiences with modular 
courses. We asked the students about their experiences in modular courses and their expectations 
regarding modular courses in general. We asked how guidance and support in modular courses could 
help for their learning, in particular how to connect mathematical knowledge to their disciplinary 
knowledge and skills. Moreover, we asked how modularisation could help students to develop 
themselves in the engineering profession. We analysed the data using a grounded theory approach 
(Strauss & Corbin, 1994). 
Four main themes emerged from the interview data that are likely to have an impact on modular 
course design: (1) the importance of connectivity, (2) the role of mathematics knowledge in 
engineering education, (3) the need for technological support, and (4) practical related issues 
regarding the sequencing of learning activities and assessment. Out of these themes, specific 
suggestions were formulated to enhance modularised courses involving mathematics: (a) clear outline 
of dependencies within and between modules; (b) provision of flexible and adaptive technology-
based resources catering for diverse student backgrounds and needs; (c) identification of 
mathematical pre-knowledge for each module involving mathematics; (d) support for students and 
instructors to bridge the gap between general and applied mathematics knowledge in engineering 
modules; (e) support of students (e.g. via technological means) to follow the module flow; and (f) 
provision of learning activities and assessment to support self-directed student learning.  
According to the respondents, mathematics modules need to be well-connected to each other and 

mailto:a.kilic@tue.nl;%20%20z.d.q.p.kock@tue.nl


 

ICTMT 15 Copenhagen 233 

 

tailored to each engineering program in which they will be used in order to to make them fit into the 
learning lines of the curricula and to create ‘undisturbed’ student learning paths. These connections 
might be realised by a self-explanatory module structure and by flexible and adaptive resources for 
learning, allowing for differentiation. To meet these demands, a technologically enhanced learning 
environment would be required. Such a system might also be used to support students and instructors: 
guiding students (e.g. with digital self-assessment/feedback) on how to accomplish their goals with 
the help of the knowledge and skills they develop using the modules and supporting instructors in 
terms of coherence of their modularised courses. Regarding the assessment procedure, unlike 
conventional courses, assisting students at particular times before final assessment will be difficult in 
the constructed and pressured form of modular courses. Therefore, assessment usually takes place at 
the end of each module (that spread over the semester). Moreover, structured and iterative formative 
feedback might help students to become autonomous learners. Providing feedback on student 
progress throughout the module will help students to know where they are in their knowledge 
development and to develop metacognitive strategies (Pepin & Kock, 2021).  
Critical for modular course design and use seems to be the concept of connectivity (Pepin, 2021) that 
refers to the links and relations made (1)  within the mathematical module content (e.g., between 
different mathematical representations; intra-modular connectivity); (2) between modules and 
courses (e.g., how the contents of different modules are related; extra-modular connectivity). An 
appropriate level of extra-modular connectivity is necessary for students to develop their own 
meaningful study paths and meet curriculum requirements when a prescribed sequence of courses is 
no longer available. Moreover, connections made between a mathematical module and engineering 
applications of mathematics will help students give meaning to the mathematical content. A sufficient 
level of intra-modular connectivity appears essential for students to develop a rich network of 
mathematical concepts and, in this way, a comprehensive appreciation and understanding of the 
mathematics itself (Pepin, 2021).  

As far as we are aware, the electronic learning environments used at universities of technology do not 
generally offer the levels of connectivity we have discussed here. Hence, technological developments 
of these systems need to be considered. Moreover, teachers and educational designers who configure 
the systems need to be aware of the importance of connectivity to enable the full potential of modular 
mathematics courses in engineering education.  
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In traditional group work in mathematics, handwriting is a relevant element to enable reasoning, for 
instance, by supporting the generation of ideas or the storing of information. However, as COVID-
19 has forced students to learn mathematics over distance, trad½itional handwriting cannot be used 
anymore during group work. To address this issue, this exploratory study investigated the question 
of how students can use handwriting in a mobile-learning setting via Zoom, in which students use 
tablets and smartpens to collaborate over distance. It was found that, compared to traditional group 
work with pen-and-paper, the distance collaboration setup allows for handwriting to become a syn-
chronous collaboration tool, for example, enabling the individual development of ideas that can be 
extended by peers. More research is needed to investigate the particular epistemic role of handwriting 
and, particularly, the role of handwriting with smartpens in distance collaboration settings.  

Keywords: Distance collaboration, mathematical reasoning, mobile learning, writing. 

INTRODUCTION 
Writing in university mathematics has different functions. Firstly, as a means of documenting and 
consolidating work (Heintz, 2000), secondly, to communicate with peers, and thirdly, to publish in 
academic journals (Burton & Morgan, 2000). During collaborative activities where learners negotiate 
mathematics, writing has a communicative purpose, as it allows learners to realize mathematical 
objects through symbolic, graphical, or concrete representations (Duval, 2006) and also through 
vernacular language (Sfard, 2008). For instance, the area of a triangle is not a tangible entity but can 
be realized as an object through the symbolic representation 𝐴𝐴 = 1

2
∙ 𝑎𝑎 ∙ ℎ or by drawing an arbitrary 

triangle. In this form, writing is mainly happening in the form of handwriting to document 
mathematical work. Accordingly, handwriting in mathematics is a reasoning tool that allows learners 
to document their work with mathematical objects, and through this, make this work applicable for 
negotiations and reasoning. 

Traditionally, mathematical handwriting is based on pen-and-paper. As such, it was found that 
blackboards and paper are very relevant for communicating mathematics in a face-to-face situation, 
as they provide material links to previous mathematical reasoning, which helps to avoid 
communicational breakdowns (Misfeldt, 2006). It was also found that computers do not help in this 
same way in face-to-face communications (Misfeldt, 2006).  

With the ubiquity of tablet computers, which provide smart pen functionality, this stance towards 
computers for facilitating handwriting in communication needs to be revisited. Particularly, with the 
COVID-19 pandemic, students were forced to collaborate over distance, being relegated to use 
computers for communicational purposes, even though these might be counterproductive for 
mathematical communication. In fact, the notion of face-to-face communication changes now that 
distance collaboration tools such as MS Teams or Zoom are being used frequently, which allows face-
to-face communication over distance. Yet, there is little research on how writing functions in these 
“new” face-to-face collaborations over distance in a university mathematics setting.  
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THEORY 
With respect to the functions of handwriting in mathematics, Misfeldt (2006) provides a 
categorization of the purposes of traditional handwriting in mathematics, of which the following are 
relevant for the here investigated issue: 

1. Heuristic treatment: Learners heuristically come up with ideas, try them out and make 
connections between them. 

2. Control treatment: Learners engage in a deeper investigation of their heuristic ideas. Control 
treatment can take the form of an investigation of a proposition or an open-ended 
investigation, for example, by means of performing a calculation.  

3. Information storage: Learners write in order to save information for later access and use. 
4. Communication: Learners use handwriting for communication in various forms, such as 

annotating existing text or commenting on ideas (Misfeldt, 2006, p. 27).  

In particular, Misfeldt found that the communicative function of handwriting can come in the form 
of public or private communication. The public function of handwriting consists of students using 
written signs to communicate an idea or previously written signs as a deictic or gestural reference in 
oral communication. The private function of handwriting consists of learners using writing to create 
a private space for developing new ideas on their own, without immediately making these ideas public 
to the rest of the group (Misfeldt, 2006).  

With respect to hybrid collaboration, the incongruence between computer code for writing 
formulas/diagrams and the conventionalized mathematical formulas that can be easily used during 
handwriting can lead to a breakdown of communication, hindering learners from using computer 
writing for public and private communication (Misfeldt, 2006). In other words, hybrid collaborations 
with traditional computers without touch functionality can hinder students’ collaboration in 
mathematics, as it does not allow for convenient use of writing for the above-described four functions 
of mathematical writing, and in particular, writing for public communication purposes.  

Yet, mobile technology has changed the notion of computers, allowing for new forms of collaborative 
learning (Schuck et al., 2017). Mobile technology enables hybrid forms of communication, where 
students can collaborate over distance, as learners can see each other, screens can be shared (Pegrum 
et al., 2013), material can be distributed, or questions can be discussed via social media (Simonova, 
2016) or tools such as MS Teams/Zoom. This form of hybrid collaboration is further supported by 
having immediate access to digital resources through a mobile network connection. As a result, 
learning can occur at any place or at any time, in collaboration with peers or even experts all over the 
world (El-Hussein & Cronje, 2010; Pegrum et al., 2013).  

Thus, with tablet computers and smartpens, the problem of the inconvenience of using writing for 
public communication purposes could be alleviated, as it provides a convenient way for students to 
use handwriting in distance collaboration setups. However, there is a lack of research that addresses 
the issue of how university students use handwriting during distance collaboration with tablet 
computers and smartpens.  

Therefore, this paper discussed the following research question: 

With what purposes do students use handwriting in distance collaboration settings, where the 
distance collaboration is implemented with tablet computers and smartpens?  
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METHODOLOGY 
In an exploratory case study, five groups of two university students (Groups A–E) volunteered to take 
part in the study presented here. The students were asked to work collaboratively on a proof in vector 
geometry, which was a familiar topic for students. They were recruited from a first-year course on 
linear algebra, which was taught in English as Medium of Instruction at a technical university in the 
Netherlands. The students were mostly Bachelor students of applied mathematics or computer 
science. They were asked to collaborate over distance in a Zoom meeting, using iPads and smartpens. 
Students were asked to work in English, but Dutch-speaking students sometimes used Dutch during 
their work. The students reported that they experienced this setup as highly relevant because at the 
time of the study, they experienced a hard lockdown with limited opportunities for collaboration. 

For the purpose of this study, a variety of tools to enable Distance Collaboration was used:  

• Web conferencing tool: Zoom (iPad app).   
• Tablet: Apple iPad tablets.  
• Smart Pen: Apple Pencils. 
• Online whiteboard: Students worked on a shared PDF-file, which acted as a whiteboard for 

enabling handwriting.  
• Keyboard: Apple smart keyboards (to enable proof-writing).  
• Further resources: The lecture script from the linear algebra course was given to students in 

the form of a PDF that they could access on the iPad.  
The distance collaboration was simulated in a laboratory setting by asking students to collaborate 
from different rooms on campus. The data collection was realized with the video recording function 
of the Zoom app, resulting in videos where students’ conversations and their writing on the white-
board were captured simultaneously. Zoom was chosen because it provided the functionality of screen 
recording for data analysis purposes, the possibility to use a PDF as a whiteboard so that the task 
could be displayed on the students’ writing space, and the integration of handwriting via a smartpen.  

The students’ collaborations were supervised by an interviewer, who provided students with help for 
using Zoom as well as content-related hints to ensure students’ continued engagement with the 
proving task. The students were asked to prove the theorem shown in Figure 1.  

 

Figure 1. Theorem that students were asked to prove 

Afterwards, the video data was transcribed. The transcripts were analyzed using inductive content 
analytical methods (Mayring, 2015). Firstly, in a segmentation step, instances of use of handwritings 
were identified, and the associated episodes inventoried. Secondly, by constant comparing and 
contrasting of these episodes with respect to the writing purpose (who is being addressed in the text), 
two main categories were found (general vs. mathematical purpose). Thirdly, all episodes falling 
under one category were further analyzed, resulting in a typology of episodes with similar usages of 
handwriting during distance collaboration. In this step, the above-described list of purposes of writing 
in mathematics was used as sensitizing concepts. Accordingly, the episodes below represent 
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idealisations of purposes of handwriting, with some groups utilizing multiple purposes at different 
times in their work. The different types of uses of handwriting are presented in the following.  

RESULTS 
Overall, the analysis found two different purposes for handwriting during distance collaboration on 
mathematical proving. Firstly, students used handwriting with smartpens for the general purpose to 
enable or manage the process of collaboration (see General Purposes 1 and 2). Secondly, students 
used handwriting with smartpens for a decidedly mathematical purpose, namely the purpose of 
mathematical problem solving, in line with notions that conceptualize proving as a problem-solving 
process (see Mathematical Purposes 1 to 3).  

4.1. General Purpose 1: Explicit Reference Tool to Enable Communication in the Collaboration 
Process 

It was found that handwriting can be a general reference tool to capture ideas in the process of 
collaboration, that is, with a general purpose. During this use of handwriting, students simultaneously 
use handwriting and oral communication, verbalizing their writing while they write. This use of 
handwriting seems to support information storage and public communication at the same time, 
allowing the other student to follow the thinking process of the other student. However, there was 
only one instance of this use in the data.  

Group B, Minutes 38:13 – 39:44 

Dirk: Yeah, the green ones are easier, so [refers to green lines in a previously drawn 
triangle] 

Carl: [writes more and reads aloud what he writes] 

Dirk: Good point. How do you find CDE? 

Carl: You have to find the intersection point of AF and then … let’s take BD [carries on 
writing and reading loud]. I have to make the line BD, right? 

In the episode, a student represents the vertices of a triangle, using handwriting to express vertices in 
their vector representation. Here, the use of handwriting as a reference tool allows the student Dirk 
to follow the other student Carl. This enables both students to ask each other questions and to answer 
them. Here, students also refer to their drawing, in this case as “the green ones” with which he refers 
to green elements in their drawing.  

4.2. General Purpose 2: Structuring the Collaboration Process 
In this category, students use handwriting with the explicit general purpose of structuring their 
collaboration process. In these episodes, the students talk about how to best capture their work. In 
other words, the students work on the metalevel of how to best use handwriting during their proof 
writing. As the transcript below illustrates, the student Esha explicitly names the function of 
handwriting for accomplishing a “more concrete idea of what we are doing”.  

Group C: Minutes 43:59 – 44:09 

Esha: Yeah, I think you can start to write it down, so we have a more concrete idea of 
what we are doing. 

Faiza: Wait, I want to first draw [erases]. I am going to draw a non-conventional triangle. 
[starts drawing and writing] 
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This episode reminds of the function of handwriting for heuristic treatment, as the student Esha 
explicitly mentions that they intend to form a more concrete idea.  

4.3. Mathematical Purpose 1: Explanation of Mathematical Thinking to Partner  
With a specific mathematic purpose, handwriting was used to explain a mathematical concept to the 
other student. This purpose seems to be a form of public communication. The case below highlights 
this purpose on the example of the definition of the orthocenter. In the episode, the student Hendrik 
makes use handwriting to make a drawing of the geometrical situation in the given proving task, in 
order to explain his thinking process to his partner Gemma. 

Group D: Minutes 19:24 – 20:56 

Hendrik: Yeah, I could not find orthocenter either. Ah, yes, okay. I found it. The orthocentre 
is the point … wait, I will just draw it. [draws] 

Hendrik: Yeah, the altitudes of the triangle passing through a common point. So it is… 
[draws] and, that one [draws]. The orthocenter of the medial triangle, the 
circumcentre of the triangle ABC… the medial triangle. Circumcenter. 
Perpendicular bisector. The line should draw the perpendicular bisector, right? 

Notably, in this episode, the student also uses the digital environment to connect different sources for 
meaning-making, namely the lecture script to look up a definition of orthocenter and handwriting to 
realize the definition in their drawing of a triangle. Hence, handwriting and the digital environment 
contribute to each other for the benefit of the students’ collaborative mathematical reasoning.  

The presented function reminds of the purpose of handwriting for public communication, as proposed 
by Misfeldt (2006). Here, this purpose of handwriting is tightly ingrained into the overall reasoning 
process of using established knowledge to generate ideas, enabled by a digital resource (the lecture 
script).  

4.4. Mathematical Purpose 2: Visualization of Mathematical Processes  
In the second mathematical purpose, students use handwriting to generate a drawing that represents 
the situation described in the proving task. As can be seen below, initiated by talk to structure the 
reasoning process (Marc in turn 1), the student Marc begins to draw a triangle. During this process, 
the students try to understand the concepts in the task description (orthocenter, medial triangle, 
circumcenter). As the student Marc is thinking aloud, his partner Lisa can contribute to this process 
(Turn 4).  

Group E, Minutes 16:14 – 16:59 

Marc: First, let’s draw a triangle? [draws] 

Lisa: Yeah. 

Marc: The definition here. [writes] I think. The orthocenter of the medial triangle DFE of 
an arbitrary [reads]. Erm, what is an orthocenter? 

Lisa:  Orthocenter, I think it’s orthogonal.   

Marc:  Ah! Of the medial triangle DFE. So the medial triangle is so [draws]. Is the 
circumcenter of triangle… 

Similar to the previous episode, the students use handwriting for public communication and for 
storing information. Particularly, the students use the drawing process as a means to understand the 
given task. This public communication ensures that the partner who is not writing can contribute to 
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the process and possibly check whether the concepts in the task have been adequately realized in the 
other student’s writing.  

4.5. Mathematical Purpose 3: Semi-Private Reasoning  
It was expected that in the distance collaboration setting, there would be few opportunities for 
students to use handwriting to create private spaces. Yet, contrary to this expectation, handwriting in 
the distance collaboration setup was also used for creating room for individual reasoning. The 
following episode highlights how the student Esha developed her reasoning, supported by 
handwriting. The other student, Faiza, gave Esha room to develop her thoughts. At the same time, as 
Esha’s reasoning was not private in the actual sense (that is, the other student can see the writing), 
Faiza can build on Esha’s reasoning afterwards.  

Group C: Minutes 18:47–21–57 

Esha: You want to compare the angles? I don’t [think it] will actually work. So, basically, 
if we take the center to be O… So far, let’s just assume that this is the circumcenter. 
So we have to [incomprehensible] the orthocenter is also the circumcenter.  
The orthocenter of DFE is the circumcenter of ABC. So, we know that [starts 
writing] OA = OB. It’s also obvious if you take the triangle OAB because OA = 
OB because it is the midpoint. So we have that, but how do we prove that the 
definition of the orthocenter is the perpendicular bisector? How do we prove that? 
Can we prove [incomprehensible] Yes, OK. 

Faiza: It would be easier to [incomprehensible] the perpendicular bisector if we, for some 
reason, know it is an equilateral triangle. Because we know… let’s say it was not 
in any case … it would not go to the same point for all of the… 

Thus, similar to creating private spaces in traditional group work settings, handwriting can support 
the creation of individual lines of reasoning in distance settings. Possibly, handwriting functions as a 
signal to the other student to give some room for developing such a line of reasoning. Interestingly, 
in contrast to a traditional setup, the distance collaboration ensures that handwriting cannot be 
completely private, giving the other student the opportunity to extend or build on the student’s line 
of reasoning. Therefore, in distance collaboration setups, handwriting does not support the creation 
of actual private spaces, but the creation of semi-private spaces for individual thought that, at that 
moment, is independent of the partner but can easily be taken up by the partner later on.  

CONCLUSION AND DISCUSSION 
This paper investigated the question of with what purposes do students use handwriting in distance 
collaboration settings, where the distance collaboration is implemented with tablet computers and 
smartpens. Overall, it was found that one can distinguish between two different purposes: a general 
purpose to structure the process of collaboration in the distance setting (see section 4.1. and 4.2.), and 
a specific mathematical purpose to support mathematical reasoning and fulfilling the mathematical 
task at hand (see section 4.3. to 4.5). 

The second purpose (section 4.3–4.5), which highlight particularly mathematical functions of 
handwriting, does remind of the heuristic functions found by Misfeldt (2006), but also showcase 
differences due to the distance setting (for example, private space in contrast with semi-private space). 

Overall, the main finding presented in this paper is that, in contrast to the traditional use of 
handwriting in pen-and-paper setups, the distance collaboration setup allows for handwriting to 
become a synchronous collaboration tool. This collaborative function is probably enabled by the fact 
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that handwriting is always public, that is, visible to the other group members. If implemented over a 
longer time, handwriting could become a fully utilized collaborative tool in distance collaboration, 
possibly fulfilling similar functions as oral communication. However, compared to traditional setups, 
handwriting has some limitations here, as deixis or gestures cannot be used to reference previously 
written elements. This limitation could well be an advantage, as it forces students to make implicit 
connections explicit in their reasoning process, e.g., by highlighting written elements or by color-
coding elements (as Mathematical Purpose 1).  

Following research in writing didactics, mathematical writing can be understood as a problem-solving 
process requiring writers to make decisions about how to represent mathematical objects and their 
manipulations (Kruse & Ruhmann, 2006). The mathematical purposes of writing found here support 
such a conceptualization of mathematical writing as a reasoning process. Accordingly, similar to 
findings in the secondary school context where mathematical writing was found to be beneficial for 
consolidating and reviewing knowledge (e.g., Colonnese et al., 2018), it can be suspected that 
mathematical writing, and particularly ‘forced’ public writing, can have similar benefits for 
collaboratively consolidating or reviewing knowledge in the process of proving. Hence, there is a 
further need to investigate the epistemic role of handwriting in learning mathematics. Such research 
could also address the question of whether handwriting on tablet computers could have further 
benefits compared to traditional handwriting in mathematics, as tablet computers allow students to 
integrate other resources into the writing process, such as the lecture script or online searches.  
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The purpose of this research is to investigate the types of feedback given by supervisors to preservice 
mathematics teachers (PSMTs) in a University-based Online Laboratory School (OLS). The OLS was 
founded during the Covid-19 pandemic aiming to provide online internship experiences. In the 
mathematics program for Spring 2020, there were 124 students (4th–7th grade) who participated in 
the school, and there were seven supervisors who gave feedback to 23 PSMTs. The feedback was 
gathered from three different recorded sources, moderator chat boxes, short reflection, and general 
meetings. Content analysis was used as the method of analysis. Feedback given during moderator 
chat boxes and short lesson meetings showed similarities and were mostly about ‘teaching process’, 
whereas the feedback pieces given during general meetings was about ‘planning’. We will discuss 
the benefits and disadvantages of the feedback given during OLS and its contribution to the field. 

Keywords: Feedback, mathematics, online teacher education, preservice teacher education.  

INTRODUCTION 
The primary role of the supervisor in clinical supervision is to strengthen the prospective mathematics 
teacher’s (PSMT) ability to assess his or her own teaching (Kent, 2001). Supervisors should move 
beyond the internship model to a critical, dialogical approach where PSMTs and supervisors work 
together to transform teaching and learning (Beck & Kosnik, 2010). PSMTs often depend on their 
supervisors’ feedback in helping them improve their pedagogical and personal skills (Ali & Al-
Adawi, 2013).    

Due to the Covid-19 pandemic, field experiences and internships for PSMTs became harder to create. 
Schools were on a break of face-to-face education, and PSMTs were not able to continue their 
internships and field experiences face-to-face. Hence, to eliminate this unexpected outcome, an 
Online Laboratory School (OLS) was founded in order to provide PSMTs with an online internship 
for five weeks for Spring 2020. OLS used a Learning management system, and PSMTs had their own 
virtual classrooms and real students. While PSMTs was teaching, there were supervisors observing 
and guiding them in the classrooms and provided feedback during (instant), after and in the general 
meeting. 

Online Teaching Internships 
With the evolution of online learning, it is imperative that teacher preparation programs offer not only 
online courses but also prepare preservice teachers to teach online (Feher & Graziano, 2016). Virtual 
internships can provide preservice teachers with the skills required to teach online, and according to 
Theele et al. (2019), it can also engage PSMTs in a course about teaching strategies to make PSMTs 
familiar with the teaching context without a real-life internship. Future teachers must have the skills 
and knowledge to teach effectively in online environments, as well as in traditional environments 
(Duncan & Barnett, 2009). Kennedy et al. (2013) state that the key in the online teaching experience 
is communication with the supervising teachers. Their findings show that communication needs to be 
constant and deep to advance PSMTs’ professional development. Quality mentors should provide 
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PSMTs with regular, timely, critical, and actionable feedback which relates to practice (Hounsell, 
McCune, Hounsell, & Litjens, 2008).  

There is a lack of research about how to supervise and how to provide well-designed feedback as a 
formative assessment in online internship settings. We believe that the supervising procedures of OLS 
can provide research with alternative ideas on how to support/assess the PSMTs in an online setting. 

OLS provides PSMTs with continuous support/feedback from supervisors for their professional 
development from three different sources. The first one is during the lesson implementation, from the 
moderator chat boxes, supervisors can give instant feedback, which is actionable. This kind of support 
enables PSMTs to take immediate action during their teaching. The other two are from the short 
reflection meetings and the general meetings enabling PSMTs to continue receiving detailed feedback 
and conduct a discussion enhancing their development. All these sources provide PSMTs with 
constant feedback/support from the supervisors and advance communication.  

This study investigates the new ways within the ‘new normal’ in teacher education and the different 
feedback types given for the development of PSMTs. The research question is: What kinds of 
feedback is given by the supervisors during and after the implementation of mathematics lessons in 
an OLS? 

METHODOLOGY 

Context 
The University within School Model 

The university applies a model called ‘University within School Model’ (Özcan, 2013). Within this 
model, PSMTs are in close contact with the schools from the beginning of their first year until they 
graduate by performing some volunteer work, as well as fulfilling field experiences requirements for 
some of their courses. PSMTs are required to complete four semesters of internships within the last 
two years of their program. During their internships, PSMTs are assigned as teacher assistants to one 
of the 13 schools in Istanbul that the department carefully chose to work with. Each PSMT has a 
mentor teacher and a university supervisor during this internship experience.  

During their internships, PSMTs work closely with their mentor teachers and receive constant 
feedback for their contributions and lesson implementations. In the first two semesters of their 
internship, PSMTs usually observe and assist the classroom teacher. In the last two semesters of their 
internship, they take the responsibility of planning and teaching the whole class at least ten times. 
The total internship hours range between 1,400–2,000. Right after the PSMT implements a lesson, 
the mentor teacher, supervisor, and the PSMT discuss the lesson in a three-way meeting. This was 
how the internship was designed and feedback was given before the Covid-19 pandemic.  

Online Laboratory School  

During the Covid-19 pandemic, the university took action to continue providing PSMTs with the 
experience they need no matter what, and the OLS was created in Spring 2020 (Tunç-Pekkan et al., 
2020). This experience helped PSMTs experience teaching under different circumstances before they 
graduated and prepared them for the online teaching environment.  

As Lave and Wenger (1991) stated, membership is an important condition for learning, and learning 
is relational. This relation and how such relations might be constructed in online laboratory school is 
a new area for research. In OLS, PSMTs and supervisors work closely together during lesson planning 
as well as implementation and reflection of their experiences. This is a new community and a different 
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situation than a physical one, so the membership construction and what is learned is different and 
needs to be investigated. Supervisors’ feedback is a foundational component in building such 
relationships; therefore, we investigated the nature of the feedback and its role in PSMTs’ 
development. 

OLS lasted five weeks, PSMTs taught  4th–7th grade mathematics. Blackboard Collaborate Ultra was 
used as the learning management system. There were three virtual classes for 4th-grade level, four 
virtual classes for 5th-grade level, two virtual classes for 6th-grade level, and three virtual classes for 
7th-grade level. Seven university supervisors guided 23 PSMTs throughout this online preparation 
program. In each virtual classroom, there were three PSMTs and at least one supervisor on duty: one 
main teacher, one PSMT as an assistant, and one PSMT as a substitute. We had three PSMTs in each 
lesson; in case, a  technical problem or a connection problem occurred with the main teacher, the 
other PSMTs could help.  

Blackboard Collaborate Ultra enabled PSMTs and the supervisors with a private chat section. The 
learning management system included the ‘Everyone Chat’ and the ‘Moderator Chat’.  

Moderator Chat Boxes. This feature was only available to those attending as moderators, i.e., the 
PSMTs and the supervisors. Moderator chat boxes came in handy because PSMTs were able to 
receive immediate feedback while teaching. The lessons were 35–40 minutes.  

Short Reflection Meetings. After the implementation of the lessons, the PSMTs and the supervisor 
conducted a meeting in order to discuss the lesson and provide feedback. These meetings were called 
short reflection meetings and usually lasted about 10-15 minutes.  

General Meetings. At the end of the day, all PSMTs and all supervisors met, and the general 
discussion of the lessons took place. These meetings were called general meetings and usually lasted 
about 1-1.5 hours.  

These three sources of feedback were recorded for each lesson implementation. Moderator chat boxes 
were recorded in written form, whereas the short reflection and the general meetings were video 
recorded.  

Data and Analysis 
For this study, we focused on a smaller part of the project; feedback was given to 4th and 6th-grade 
classroom teachers since the researchers were also teachers in those grades. Because of the 
convenience, knowing the data by heart, it is decided that the research team’s foci would be these 
grades. There were 11 moderator chat recordings and 12 short reflection meeting recordings for 4th 
grade, and there were seven moderator chat recordings and eight short reflection meetings for 6th-
grade levels. In addition to those, there were four general meeting recordings conducted from OLS.   

We used content analysis (Cohen et al., 2007) when analyzing the written chat box messages, 
recordings of the lessons and the meetings. The study is a qualitative and an interpretive study. In our 
study, we have analyzed the written chat box records and recordings of the meetings according to a 
coding scheme: this scheme was adapted using the formative assessment form that supervisors used 
for observing lessons (Yüksek Öğretim Kurumu, 1998; Bulunuz & Gürsoy, 2018). In that evaluation 
form, there were five categories: mathematical knowledge, planning, teaching process, classroom 
management, and communication. 

During the analysis, we have eliminated some of the feedback instances based on their quality and 
effectiveness to the PSMT. For instance, feedback statements  like ‘the lesson went well’, was not 
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included in our analysis. The reason is that they are ineffective with how the PSMTs leads the lesson; 
they are said to express opinions, not to provide further assistance to the PSMT.  

An example from data is presented below to discuss how we categorized the feedback.  

Mathematical Knowledge: The example lesson implementation (April 30, 2020, 4th grade) was 
about equivalent fractions. This data was taken from moderator chat box records. The PSMT (PSMT 
1) opened an online application (Conceptua Math)  to be used as an instructional tool. In the first 
question of the application (see Figure 1), there were two same size shapes, but they were divided 
into different pieces. The first shape was shaded, and 1/2 was written underneath. 

 

Figure 1. PSMT’s presentation of the problem related to finding an area and equivalent fraction of 1/2 

PSMT 1 presented the application and said: 

PSMT 1: The one on the right is divided into four pieces; how many of them have to be 
painted? UE (specific student) you tell me. (PSMT actually does not give a full 
instruction) 

Student: Is it because they need to be equal?  

PSMT 1: Yes, they will be exactly the same. 

Student: You need to paint two of them (PSMT 1 asks students how many were colored and 
gets ‘2’ as an answer and types ‘2’ in the numerator. She presents another problem; 
see Figure 2 (a)) 

  

(a)                                                                 (b) 

Figure 2 (a) PSMT’s presentation of a problem related to finding an equivalent fraction of 2/6. (b) 
Screenshot after PSMT made the discussion related to painting and writing fraction of 1/3. 

PSMT 1 : Who is going to answer in this question? İE should answer. 10 sec passed. 

İE: For them being equal right?  

PSMT 1: Yes. 
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Supervisor A wrote a question through the moderator chat box:  

Supervisor A: What do you mean by saying they have to be equal.  

In the meantime, in the main class, PSMT 1 talks: 
PSMT 1: I want them to look like the same; how many pieces do I need to paint for them to 

look the same? 
Student: One piece. 
PSMT 1: This is one piece (clicking on one piece). Does it look like the same? 
Student: It looks alike. 
PSMT 1: So, what should I write to the numerator?  
Student: You need to write one to the numerator. 
PSMT 1: Ok. Let’s look at this part, on one side, there is 1/3, and on the other side, there is 

2/6. When I represent these two figures, using equal shapes, don’t they look like 
same? (see Figure 2 (b)). 

Students: … yes  
PSMT 1: Have you heard of expansions of fractions? 
Some Students: … yes  

Supervisor A writes in the moderator chat box: What are equivalent fractions?  

PSMT 1: So, you heard of it…1/3, when we expand it, it becomes 2/6. 1/3 and 2/6 look like 
the same as a model. Are we all ok? Until this point? Because of this, I call them 
equivalent fractions… one over three is equivalent to two over six. Let’s keep 
going… (she moves to another question). 

Supervisor A writes in the moderator chat box: 

Of the same whole, if the parts show the same quantities of the whole, then they are equivalent 
fractions… You need to emphasize the equal wholes… We divide equal wholes into different 
parts, but those parts represent the same quantity, and we call that fraction (as in equivalent 
fraction). 

After posing and helping students to solve another similar problem, PSMT made a closing comment 
with using the feedback from the Supervisor A:  

PSMT 1: When we model equivalent fractions, we need to pay attention to some points, these 
models, they all have to be in equal size; is that ok? Secondly, the pieces that I 
made, for example, in the previous problem it was 1/3, I divided them into three 
pieces; these pieces have to be equal to each other. 

The feedback statement given by Supervisor A was counted as one instance since they were related 
to PSMTs’ knowledge related to equivalent fractions. Through the classroom instruction, PSMT 1 
seemed to give incomplete directions and to make not enough connections to the figures and goals of 
the lesson. She had the goal of teaching ‘equivalent fractions’ but this goal seemed to be implicit. 
Supervisor A tried to guide the PSMT 1 by asking her to make her problem statements complete and 
making her provide explanations related to ‘equivalent fractions’. Supervisor A seemed not to be 
satisfied as she guided through the lesson, which was also observed in her discussion in the short 
reflection meeting and in the general meeting.  
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Planning: This data was taken from the general meeting’s records. Feedback from Supervisor B 
made for the 4th-grade lesson plan about equivalent fractions:  

Models alone do not work on a fraction concept that they just learned. I gave them this suggestion; 
the best concept is half because students grasp the concept of half really good, and it’s real-life. 
Daily examples are also good and can be provided with visuals. We used to give videos to 5th  
graders, and it could also work with 4th graders as well. A pizza gets divided into two, and one-
piece is eaten or served, gets divided into four equal pieces, and two pieces are eaten or served. In 
the end, when they see they are all the same amount, students can make really good inferences 
here. 

This feedback is placed under the category of planning because it suggests an alternative approach to 
develop their lesson planning and an integration of appropriate materials into the lesson plan.  

For the remaining three categories, we will provide descriptors of the situations where supervisors 
gave feedback to PSMTs. Because of the limited space, we cannot give detailed examples. 

Teaching Process: There were many other situations that we coded as teaching process such as if a 
PSMT: a) Has used different teaching approaches in an efficient and flexible way during 
implementation, b) Has known when to directly answer students’ questions and when to turn it into 
a thinking opportunity for all,  c) Has tried to expose different understanding types and used them in 
her explaining, d) Has differentiated whether the students were following or not and adapted the flow 
of the lesson accordingly, e) Has used computer technology or other supplying materials in an 
efficient way, and the supervisor gave feedback based on them. 

Classroom Management: Included feedback based on situations such as PSMTs using time 
efficiently, efforts for the participation of all students, creating efficient routines, using positive and 
negative feedback in an efficient way 

Communication: Included feedback based on situations such as PSMTs’ voice tone, using 
understandable instructions and language, terminology etc. during teaching, using technology in an 
interactive way to make communication better 

RESULTS 
Different feedback types given by the supervisors, a) During lessons through moderator chat boxes 
(written), b) in Short Reflection Meetings videos, and c) General Meetings videos were coded using 
the framework explained earlier and presented in Table 1. There were three virtual 4th-grade classes 
and two virtual 6th-grade classes. 

There were 11 moderator chat box recordings of 4th-grade classes and seven moderator chat box 
recordings of 6th graders. There were 20 Short Reflection Meetings videos (12 from 4th-grade classes, 
and eight from 6th-grade classes). There were four General Meetings videos used for analysis. In 
Table 1, the source, type of feedback instances and frequencies are given. 

The most amount of feedback statements were placed under the category of ‘teaching process’ 
through moderator chat boxes, and these were especially given in the 4th-grade classrooms (see yellow 
highlighted in Table 1). The reason for this situation might be due to the nature of the teaching 
process, which is more open to immediate intervention.  

In short reflection meetings, the most amount of feedback statements were given under the category 
of ‘teaching process’. This situation can be explained due to these meetings being able to provide 
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more time and reflection opportunities to discuss the feedback given through moderator chat boxes 
in a deep manner.  

The most amount of feedback statements were given under the category of ‘planning’ through general 
meetings. The reason for this situation might be that during general meetings after each PSMT 
experienced teaching the subject in parallel classes, supervisors could also see the differences in 
implementations and could make a general analysis of what worked well or not in the plans. 

Feedback Source Moderator 
Chat Boxes 

Short 
Reflection 
Meetings 

 General 
Meetings Total 

 

Grade 4th  6th  4th 6th 4th 6th 4th 6th  

Mathematical Knowledge 10 2 6 2 4 2 20 6 26 

Planning 3 2 9 9 14 9 26 20 46 

Teaching Process 34 11 16 12 3 3 53 26 79 

Classroom Management 19 4 6 10 2 7 27 21 48 

Communication 4 3 4 9 0 4 8 16 24 

Total 70 22 41 42 23 25 134 89  

 92 83 48    

Table 1. Frequencies of different feedback statements, sources, and grade levels in OLS 

CONCLUSION AND DISCUSSION 
Generally, moderator chat boxes were used more for the 4th-grade level. This might be due to the fact 
that the 4th graders are younger in age and require more management, thus leading PSMTs to be more 
in need of feedback/guidance. Along with that, most of the PSMT did not teach 4th grade before. 
Therefore, PSMTs needed further support, and they received the most feedback through this source. 

The quality of the feedback given through the categories of classroom management and 
communication can be discussed from different perspectives. In our study, we witnessed that the 
feedback statements placed in classroom management categories are mostly about how PSMTs 
manage the participation of the students and the timing. In addition, feedback statements placed in 
the category of communication is mostly about the technical issues and the use of voice. If the 
internship was face-to-face, there is a probability that we would see more feedback given on these 
categories because, in a face-to-face classroom environment, feedback given could concentrate more 
on these categories. However, this case is different in an online setting. Classroom management and 
communication are considerably easier to deal with by PSMTs. Also, supervisors may have preferred 
to focus more on the other three categories since PSMTs needed more support for their improvement. 

In addition to these findings, PSMTs are able to make immediate changes in their actions while they 
teach and face the consequences of the actions immediately via moderator chat boxes. Besides 
moderator chat boxes, short reflection meetings and general meetings were opportunities for PSMTs 
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to receive deeper feedback/support. All of these qualities of the OLS makes the internship 
meaningful, and it strengthens the University Within School Model.  

We can also conclude that in the online teacher education process, PSMTs are eligible to receive more 
support than they used to when teacher education was face-to-face. 

Furthermore, the accuracy and the reliability of the findings from this study is not guaranteed to reflect 
generalizability. Analysis from a larger group should be examined in order to create more general 
outcomes. Our results are aimed to provide the literature with the alternative approaches to online 
internship and to online PSMT education. 
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THEORETICAL BACKGROUND 
Videos are gaining increasing importance in the educational setting. As video production has become 
easier, many videos can be found online. A frequent video format used is presenting a problem and a 
step-by-step solution (“worked example videos”) such as those found on the KhanAcademy 
(https://khanacademy.org/). Studies have shown that (paper-based) worked examples are beneficial 
in algorithmic domains (e.g., Sweller & Cooper, 1985) as well as in less-structured domains like 
modeling using heuristic worked examples (e.g., Zöttl et al., 2010). There has been little research on 
worked example videos in mathematics, but Kay and Edwards (2012) provide first results that this 
video format is beneficial in a middle school algorithmic domain as those kinds of videos have had a 
significant impact on short-term learning in their study. Moreover, there might be particular 
advantages for cooperative work, as shown, for example, in the subject of physics for dyads 
(Hausmann et al., 2008, 2009). This result is in line with the ICAP hypothesis (Chi & Wylie, 2014), 
which suggests that students’ learning outcome will increase with the mode of engagement 
(interactive > constructive > active > passive). When watching a video, a constructive mode of 
engagement would, for example, include making sense of the concepts displayed in the video to 
oneself (i.e., creating self-explanations). The interactive mode of engagement also involves the 
discussion with a peer about those concepts and thus constructing knowledge collaboratively (Chi & 
Wylie, 2014). 

The project “MoVie – Modeling with Videos to Enhance Students’ Competencies” explores to what 
extent videos can be used to foster heuristic skills in mathematics in a collaborative setting. It provides 
a framework for creating “heuristic worked example videos”, analyzes students’ behavior while 
working with those videos, and studies how they affect strategic knowledge and solution processes 
in the domain of modeling. 

RESEARCH QUESTIONS 
When students work with heuristic worked example videos in the domain of modeling, the following 
research questions emerge: 

RQ1: Which patterns do students show while working with the heuristic worked example videos?  

RQ2: How and to what extent do students articulate self-explanations while working with the 
integrated self-explanation prompts?  

RQ3: Which changes in terms of modeling-related strategic knowledge can be observed after 
working with the heuristic worked example videos?  

RQ4: Which changes in the solution process of modeling tasks can be observed after working 
with the heuristic worked example videos? 

mailto:laura.wirth@uni-muenster.de
mailto:greefrath@uni-muenster.de
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METHOD AND OUTLOOK 
In a laboratory study, dyads of 12th-grade students will work with heuristic worked example videos. 
The production of those worked example videos is based on guidelines from heuristic example 
research (Reiss & Renkl, 2002; Renkl, 2017) and is being combined with Mayer’s (2020) cognitive 
theory of multimedia learning. The videos are segmented based on a solution plan, with each segment 
displaying one step of the modeling process. Furthermore, the videos include an integrated break 
between each segment. They include self-explanation prompts and explicate used heuristics. The 
dyads will be videotaped in order to analyze the usage pattern and the communication (RQ1 and 
RQ2). A pretest and posttest containing a modeling-related strategic knowledge test and different 
modeling tasks are used to address RQ3 and RQ4. Stimulated recall interviews will be conducted to 
gain a deeper insight into example processing and the usage of heuristics.  

The goal of this study is to generate recommendations on how videos can be implemented in a 
collaborative and thus communicative context to help students develop modeling competency. 
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INTRODUCTION 
Learning and teaching geometry in schools and universities is considered a serious challenge (Jones 
& Tzekaki, 2016). Learning and teaching deductive geometry is considered even more challenging 
(Duval, 1998; Hartshorne, 2000). For decades, the professional community has been looking at how 
to tackle this challenge. In modern mathematics education, in particular, during the Covid-19 era, the 
use of digital technology seems to be relevant more than ever. The professional literature indicates 
that teaching mathematics using technological tools helps in the process of constructing an abstract 
knowledge of mathematics, and geometry, in particular (Lagrange et al., 2003). 

The FullProof platform has been designed to address the complex challenges of deductive geometric 
proofs, combining a smart algorithm with advanced pedagogical approaches, providing the users with 
an effective teaching and learning environment. 

THE FULLPROOF PLATFORM 
The FullProof platform supports various possible solutions of geometric proofs and enables 
pedagogical scaffolding such as interactive diagrams and smart clues. The platform provides the 
students with immediate, detailed, and personalized feedback on their solutions. The teacher receives 
automatically a set of reports that tracks the class progress, with options to zoom in on every 
individual in the class. During the past three years, the platform has been implemented successfully 
in dozens of middle schools, high schools and colleges. The platform is integrated naturally in all 
teaching and learning phases, including frontal teaching, remote (online) teaching, hybrid teaching, 
and self-guided practice. 

AIMS OF THE WORKSHOP 
The participants were introduced to FullProof’s capabilities through its interface, functionality and 
reports, followed by a discussion of its potential and consequences of its implementations. The 
workshop focused on both the students’ and teachers’ points of view as a base for a professional 
discussion.   

The workshop was in two parts. The first workshop focused on student options within the platform. 
The participants accessed and experienced the user side while solving questions using the platform. 
The second workshop focused on teacher options and on pedagogy, which was followed by a 
presentation of the results of research done with FullProof. 
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Each session concluded with a group brainstorming session. The main outcomes of the reflective 
discussions regarded the platform’s ability to accept any possible solution, provide personalized 
feedback and support the users throughout the learning process stages. 
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Linear functions are the first important example of mathematical models that students face; crucial 
to their understanding is the role of the slope, which is a complex concept due to its many different 
conceptualizations. Problems in understanding the slope are often caused by difficulties in 
connecting its different meanings. This paper presents an interactive task developed in a Digital 
Learning Environment aimed at introducing linear functions in grade 8 and approaching an 
interconnected concept of the slope. The task was proposed to 299 Italian students in a classroom-
based context. Through the analysis of a collective class discussion that occurred while solving this 
task, we show how the emergence of different conceptualizations of the slope can be elicited and 
supported by interactive technologies in a Digital Learning Environment.  

Keywords: Formative assessment, interactive digital learning environment, linear functions, 
mathematics education, slope. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

Linear Functions and the Slope 
Linear functions are one of the first mathematical models students face in their studies. They emerge 
within algebra, since they involve simple operations among numbers and variables, and they offer 
many prompts for reflecting on and understanding mathematical models. The first hurdle that students 
have to overcome when dealing with linear models is the concept of variable, which is often not well 
defined in school Mathematics. It can create confusion among the terms variable, unknown, 
parameter and their relations with numbers and constants (Schoenfeld & Arcavi, 1988). The second 
hurdle is the dependence between “x” and “y”, the variables through which argument and value are 
usually expressed. The concept of joint variation is one of the most problematic at school teaching. It 
seems that many difficulties with Mathematics, even at the university level, can be attributed to an 
underlying misunderstanding of this concept (Carlson et al., 2002). Joint variation is recurrent in 
secondary school Mathematics since several functions are studied with their properties and 
representation forms; linear functions are the first example through which this concept is approached. 
The third point that needs attention is the relationship between “m”, the slope, and “c”, the intercept, 
in the standard equation “y=m x+c” , which determines the trend of the line. A study by Bardini and 
Stacey (2006), focused on the understanding of m and c in linear functions, shows that, as expected, 
the slope is a more complex concept than the intercept. However, students tend to omit c as if it is not 
part of the function, maybe due to the little attention dedicated to the intercept compared to the slope 
in the classroom activities. Conversions among different semiotic registers (numeric, symbolic, 
graphic, and real-world context) seem to influence the students’ interpretation and understanding of 
these elements (Bardini & Stacey, 2006).  

The concept of slope is crucial for understanding linear functions and for the development of 
following important mathematical concepts, such as the derivative and differential equations 
(Rasmussen & King, 2000); its complexity and difficulty is probably due to its many 
conceptualizations, which could not be properly connected in the students’ mind (Stump, 1999). 
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Based on Stump’s work (1999), Moore-Russo and colleagues (2011) distinguished 11 different 
categories of the conceptualization of slope: geometric ratio (rise above run), algebraic ratio (change 
in y over x), physical property (steepness), functional property (constant rate of change), parametric 
coefficient (m), trigonometric conception (tangent of an angle), calculus conception (derivative), real-
word situation (static physical situations such as a ramp or dynamic functional situations), 
determining property (property that determines if the lines are parallel or perpendicular), behavior 
indicator (real number which indicates the increasing, decreasing, or horizontal trends of a line) and 
linear constant (the property which shows the lack of curvature on a line). Above all, it seems that 
developing the concept of slope as rate of change at an early stage is crucial to make sense of the 
algebraic and graphic-related meanings (Deniz & Kabael, 2017). An interesting vertical study by 
Gambini et al. (2020) in the Italian context tries to analyze how the understanding (and 
misunderstanding) of the concept of slope changes from grade 8 to 14 (from lower secondary school 
to university), using data from national standardized tests and university entry tests. From the results, 
they observe that students have trouble integrating algebraic thinking and meaning. By grade 8, 
mainly reasoning numerically, they should have acquired the concept of variation (functional and 
physical properties) associated with the slope of a linear structure. By grade 10, students should have 
associated the symbolic and graphic aspects (geometric and algebraic ratio), but it seems that they 
have abandoned the quantitative reasoning, which helps confer meaning to the involved objects. This 
split between the different interpretations of the slope continues and is consolidated in grades 13 and 
14 when the comprehension of the derivative concept would require integrating the different aspects, 
joining the mathematical formalism to the numeric, symbolic, and graphic aspects. What too often 
remains is the algebraic computations, disconnected by their meaning (Gambini et al., 2020). 

An Interactive Digital Learning Environment for Mathematics 
Interactive technologies are promising to be helpful in understanding dynamical concepts as linear 
functions and the slope. In this paper, the term “interactive” is intended in the Moreno and Mayer’s 
(2007) meaning, which is a property of the technology through which the student’s action is 
encouraged and where what happens next depends on this action. In previous work, we defined a 
Digital Learning Environment (DLE) as a learning ecosystem composed of a human part (the learning 
community), a technological part (constituted by a Learning Management System integrated with 
tools for doing and assessing Mathematics, populated by activities and resources, and by the devices 
to access the learning materials) and all the interrelationships among the components (interactions, 
methodologies, learning and teaching processes) (Barana & Marchisio, 2021). A DLE can enable 
learning and teaching in classroom-based, online, blended or hybrid modalities. The design of 
interactive activities in a DLE for this study follows Grabinger and Dunlap’s (1995) model, such that 
they: evolve from and are consistent with constructivist theories; promote study and investigation 
within authentic (i.e., realistic, meaningful, relevant, complex, and information-rich) contexts; 
encourage the growth of student responsibility, initiative, decision-making, and intentional learning; 
cultivate an atmosphere of knowledge-building learning communities that utilize collaborative 
learning among students and teachers; utilize dynamic, interdisciplinary, generative learning 
activities that promote high-level thinking processes to help students integrate new knowledge with 
old knowledge; and, assess student progress in content and learning-to-learn through realistic tasks 
and performances. 

This paper aims at investigating the following research question (RQ): how can interactive activities 
in a DLE help 8th-grade students approach linear functions and build an integrated concept of the 
slope? Based on the theoretical framework discussed above, in the following paragraphs, a teaching 
experiment is presented and discussed, with the purpose of providing an answer to this RQ.  
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METHODOLOGY 
To answer the RQ, we designed an interactive task aimed at approaching linear functions, and in 
particular the role of the intercept and the slope, using different interacting conceptualizations of the 
slope. It was implemented in an interactive worksheet using an Advanced Computing Environment 
(Maple) in an integrated Moodle platform. We proposed the task to 13 8th grade classes (299 students) 
in Turin (Italy). The experimentation took place in 2018, before the pandemic, in a classroom-based 
context; the researcher—author of this paper—helped the teachers manage the activities. The task was 
included in a wider path on formulas and functions (Barana & Marchisio, 2019). The activities were 
videotaped and successively selected, transcripted and analyzed according to the Moore-Russo and 
colleagues’ (2011) framework in order to identify how the different conceptualizations of the slope 
emerge in the DLE. 

The interactive task on which we focus in this paper is shown in Figure 1. The problem leads to 
exploring three different linear functions: one passing through the origin, one intersecting the x-axis, 
and one intersecting the y-axis. Students are asked to explore the numerical representation of the 
problem filling in the tables in the interactive file, which are initially empty. In the box below, graphs 
are interactively generated with points and lines using data from the tables. The tables and the 
interactive graphs help students reason and visualize the trend of the reading of a book by the three 
friends. The activity engages the learners asking them to insert the graph of their reading, envisaging 
the speed they would read the book with; thus, it opens up to explorations, comparisons, and 
discussions. A set of automatically graded questions completes the activity, focused on the graphs’ 
analysis, leading to writing the formulas through which it is possible to express the mathematical 
models. The questions are: (1) After how many days from the beginning of the Holyday will they end 
the book? (2) Marco is advantaged because he has already read 30 pages. After how many days will 
Valentina reach Marco? (3) Who reads faster from the day when they start reading? (4) How many 
days does it take Luca to read the book? (5) How fast should we read the book to have a vertical line? 
(6) Write three formulas that express the number of pages read by the three friends as a function of 
the Holiday days. (7) If the book was 300 pages long and the three friends would keep reading at the 
same pace, after how many days from the beginning of the holiday would Luca reach Valentina? 

This activity was carried out in the classroom: the task was displayed at the Interactive White Board 
(IWB), and the students worked on one task at the time in small groups, with paper and pen. Each 
step was discussed with the teacher and the researcher through the IWB, using the interactive 
worksheet and the automatically assessed questions to drive and support the discussion. Since the 
experiment was also taken in schools in disadvantaged socio-economic contexts, it was not possible 
to make students access the activities through digital devices in the classroom; however, the activity, 
together with other similar ones, was available in the DLE and accessible from home.  

RESULTS 
In all the classes, the activity started with a verbal description of the real context. Students had to 
translate it into a numeric register filling in some tables. The students moved from the tables to the 
graphic register, and drew the points and the lines on a cartesian plane. As the last step, they had to 
deduce the algebraic formulas for the models. We selected an excerpt, a part of a collective discussion 
that followed the graphs’ drawings, under the input of imagining how students themselves would read 
the book and add the trend of their reading to the other graphs. We present it in the following lines 
since it is meaningful to show the students’ understanding process of linear functions and slope. The 
discussion occurred in a school mainly attended by students from lower social classes. 
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Figure 4. Part of the interactive activity “The Holiday Book” on linear models. The activity, originally 
in Italian, has been translated into English for the comprehension of the paper. 

1  Researcher: Well, how would you read this book? 
2  Luigi: I would read one page per year.  
3  Researcher: One page per year? Let’s say one page per day. How would Luigi’s graph be 

if he reads one page per day? 
4  Camilla: Very little inclined. 
5 Researcher: Yes, how many days does he need to read the whole book? 
6 Class: 180 days. 
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7 Researcher: 180 days. Look how little its values increase from the horizontal axis. [She 
displays the line through the interactive worksheet at the IWB]. Ok. Is there 
someone who reads the book a little faster?  

8 Simone: I would read 20 pages per day.  
9 Researcher: So, 20 the first day, 40 the second… [filling in the table at the IWB and 

displaying the line]. This is the graph. How much time will he take to 
complete the book?  

10  Class: 9 days. 
11  Researcher: Ok. Anyone else? 
12  Cecilia: I would rest for two days, then start the book and read 20 pages per day.  
13  Researcher: [Filling in the table] Two days of rest, so we start from 0 and have 0 for the 

first two days. Then we reach 20 at the end of the third day, 40, 60, … This 
is the graph [displaying the graph of the function]. Cecilia, are you faster than 
Simone?  

14 Cecilia: Yes, I am the fastest one.  
15  Researcher: Are you sure? Indeed you are the first one to end the book.  
16  Cecilia: Yes, I meant that I finished the book before everyone else.  
17  Researcher: Yes, you finish the book one day before Valentina, but what about Simone? 

Who reads faster?  
18  Gianluca: They are the same.  
19  Researcher How do you understand it from the graph?  
20  Gianluca: Because they are parallel lines.  
21  Researcher: Exactly. The lines are parallel. Even if the book was very much longer, 

Cecilia would never reach Simone. They increase by the same number of 
pages each day, but Cecilia started later. Ok, is there anyone else who reads 
even faster than Cecilia? 

22  Mattias: If I work hard, I think I could read even 35 pages a day.   
23  Researcher: [After filling in the table and displaying the graph]. Ok, you can see that 

Mattias is faster than the others. How long does he take?  
24  Mattias: [Observing the graph] Less than 5 days.   
25  Researcher: Ok. Would anyone read even faster?    
26  Biagio: One time, I read a whole book in a day.  
27  Researcher: Ok. Let’s say that Biagio rests four days and then reads the whole book in one 

day. How would his graph be? 
28  Alessia: [miming an L] Horizontal until 4, and then vertical.  
29  Mattias: Parallel to the y-axis.  
30  Biagio: Yes, it’s like that [miming a vertical line with his hand]. 
31  Camilla: No, it’s not vertical! 
32  Andrea: She’s right. It cannot be vertical. The fourth and fifth points should be 

connected.  
33  Camilla: Yes, you have to connect the fourth day [pointing at the point (4,0) on the 

plane] to 180 [pointing at (5,180)]. 



 

ICTMT 15 Copenhagen 260 

 

34  Andrea: Yes, on the fifth day, he reads 180 pages.  
35  Alessia: But it’s more or less vertical.  
36  Andrea: Almost, but it’s not vertical.  
37  Researcher: [displaying the graph at the IWB] It’s very, very steep. At the end of the fourth 

day, he was at 0 pages, but at the end of the fifth day, he was at 180. If we 
imagine that he reads the same amount of pages each hour, we have a very 
steep line.  

38  Samuele: So, if he takes one second, would it be vertical? 
39  Researcher: How should he read the book to obtain a vertical graph? 
40  Luigi: He should have already read the book.  
41  Researcher: But if he had already read the book, he would start from 180, not from 0.  
42  Gianluca: He should take one second.  
43  Simone: Yes, but the graph would be inclined of the space of one second.  
44  Researcher: Exactly, there should be a little time which makes the line to be inclined.  
45  Samuele: That’s right. If there is a bit of time, there is a bit of inclination.  
46  Cecilia: There should not be any time at all.  
47  Camilla: Right, the time should be zero. 

Through this dialogue, we can notice how different conceptualizations of the slope emerge. We start 
with a real-word conceptualization (“one page a day”, lines 2 and 3) which translates to a physical 
property (“very little inclined”, line 4) through a functional property (the constant rate of change of 
which students had experienced while completing the tables). The students’ intuitions (lines 4 and 6) 
are confirmed by the interactive graph at the IWB. Thus they can experience the correspondence 
between a numeric approach to a graphic approach in studying linear functions. The same 
observations can be repeated in the discussion about Simone’s line. Here the researcher stresses the 
functional property (line 9) filling the table to build the graph. After that, she elicits a reference to the 
geometric ratio of the slope, asking students how much time he needs (horizontal shift) to complete 
the book (vertical shift). Cecilia’s line gives a prompt to speak about parallel lines and see the slope 
as an invariant for parallel lines (linear constant conceptualization). From here, the discussion focuses 
on increasing velocity in the real-world situation and seeing what happens to the line, with particular 
reference to the reduction of the horizontal shift to the limit case. In the end, the impossibility of 
having a vertical linear function emerges from the impossibility to reduce time to zero. The real-world 
conceptualization helps attribute a meaning to the functional and geometric properties and to connect 
different conceptualizations in a unique concept. From the discussion, we can also observe other 
prompts for analyzing other aspects of linear functions, such as horizontal ones (having zero slope, 
line 28), intercept (line 41 and previously analyzed drawing Marco’s read), and intersection with the 
x-axis (line 28 and, previously, Luca’s read). The following analysis, driven by the questions in the 
worksheet, aimed at also introducing the algebraic relations among variables and coefficients in a 
linear function, thus leading to the parametric coefficient conceptualization of the slope, and useful 
to connect also symbolic aspects to the numeric and graphic ones. Similar discussions took place in 
all the classes when solving this problem. In all the classes, all the students actively participated with 
interest in the discussion. The problem was comprehensible for everyone. The discussion about how 
they would have read the book actively engaged even the less interested students, such as Luigi, who 
usually disturbed his classmates. Thanks to the well-designed contextualization, even Luigi’s 
provocative answer could become a very interesting prompt for mathematical discussion: lines with 



 

ICTMT 15 Copenhagen 261 

 

a low slope. As a result, Luigi kept concentrated until the end of the discussion, when he proposed a 
new intuition, this time incorrect. 

The interactive worksheet supported the students’ discussion, conjectures and argumentations. The 
possibility to fill the interactive table and immediately generate lines in the graph below helped them 
visualize the correspondence between different registers and connect different conceptualizations of 
the slope. The worksheet also supported the teacher and the researcher in orchestrating the discussion 
and driving the class towards the creation of shared knowledge. Through this discussion, we could 
observe an interactive DLE composed of the class with the teacher and the researcher; the interactive 
task displayed at the IWB; interactions among the learning community, mainly consisting in 
dialogues, and between the community and the technologies. The discussion itself is part of the 
interactive DLE. The task follows Grabinger and Dunlap’s (1995) model. In particular: it promotes 
active learning; the context is relevant and meaningful; it engages students with their experience; it 
promotes collaboration and discussion; the activity is dynamic and supports the generation of 
understanding; the interactivity supports self-assessment. Similar tasks were repeated in the 
classroom during the following lessons and as online homework to facilitate students to generalize 
the acquired knowledge and transfer it to new cases. The interactivity and the automatic assessment 
helped students explore the other problematic situations and check their understanding step-by-step.  

CONCLUSION 
In conclusion, we can answer the RQ: “how can interactive activities in a DLE help 8th-grade students 
approach linear functions and build an integrated concept of the slope?”. The interactive task 
presented in this paper allowed students to examine the linear models identified by reading a book at 
a constant speed. Through the interactive worksheets, they could compare different graphs 
corresponding to reading with different speeds and observe how the graphs change when the book is 
started before or after the beginning of the holidays. The classroom discussion selected and shown in 
this paper allowed us to observe how different conceptualizations of the slope emerge while 
discussing collectively in a DLE. The interactive activities elicited the emergence of many of the 
different conceptualizations of the slope identified by Moore-Russo and colleagues (2011), in 
particular: real-world, functional property, physical property, geometric ratio, and linear constant. 
Through the following activities, the parametric coefficient and algebraic ratio were also introduced. 
They are the main conceptualizations accessible at grade 8; developing robust connections among 
these conceptualizations can open the path to an interconnected understanding of the slope at higher 
grades. Above all, the stress was posed on the constant rate of change of the function, which, in the 
literature, is indicated as crucial for the development of a unified concept of the slope. However, in 
order not to lose the numeric and graphic understanding achieved with this task, similar activities 
should be repeated in higher grades of instruction and adapted to encompass also the algebraic 
conceptualization. This is a big challenge, since in Italy, after grade 8, students change school and 
start their upper secondary path. This discontinuity in the students’ school life (change of teacher, 
class, friends, subjects, and methods) can reflect on the disconnection in building some fundamental 
concepts as the slope. Thus vertical projects, aimed at sharing vertical learning paths and using similar 
methodologies at different stages of education, and a focused teacher training, could be helpful to 
save these achievements and reinforce them to build solid mathematical knowledge. All the materials 
developed in this experimentation were shared with all the Italian teachers through the national 
Problem Posing and Solving Project (Brancaccio et al., 2015) with this goal. We aim at developing 
further this research, on the one hand, also examining the students’ results in the final tests, compared 
with that of a control group; on the other hand, developing similar activities for upper secondary 
school in order to include other more advanced conceptualizations of the slope.  
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Virtual reality (VR) is a new and innovative technology with potential for mathematics education. 
However, there has been little development and research in the area of VR and mathematics to date. 
In this paper, the opportunities and challenges related to VR technology in mathematics education 
are discussed using the example of a multiview projection VR application developed by the authors. 

Keywords: Geometry education, mixed reality, multiview projection, orthographic projection, virtual 
reality. 

INTRODUCTION 
The term virtual reality (VR) refers to an artificial reality created by special hardware and software 
that allows a user to interact relatively naturally with digital objects. This new form of human–
machine interface enables the development of innovative learning scenarios. The potential of such 
scenarios is explained in this paper using the example of a VR application for multiview projections 
developed by the authors. For this purpose, the basics of VR technology are discussed in the context 
of mathematics education. This is followed by a description and presentation of various approaches 
to the topic of multiview projections using haptic and digital educational resources. Subsequently, 
the developed VR application, Dreitafelprojektion-VR, is described and reflected upon from a 
teaching perspective. The conclusion discusses proposed directions for future research related to the 
VR app. The research on VR described in this paper is part of the project DigiMath4Edu at the 
University of Siegen [1]. 

VIRTUAL REALITY TECHNOLOGY IN MATHEMATICS EDUCATION 
VR technology is a form of computer graphics that creates a three-dimensional (3D) virtual 
environment with which a user can interact according to certain built-in rules. A frequently used 
definition of this technology is provided by Bryson (1996): 

Virtual reality, also called virtual environments, is a new interface paradigm that uses computers 
and human-computer interfaces to create the effect of a three-dimensional world in which the user 
interacts directly with virtual objects. (p. 62) 

Unlike traditional 3D computer graphics, VR systems do not offer a purely visual presentation but 
instead aim to provide a multisensory perception (visual, acoustic, haptic) in real time. Specific 3D 
displays are used to visually mediate the 3D content, typically using stereoscopic methods that present 
a different image to the left and right eye. Within the computer simulation, the user can interact with 
virtual objects in real time. For this purpose, 3D input devices are provided that (for example) 
recognize body movements or gestures and translate them into interactions (cf. Dörner, Broll, Jung, 
Grimm & Göbel, 2019). 

The main feature that distinguishes VR from other human–machine interfaces is so-called 
“immersion.” In a technical sense, this can be understood as the requirement that a user’s sensory 
impressions shall be addressed as comprehensively as possible by the output devices (cf. Dörner et 
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al., 2019). This can be achieved by isolating the user from the real environment as much as possible, 
while addressing as many of the user’s senses as possible through VR. VR targets to have the output 
device surround the user to the possible extent and to offer a vivid representation, rather than 
providing only a small field of view (cf. Slater & Wilbur, 1997). 

These new possibilities of VR technology have led to changed interactions between humans and 
machines: 

The promise of immersive virtual environments is one of a three-dimensional environment in 
which a user can directly perceive and interact with three-dimensional virtual objects. The 
underlying belief motivating most virtual reality (VR) research is that this will lead to more natural 
and effective human-computer interfaces. (Mine et al., 1997, p. 19) 

Compared to traditional human–machine interfaces, VR results in a particularly natural and intuitive 
interaction with the virtual 3D environment. While a completely natural interaction is not yet possible 
with current technology, interaction with the virtual world and the representation of this world via 
various sensory channels is becoming increasingly realistic. Consequently, VR systems give users 
the opportunity to gain experience in a virtual world. The term “presence” (sometimes also called 
“immersion”) is often used to describe these mental experiences: 

However, presence as discussed in literature related to immersive VR can most often be 
characterized by the concept of presence as transportation: people are usually considered “present” 
in an immersive VR when they report a sensation of being in the virtual world (“you are there”). 
(Schuemie et al., 2001, p. 184) 

The presence of a VR experience comprises three aspects. The location illusion suggests to the user 
that he or she is actually at the location represented by VR; the plausibility illusion makes the user 
perceive simulated events as if they were really happening; and involvement expresses how involved 
a user feels in a virtual environment (cf. Dörner et al., 2019). 

The most common form of VR systems are head-mounted displays (HMDs) — that is, displays 
positioned on the head directly in front of the user’s eyes. In this paper, we used the Oculus Quest, a 
standalone VR HMD. No computer is necessary to use the Oculus Quest, as calculations are 
performed by a system integrated into the HMD. Optical and acceleration sensors within the HMD 
and its controllers are used as input devices, which enables the precise detection of head movements, 
movements in space, and movements of the controllers. Further inputs can be made using buttons on 
the controllers. 

There is a long tradition of using VR technology for educational purposes. As far back as the 1960s, 
the U.S. Air Force had begun developing VR flight simulators to train pilots (cf. Kavanagh, Luxton-
Reilly, Wuensch & Plimmer, 2017). VR systems are especially widely used in the field of vocational 
training — for example, to simulate large technical systems, such as airplanes, trains, or industrial 
plants (cf. Köhler et al., 2013). 

VR technology also has great potential for education in typical schools. Learning environments within 
VR can surpass the limits of the real world and can thus represent innovative learning aids: 

VR offers teachers and students unique experiences that are consistent with successful 
instructional strategies: hands-on learning, group projects and discussions, field trips, simulations, 
and concept visualization. Within the limits of system functionality, we can create anything 
imaginable and then become part of it. The VR learning environment is experiential and intuitive. 
(Bricken, 1991, p. 178) 
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This makes VR learning environments particularly appropriate for experience-based learning (cf. 
Hellriegel & Cubela, 2018). However, there are also various challenges associated with augmented 
reality and VR technology in the classroom. These include uniquely high financial costs, a lack of 
realism, and the possibility of incurring health impairments (e.g., cybersickness) (cf. Cristou, 2010). 

Several VR applications are available that are specifically designed for teaching mathematics. 
Applications for teaching mathematics at the middle and high school levels often relate to the fields 
of geometry (e.g., VR Math) and analytic geometry (e.g., edVR). In higher education, the area of 
multidimensional calculus is a particular focus (e.g., Calcflow). 

However, there is still a lack of research on the use of VR technology for learning mathematics. An 
empirical study by Kang et al. (2020) investigated the impact of a VR multidimensional calculus app 
on engineering students’ learning of mathematics. Although the individuals who used the VR app 
reported that they were better able to imagine the concepts after using the app, they did not perform 
better on average than the comparison group on a subsequent test. Dilling (2022) examined high 
school students’ mathematics learning with the app Calcflow in the context of orthogonal projections 
of vectors in a case study. He observed that students situated their mathematical knowledge at the 3D 
representations of vectors, planes, and lines and used these representations to develop and justify 
mathematical hypotheses. In this sense, they learned about mathematics as an empirical science in 
which mathematical concepts are tied to the real world (cf. Burscheid & Struve, 2020; Dilling & 
Witzke, 2020; Dilling et al., 2020). In summary, VR applications indicate a trend toward a more 
illustrative approach to mathematics wherein students learn mathematics based on (virtual) empirical 
applications. 

As it has been mentioned above, the aim of this paper is to present a VR app developed by the authors. 
The basis for this development has been the approach of subject-matter didactics. Subject-matter 
didactics origins in German-speaking countries (German: Stoffdidaktik) and focuses on the 
mathematical content taught at school. The aim is to provide students and teachers with accessible 
approaches to mathematical content knowledge. For this purpose, the mathematical content and 
“essential concepts, procedures and relationships including appropriate formulations, illustrations and 
arrangements for teaching” are analyzed (Hefendehl-Hebeker, Vom Hofe, Büchter, Humenberger, 
Schulz & Wartha, 2019, p. 26). In the following, a detailed description of the topic multiview 
projections from a subject-matter didactic point of view, including existing teaching approaches, will 
be given. When presenting the VR app on this topic in the subsequent section, connections to this 
analysis will be explicitly sought. 

MULTIVIEW PROJECTIONS IN GEOMETRY EDUCATION 
Projections are an important topic in mathematics education in schools. They serve as an intersection 
of the topics of spatial geometry and plane geometry and are thus crucial for the interconnectedness 
of students’ knowledge. Moreover, projections are of particular importance in the context of computer 
representations, and dealing with them is an important competence in the digital world. 

In German curricula, dealing with solids and two-dimensional (2D) representations of them is already 
required in elementary school. For example, students are supposed to “relate two- and three-
dimensional representations of buildings (e.g., cube buildings)” (Conference of the Ministers of 
Education and Cultural Affairs, 2004, p. 10). Orthographic projections are a particularly accessible 
entry point to the topic of projections. 

Orthographic projection is a special form of parallel projection wherein the projection rays are parallel 
to each other and perpendicular to the projective plane. In this paper, we consider special orthogonal 
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projections on three perpendicular projection planes. This type of projection, called multiview 
projection (German: Dreitafelprojektion), is often used in technical applications or in architecture and 
is also important in mathematics education. 

In the Multiview projection, the xy-plane is referred to as top view, the yz-plane as front view, and 
the xz-plane as right view (see Figure 1a). If a section of the projected body is not parallel to the 
corresponding projection plane, it is represented shortened in the multiview projection. To create a 
sustainable perception of the multiview projection, it is helpful to illustrate it with a coordinate corner 
— for example, made of cardboard (see Figure 1b). By changing the angle of observation, students 
can adopt different perspectives (from above, from the front, from the side) on the object placed in 
the coordinate corner and transfer different views of the object to the surfaces behind or below the 
object. 

 

Figure 1: Planes of a multiview projection (a) and a three-dimensional object in a coordinate corner 
(b) 

Several educational materials have been developed for teaching multiview projections. For example, 
the game Schattenbauen [2] (“Building Shadows”) from the educational publisher Dusyma offers an 
illustrative and playful approach. In the game, orthogonal projections of composite solids (called 
shadows of buildings in the game) are provided on sheets. Students must build the corresponding 
structures from basic solids directly on the top of the “top-view shadow” (see Figure 2a). For this 
purpose, they are provided with cubes, cuboids of different lengths, and triangular prisms. By 
adopting different perspectives, the matching of the building and the shadows can be checked. 

Multiview projections are also addressed in various digital resources. One example is the app 
Klötzchen [3] by Heiko Etzold (cf. Etzold & Jahnke, 2019). The app focuses on dealing with cube 
buildings in elementary school. It enables the construction of buildings from unit cubes in different 
views. For this purpose, the app is divided into two screens on which different views of the same cube 
building can be displayed. Figure 2b shows a simple building composed of four-unit cubes: on the 
one hand as a perspective view with corresponding top, front, and right views, and on the other as a 
building map with number values. By using the app, it is possible to practice transferring among 
different representations of cubes and solids composed of cubes (cf. Rahn & Dilling, 2020). 

a b 



 

ICTMT 15 Copenhagen 267 

 

 

Figure 2: The game Schattenbauen (a) and the app Klötzchen (b) 

THE APPLICATION: DREITAFELPROJEKTION-VR 
Dreitafelprojektion-VR is a VR application optimized for the VR headset Oculus Quest that was 
developed by Frederik Dilling and Julian Sommer for learning and practicing the use of multiview 
projections. In the center of the virtual environment stands a table on which four 2D drawings are 
presented (see Figure 3a). In the lower right corner, there is a drawing of the top view of a 3D object, 
as it is standard for multiview projections. This drawing is colored blue and represents the surface on 
which the single basic solids can be positioned. The black drawings above and to the left of the blue 
drawing represent the front view and a representation of the right view rotated by 90 degrees. The 
right view is rotated in order to enable the user to easily control the solution visually. In the upper left 
corner, the top view is again shown, this time in black so that the top view can still be considered 
after the blue area has been filled with basic solids. 

To the right of the user, there is another table with three basic solids on it: a cube, a cylinder, and a 
three-sided prism in the shape of a roof (see Figure 3b). The solid can be picked up and moved by 
moving the controller close to one of the solids and pressing the Index Trigger. By releasing the Index 
Trigger, the solid can be dropped or placed in a certain position on the blue drawing of the top view 
or on top of other basic solids. Any number of basic solids can be generated and deleted again by 
throwing them into a garbage can to the left of the user. 

If a solid is placed on the table in front of the user, parts of the previously black drawings of the top, 
front, and right views turn green or red, depending on whether the object is correct (see Figure 3c) or 
incorrect (see Figure 3d) with respect to the presented projection. This nontrivial formative 
assessment and feedback can help students without presenting the solution. It is possible to have 
several correct solutions (e.g., in the scenario shown in Figure 3, up to two of the three stacked cubes 
can be replaced by cylinders). This demonstrates that not all properties of the original 3D object are 
preserved in a projection. If a complete object matching the projections is assembled on the blue 
drawing, a firework appears as feedback that the task has been completed successfully.  

The development of the VR app for multiview projections was intended to combine the advantages 
of classic haptic and digital materials. The aim was to retain the playful approach of the haptic 
material, such as the game Schattenbauen. Students can pick up various basic solids in the app, rotate 
them, and place them in certain positions in the virtual room. The intuitive handling of the solids 
enables students to test different approaches and to view the buildings in a non-distorted manner 
(unlike 3D representations on a 2D screen). 

a b 
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VR technology also provides some improvements on the classic approach. For example, buildings 
that would not be possible in reality (such as those containing overhanging components) can be 
created without any additional effort (see Figure 3c/d). Furthermore, by making small changes to the 
program, a large number of new tasks can be created so that many examples can be experienced in a 
short amount of time and with little effort. Finally, the application includes a powerful automatic 
formative feedback system (see, e.g., Fahlgren et al., 2021). If parts in all three orthogonal projections 
are displayed green, objects have been positioned correctly (a correct partial solution does not 
necessarily lead to a correct total solution). In contrast, if a part is colored red, this indicates that a 
mistake has been made at the corresponding position, and the students can adjust their constellation 
accordingly.  

In addition to the many opportunities presented by this modified approach to the topic of multiview 
projections, various challenges can arise as well. These include the handling of the app and the fact 
that the objects lack haptic feedback, which could be problematic, particularly for elementary school 
students. 

 

Figure 3: Screenshots of the VR application Dreitafelprojektion-VR 

a b
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CONCLUSION AND OUTLOOK 
The theoretical description of the app Dreitafelprojektion-VR already demonstrates some 
opportunities and challenges with regard to virtual learning environments in mathematics education. 
VR technology is particularly suitable for three-dimensional representations. However, 2D content 
can also be inserted. In this way, Dreitafelprojektion-VR enables an action-oriented approach to link 
two- and three-dimensional representations, similar to the game Schattenbauen described in the third 
section. Students can assemble solids and intuitively check the projections by looking from different 
perspectives. Furthermore, classical approaches (e.g., Schattenbauen) can be extended, for example, 
through automated formative assessment and feedback. 

Using a design-based research approach, the authors of this paper intend to further develop the 
application for multiview projections together with other VR applications, as well as establish general 
design principles for VR apps, for example, based on subject-matter didactic approaches. This design-
based research will be supported by concrete case studies on teaching and learning with VR 
technology — in particular, identifying characteristics of such processes (e.g., situatedness of 
knowledge) with regard to empirical and application-oriented mathematics teaching (cf. Dilling, 
2022). 

NOTES 

1. The supporters of the project can be found at the following link: www.digimath4edu.de 

2. https://www.dusyma.com/de/Schatten-Bauspiel-zid102753 

3. https://apps.apple.com/de/app/kl%C3%B6tzchen/id1027746349 
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This workshop focused on augmented and virtual reality technology and its use for mathematical 
learning scenarios. The term virtual reality (VR) refers to an artificial reality created by special 
hardware and software, in which a user can interact in a comparatively natural way with digital 
objects. Augmented reality (AR), in contrast, is not a completely virtual environment but an 
integration of virtual objects in the physical reality. Both technologies can be arranged in the mixed 
reality continuum (MR) (cf. Milgram et al., 1994). 

The use of VR and AR for educational purposes already has a long tradition. In the 1960s, the US 
Airforce started the development of a VR flight simulator for use in pilot training (cf. Kavanagh et 
al., 2017). AR and VR systems are particularly widespread in the field of vocational training, for 
example, to simulate large technical systems such as airplanes and trains (cf. Köhler et al., 2013). 
However, AR and VR technology also offers great potential for education in elementary, middle, and 
high schools. 

Currently, there are some AR and VR applications that have been designed for teaching and learning 
mathematics at schools or universities. However, empirical studies on the impact of AR and VR 
technology on students’ mathematics learning are yet to be conducted. There is also a lack of reliable 
findings on the design of AR and VR applications. 

The workshop began with a short introductory talk on the principles and the history of AR and VR 
technology in education. This was followed by the introduction and testing of selected AR and VR 
applications (prototypes) developed by the workshop organizers for mathematics education. Finally, 
a collaborative discussion about the opportunities and challenges of AR and VR for mathematical 
learning processes as well as the design criteria for applications was facilitated. The key points of 
discussion were: 

• How will students respond to an immersive virtual world? 
• How might AR and VR technology change our lives in future society? 
• What is special about learning in an immersive virtual environment? 
• Is it in terms of cost and availability of apps realistic that VR and AR technology will be 

widely used in education in the near future? 
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This paper reports on the planning of a design-based research (DBR) study, where the main aim is 
to develop principles in designing technology-enhanced learning environments utilizing a 
combination of a dynamic mathematics software (DMS) and a computer-aided assessment (CAA) 
system. The focus is on the design of tasks and automated feedback of high quality so as to enhance 
first-year engineering students’ engagement in and conceptual understanding of mathematical 
contents. The paper outlines the rationale for the project and highlights theoretical aspects that will 
be considered in the study. Moreover, some findings from a pilot study that will inform the first cycle 
of the DBR study are presented. 

Keywords: Computer-aided assessment, dynamic mathematics software, formative feedback, task 
design, university mathematics. 

INTRODUCTION 
It is well established that the transition from secondary school mathematics to university mathematics 
is challenging for many students. The literature highlights several reasons behind this challenge; at 
university, students meet a new teaching practice, e.g., lecture format (instead of lesson format), 
larger student groups, less teacher contact, new requirements of learning habits and study organisation 
(Jablonka et al., 2017). Besides the wide variety in background, interest and prerequisite knowledge 
among students (Rønning, 2017), many students enter mathematics courses in higher education with 
insufficient basic mathematical skills (Abdulwahed et al., 2012). This, in turn, leads to unsuccessful 
study results for many students (Jablonka et al., 2017), which might cause problems, not only in 
subsequent mathematical courses, but within other applied subjects, e.g., mechanics and electronics, 
as well (Harris et al., 2015). 

To tackle the ‘transition problem’, many educators in higher mathematics education have introduced 
continuous assignments to increase students’ engagement early during a course, and prevent students 
from waiting to work on course material until shortly before the final exam (Rønning, 2017). To 
ensure that students give time to these frequent assignments, they are (most often) graded and 
constitute part of the course examination. This, in turn, requires a major effort from the teacher in 
terms of correction work (Rønning, 2017). However, the past decade has seen the rapid development 
of technology that supports teachers in this time-consuming work by offering automated correction 
of student responses. A common notion for these types of technology is computer-aided assessment 
(CAA) systems. Today, many first year mathematics courses in higher education utilize 
mathematically sophisticated CAA systems, such as STACK and Möbius (e.g.,  Rasila et al., 2015).  

The literature reports several important affordances provided by CAA systems. For example the 
possibility of randomizing values for variables, parameters and formulas (Rønning, 2017), and the 
opportunity of providing students immediate feedback on their progress (Rasila et al., 2015), which, 
in turn, provides support for more independent study by students (Barana et al., 2018). At the same 
time, researchers in the field of technology-enhanced assessment point out the potential risk of such 
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assessment focusing on lower-order skills of mathematics (Attali & van der Kleij, 2017; Hoogland & 
Tout, 2018) and solely on the correctness of a final answer (Rønning, 2017) because such types of 
task and feedback are most straightforward to implement in CAA systems. Consequently, there is 
scope for designing CAA tasks that address higher-order skills in mathematics as well as for designing 
feedback that goes beyond categorizing a final answer as being right or wrong (Rønning, 2017).  

One possibility to increase the learning potential when using a CAA system is to embed another type 
of technology: dynamic mathematics software (DMS) (Rasila et al., 2015; Sangwin, 2013). This type 
of technology is widely recognized as a tool that can promote inquiry and foster students’ conceptual 
understanding in mathematics (Fahlgren & Brunström, 2014; Jaworski & Matthews, 2011). It is the 
instant feedback on students’ action that makes it possible to use a DMS environment as an arena for 
exploration, conjecturing, verification, and reflection. Even if DMS feedback does not explicitly 
provide hints on how to proceed, it provides information that could be used in a productive way by 
the user (Moreno-Armella et al., 2008; Olsson, 2018). However, there is a need for novel types of 
task to utilize the opportunities provided by DMS environments (Fahlgren & Brunström, 2014; 
Joubert, 2017).  

Although DMS and CAA systems are both in widespread use on their own, there are few studies that 
have investigated the integration of these two types of technology (Luz & Yerushalmy, 2019). This 
paper reports on the preparation for a design-based research (DBR) project, which aims to develop 
principles to guide the design of a technology-enhanced learning environment in which DMS tasks 
are embedded in a CAA system that (automatically) provides elaborated feedback based on students’ 
responses. It is the cyclic nature of progressive trial and refinement of design principles that makes a 
DBR approach suitable for this project. Each cycle consists of three main phases: (a) preparation and 
design, (b) implementation, and (c) analysis and refinement (Bakker, 2018; Cobb et al., 2003). The 
focus of this paper concerns the first phase, preparation and design, of the first cycle of the planned 
DBR study. To inform this first phase, a pilot study was conducted in autumn 2020. In the following, 
we first describe the planned DBR study, including methods for data collection and analysis. Then, 
we introduce the pilot study and illustrate by an example how the pilot can inform the main DBR 
study. 

PROJECT DESCRIPTION 
In the planned DBR project, the intervention will consist of computer-based mandatory small group 
activities involving extended task sequences that form part of a calculus course for first-year 
engineering students (from various programs). The primary outcome of a DBR study is a deeper 
understanding of how and why certain instructional interventions work (or do not work), leading to 
experimentally grounded design principles: in this case, principles to guide the design of a 
technology-enhanced learning environment in which DMS tasks are embedded in a CAA system that 
(automatically) provides elaborated feedback (EF) based on students’ responses.  

Theories Guiding the Design 
In total, the planned study will involve three cycles which will progressively trial and refine the design 
principles. Each cycle will be guided by a hypothetical learning trajectory (HLT), which besides the 
designed learning activities, includes the intended learning goal of the tasks as well as hypotheses 
about students’ learning processes (Simon, 1995). In the development of the HLTs, including 
(re)designing of tasks and related feedback, several theoretical perspectives will provide guidance. 
Since the main focus of the proposed DBR study concerns formative feedback, theories related to 
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different types of feedback will be central, specifically in guiding the development of elaborated 
feedback provided by the CAA system.  

Shute (2008) uses the notion of ‘formative feedback’ and defines it “…as information communicated 
to the learner that is intended to modify his or her thinking or behaviour for the purpose of improving 
learning” (p. 154). Broadly, the feedback information provided to a learner can be of two main types: 
verification or elaboration (Shute, 2008). The simplest example of verification feedback is whether 
the student response is correct or incorrect (Narciss, 2008). Verification feedback that also provides 
the learner with the correct answer to the task is termed ‘knowledge of the correct response’ (Narciss, 
2008). In addition to these types of verification feedback, the literature refers to ‘try-again feedback’ 
(Shute, 2008). Elaborated feedback provides the learner with additional information, besides 
correctness, in various ways. One type of elaborated feedback, suggested by Barana et al. (2018), is 
to provide hints to guide students towards a solution. In their model of formative automatic 
assessment in mathematics, they suggest ‘interactive feedback’ in terms of step-by-step guidance 
throughout a possible solution process. By asking students to solve simpler tasks, they encourage 
them to recall previous knowledge and then gradually acquire the knowledge necessary to solve the 
problem. However, Rønning (2017) argues that there is a risk that this will result in a simpler and less 
interesting problem. Besides offering conceptual hints or guidance necessary for solving a task, 
elaborated feedback can provide an explanation for why a particular response is incorrect, or it can 
consist of a worked-out example (Shute, 2008). Furthermore, the format and timing of feedback 
presentation can vary. The literature distinguishes between immediate and delayed feedback (Narciss, 
2008; Shute, 2008), and according to Vasilyeva et al. (2007), the feedback can be of one or several 
of the following forms: text, graph, animation, audio, or video. Besides the elaborated feedback 
provided by the CAA system, the DMS will provide students with feedback based on their interaction 
with the DMS. This type of feedback is regarded as implicit rather than explicit (Shute, 2008).  

Moreover, theoretical aspects related to the design of different types of task utilizing the affordances 
provided by a CAA system will be important in the DBR study, e.g., example-eliciting tasks (Harel 
et al., 2020) and other types of task as discussed in the section describing the pilot study (see below). 
To prompt students to generate examples is not a novel idea – it has been proposed as a way to engage 
students actively in their development of conceptual mathematical understanding (e.g., Watson & 
Mason, 2002). Besides these more generic theories, also topic-specific theories will be needed, e.g., 
learning theories related to functional understanding in mathematics (e.g., Oehrtman et al., 2008). 

Altogether, the planned project will imply many important design choices at various levels. To 
articulate the theoretical rationale for the choices and to analyse them after empirical testing, the 
design tool of didactical variables (Ruthven et al., 2009) will be employed. Put simply, a didactical 
variable is any aspect of the task (and related feedback), or the task environment, which may influence 
the unfolding of the expected trajectory of student learning. Next, we will elaborate on the three 
phases of each DBR cycle: 

(a) Preparation and design. Except for the first cycle, which will be guided by the pilot study, this 
phase concerns the revision of the HLT in light of the knowledge gained from the previous cycle(s) 
and the emerging generic principles. This, in turn, involves (re)designing of the learning activities, 
i.e. tasks and related elaborated feedback. Crucial in this phase is the identification and articulation 
of didactical variables attached to the characteristics of the learning activities. Related to these 
characteristics, hypotheses on student performance, including utilization of the elaborated feedback, 
are formulated as part of the HLT. 
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(b) Implementation. This is the conduct of the activities, including data collection from students. 
Mainly, there will be four types of data sources: (i) CAA responses, (ii) surveys, (iii) focus group 
interviews, and (iv) recordings of student screens. As in the pilot study (described below), the CAA 
responses will consist of both short (most often individual) answers that will be analysed 
automatically and group answers to open-ended tasks (e.g., explanation tasks) that need to be analysed 
manually. In close connection to the implementation of the activities, a survey will be performed to 
capture students’ overall perception, particularly on the feedback provided. To better understand 
students’ perception of various types of feedback (indicated in the survey), we also plan to perform 
focus group interviews. These will be audio-recorded, and notes will be made to indicate instances 
related to the HLT (and corresponding didactical variables). However, as van der Kleij and Lipnevich 
(2020) point out in a recent review “…research provide[s] very limited insights into how student 
perceptions of feedback relate to engagement with feedback and subsequent meaningful outcomes.” 
(p. 23). Accordingly, to receive information about students’ actual utilization of the feedback 
provided, we plan to collect screen recordings (including audio) from four groups while working on 
the activities.  

(c) Analysis and refinement. In this phase, the data analysis process takes place. Data analysis will 
compare the HLT with the “actual learning trajectory (ALT)” (Bakker, 2018, p. 61), focusing on key 
didactical variables. Further, it will involve both quantitative and qualitative methods. The 
preparation for the data analyses will depend on the type of data collected as follows: 

(i) CAA responses. The CAA system automatically provides descriptive statistics on the degree to 
which the students have succeeded in performing certain tasks as well as to what extent they have 
utilized the various types of elaborated feedback provided. The responses to the open-ended 
questions, on the other hand, need to be prepared manually, as was done in the pilot study.  

(ii) Surveys. The surveys will primarily consist of closed questions delivered by an online survey 
tool enabling quantitative data analysis, e.g., descriptive statistics and cross-tabulation. 

(iii) Focus group interviews. Guided by the notes taken during the focus group interviews, a 
selection of relevant instances of the audio recordings will be transcribed verbatim. Next, in 
preparation for a thematic analysis (Braun & Clarke, 2006), the data will be organized into initial 
codes related to student perceptions of different types of feedback. 

(iv) Screen recordings. The screen recordings will generate an extensive data set; hence, we need 
to identify episodes related to the HLT. In these episodes, students’ actions will be described and 
their reasoning will be transcribed verbatim. These episodes will then be organized into initial 
codes. 

Next, in the data analysis process, themes will be generated based on patterns in the initial codes from 
the screen recordings and interviews (Braun & Clarke, 2006). These themes will then be used to 
generate conjectures about students’ performance as well as their perception and utilization of various 
elaborated feedback. These conjectures, in turn, could be tested against the other data material (i.e. 
CAA responses and surveys), looking for confirmation and counter-examples. Altogether, the 
analysis process will generate the ALT. Finally, the findings (ALT) will be compared to expectations 
formulated in the HLT. Reasons behind any differences will be discussed within the research team, 
providing input to the revision of the HLT in the next cycle as well as development and refinement 
of more generic design principles.  

When the three cycles are completed, a retrospective analysis aiming at the finalisation of generic 
design principles, grounded in their empirical testing in each of the cycles will be made. In contrast 
to the ongoing analyses (described above), retrospective analysis seeks “…to place the design 
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experiment in a broader theoretical context, thereby framing it as a paradigm case of the more 
encompassing phenomena specified at the outset” (Cobb et al., 2003, p. 13). 

THE PILOT STUDY 
The pilot study involved 256 first-year engineering students taking a first course in calculus. As part 
of the course, the students were asked to perform two computer-based mandatory small group 
activities designed for a DMS environment (in this case GeoGebra) embedded in a CAA system (in 
this case Möbius). The activities involved sequences of various types of task with a focus on the 
understanding of the function concept. To encourage student collaborations, students were divided 
into (101) small groups. However, to ensure active involvement by each student, there was a need to 
embed individual elements. Accordingly, the activities contained both tasks that require a group 
answer and tasks that require an individual answer. 

Primarily, the focus was to trial the applicability of different types of task in this ‘new’ environment 
as well as to get a deeper understanding of student strategies when performing these tasks. In this 
way, the pilot provides useful insights into the design of tasks as well as elaborated feedback in the 
upcoming DBR study. Mainly, three types of task were designed. Firstly, tasks where students were 
requested to provide examples of functions satisfying specific conditions, i.e. example- eliciting tasks 
(Harel et al., 2020). In this type of tasks, a design principle was to ask students to provide two 
examples in order to encourage them to reflect on which parts of the function formula that are possible 
to vary without affecting the given conditions. Secondly, we constructed tasks where students were 
asked to determine a function formula for a given graph, e.g., a rational function graph. For both of 
these types of task, a design principle was to promote students to use the DMS to verify their 
conjectures before submitting their answer into the CAA system. Finally, we trialed tasks in which 
exploratory activities in the DMS were central, and where the students were encouraged to explain 
their empirical findings. In this case, a design principle was to ask students to provide a jointly agreed 
response to encourage communication and reasoning. Besides the DMS feedback, the CAA system 
(automatically) provided verificative feedback as well as delayed feedback in terms of worked-out 
examples illustrating anticipated solution strategies.  

The pilot study generated two types of data: student responses to the tasks (generated by the CAA 
system) and data from an online survey capturing students’ overall perception. The findings from the 
survey indicate that students found the various types of task instructive, and that they found the DMS 
feedback useful. In contrast, the elaborated feedback in terms of worked-out examples was utilized 
to a much lesser degree. This finding highlights a need to focus on the development of elaborated 
feedback that engages students. The data generated by the CAA system offered information about 
student strategies when performing the tasks, which will provide useful guidance in the (re)design of 
the tasks and related elaborated feedback. Furthermore, the pilot study provides useful information 
about methods for data collection and analysis. In the following, we give an example of how findings 
from the pilot study will inform the first cycle of the main DBR study. 

An Example 
The detailed analysis on a sequence of tasks addressing rational functions revealed some unexpected 
student strategies, i.e. the ALT differed from the HLT. For example, in the task presented in Figure 
1, we hypothesized that students should first realize that it must be a rational function with one 
horizontal and two vertical asymptotes, and then utilize the vertical asymptotes to construct the 
(factorized) denominator and the horizontal asymptote to conclude that the numerator should be of 
grade two with the coefficient 2 in front the 𝑥𝑥2 term. Finally, we expected them to realize that they 
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could utilize the zeros or two other points to finalize the function formula. The analysis of student 
responses to task ii) (in Figure 1) revealed that almost all students realized that it must be a rational 
function, and they also utilized the vertical asymptotes to construct the denominator. However, almost 
half of the students did not utilize the horizontal asymptote as expected. Instead, most of them, utilized 
the zeros together with one further point, e.g., (0,1) to construct the numerator.  

    Below is the graph of the function g.  

 i) Use the graph to determine the function formula.  

  Check your suggestion in GeoGebra before submitting it  
  as an answer to the task. 
   
 Group answer: g(x) = ____________ 
 

 ii) Explain how you used the graph to determine the  

 function formula. 
 

 Group answer: ____________________________ 
 
 

Figure 1. Task as it is presented in Möbius 

This prompted the research team to discuss various options to tackle this particular issue as well as 
some general principles, both in relation to task design and to the design of elaborated feedback. For 
example,  

• Should tasks be designed so that they cannot be solved without making use of certain key 
ideas? In the present task, it was the obvious zeros that made it straightforward to find the 
function formula without using the horizontal asymptote. However, the possibility to use 
different approaches based on various graph features may promote instructive student 
discussions. 

• Should tasks be designed so that the key ideas are explicit? In this case, it might be an option 
to indicate the asymptotes in the graph. However, to be able to identify asymptotic behaviour 
in a graph is a central part of understanding rational functions. Consequently, this kind of 
scaffolding might simplify the task too much. 

Concerning feedback, we discussed the following: when students solve a task without using some 
key idea, should they then be presented with a question probing that idea, or with a further task that 
cannot be solved without using that idea, or with a similar task and with feedback asking them to 
come up with a solution which does use the key idea?  

When discussing these options within the research team, both pros and cons were identified. For the 
task in Figure 1, we decided to develop automated and adapted feedback, which in turn required a 
redesign of task ii). Instead of asking for an explanation, students were prompted to declare the 
features (of the graph) used to determine the function formula by choosing among various options 
(identified in the pilot study). Those students who have not used the horizontal asymptote, were given 
a new similar task in which they were urged to use the horizontal asymptote.  

This example illustrates the complexity of designing tasks and related elaborated feedback. It also 
shows how information about the ALT could inform the (re)design of tasks to better utilize the 
affordances provided by a CAA system, i.e. automated correction and adapted feedback.  
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Automated decision-making based on machine learning is relevant in many societal applications. 
Students’ everyday experiences include such data-driven decision models (e.g., personalized 
advertising) that they encounter as black boxes. With increasing societal relevance, there is a growing 
demand for data-driven procedures to be taken up in school education (Engel, 2017; Engel et al., 
2019; Ridgway, Ridgway, & Nicholson, 2018). The decision tree method is a highly transparent 
machine learning method, which allows students to understand the final decision model and the 
algorithm used to build it. Engel et al. (2018) showed an approach for the teaching of decision trees 
using the free and web-based Common Online Data Analysis Platform CODAP (codap.concord.org). 

During the workshop, we presented an innovative series of lessons using digital technologies for a 
data science project in middle school. The context of the data project is personalized advertising on 
online platforms. We use self-reported survey data from 492 adolescents concerning their media 
behaviour. We address the topics of data exploration and decision trees in machine learning. The 
platform CODAP allows a quick entry into data science with drag-and-drop handling. This makes it 
easy to investigate relationships between different variables and manually create decision trees. The 
final objective of the data science project is to predict personal interests from media behaviour using 
decision trees. 

The workshop aimed to introduce a data science project using the digital platform CODAP. It used 
hands-on activities to introduce the data and how CODAP can be used for analyzing data and for 
manually creating decision trees. We provide insight into our series of lessons and discuss special 
opportunities and limitations of the software. The main goal of the series of lessons is that students 
understand how a decision tree is constructed, how it can be interpreted and used, and how a decision 
tree can be evaluated in terms of uncertainties.  

The workshop participants had inputs on data exploration and decision trees. Building on this, the 
participants themselves carried out selected tasks from our series of lessons designed for middle 
school. Some basic tasks on data explorations supported participants to get to know the data, followed 
by tasks on manually creating a decision tree as a predictive model. The workshop concluded with a 
lively discussion about our approach that encouraged us to proceed with our approach. 
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The implementation of a computer-based learning environment for mathematical modeling can be 
valuable in many ways. For example, it is possible to combine different digital media and tools to 
present tasks in a more realistic way. In addition, the stored log data also offers new research 
approaches. The project “Modi - Modeling digitally” combines the above considerations. This paper 
reports on a study in which 42 students were asked to work independently during a two-week period. 
Since many difficulties could occur, the four most successful students were identified and analyzed 
from a qualitative point of view, however, by also adding variables from the log data. It can be derived 
that these students deal with hurdles in such a way that they try to rely on instructional videos, but 
generally work in a linear way. Nevertheless, differences in the use of tools and the built mathematical 
models, as well as other modeling-specific sub-processes, can be identified. 

Keywords: Computer-based learning environment, dynamic geometry system, log data, modeling. 

INTRODUCTION 
The use of various digital media and tools to promote modeling competence seems promising, as 
contexts can be represented more realistically and mathematical models can also be used more 
authentically. This issue is approached in the project Modi – Modeling digitally, where a computer-
based learning environment (CBLE) on mathematical modeling was created. There, we focus on the 
dynamic geometry software GeoGebra, but also a supportive structure as well as further possibilities 
for enhancing self-regulated learning. These three aspects are analyzed primarily on the basis of log 
data based on the learners’ interactions with the CBLE. This offers the possibility of new evaluation 
methods. In this paper, we aim at identifying properties of successful learning processes within a 
CBLE. First, the theoretical framework including relevant studies is presented to derive the research 
questions for this paper. Then, the survey with the digital learning environment is explained in order 
to be able to describe successful modeling processes with the help of qualitative criteria and 
quantitative variables from the process data. In the following section, we first summarize properties 
of and findings on CBLEs. Subsequently, theory and findings regarding modeling are described. 

THEORETICAL BACKGROUND 

Computer-Based Learning Environments 
With regard to a conceptual clarification, the most characteristic aspect of CBLEs is the use of digital 
devices. For example, this involves the opportunity to provide three-dimensional illustrations or 
dynamic geometry systems (DGS) (Drijvers et al., 2010; Jones et al., 2010; Lichti & Roth, 2018). 
Furthermore, the concept CBLE functions as a generic term for a computer- or web-based delivery 
of learning materials in a pre-structured way (Baker et al., 2010; Isaacs & Senge, 1992; Jedtke & 
Greefrath, 2019). In this contribution, a CBLE is a medium, which offers the possibility of combining 
other digital media and tools for learners, is pre-structured and web-based. This can also result in new 
ways of interacting with mathematical tasks and acquiring mathematical skills or knowledge 
(Engelbrecht et al., 2020). Concerning the theoretical properties, CBLEs enable teachers to provide 
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open-ended learning environments in which students not only learn through a (digital) tool, but can 
also investigate mathematical contexts by referring to differentiated materials. Mobile as well as 
flexible learning processes - based on the teaching and learning scenario - can also be promoted by 
the use of digital learning environments, as learning then takes place “across multiple contexts, 
through social and content interactions, using personal electronic devices” (Crompton, 2013, p. 4). 
Regarding empirical findings, self-regulated learning can be stimulated in digital learning 
environments and thus, they have a great potential as cognitive and metacognitive tools to support 
this kind of learning (Greene et al., 2011). Veenman (2007) gives an overview of studies that 
concentrated on self-regulated learning in CBLEs. Most of these studies focus on metacognitive 
skills, but some also take aspects such as motivation or different types of knowledge into account. 
Summing up these studies, a link between self-regulated learning and metacognition was found.  

We conclude that CBLEs need to combine these properties that we implement in our modeling 
environment, as presented later. 

Mathematical Modeling in a CBLE 
Mathematical modeling focuses on the translation of a real-world problem into mathematics and back 
again (Niss et al., 2007). Blomhøj and Jensen (2003) describe mathematical modeling as processing 
a whole modeling task in a certain context, whereby six the mathematical action related sub-processes 
are named.  

A model used for analyzing and describing students’ modeling processes with digital technologies is 
depicted in Figure 1. The sub-processes of mathematical modeling are also presented there. 

 

Figure 1. Mathematical modeling with digital technology (see Blum & Leiss, 2007, p. 207; Greefrath, 
2011, p. 303) 

Especially with regard to the design of modeling tasks, the broad spectrum of possibilities delivered 
by digital tools is important and involves new perspectives in presenting situations more realistically. 
Geiger (2011) claims there is a supportive function of digital tools for reality-based learning processes 
but also encourages to consider and investigate the affordances and constraints of digital tools with 
regard to modeling. Because of the theoretically considered possibilities of using digital tools in a 
meaningful way during modeling processes, investigations on this topic recently gained importance. 
Therefore, the considerations concerning the combination of the different steps in the modeling cycle 
and the variations of using technology are crucial for further investigations (Greefrath et al., 2018). 
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Next, we briefly present some of the rich research result on modeling processes. It was found that 
mathematical modeling tasks can come along with difficulties for students (e.g., Galbraith & Stillman, 
2006). Until now, however, elaborate procedures based on video or interview studies have always 
been used to analyze modeling processes (e.g., Greefrath & Siller, 2017). This resulted both in small 
samples being considered as well as a small number of studies conducted in the field of modeling 
with digital tools. In the present paper, this view shall be extended by basing the sampling and 
description of processes on variables generated from computer-based log data. 

RESEARCH QUESTION AND METHODS 
On the one hand, automated assessment of modeling processes have not yet been described in 
empirical studies. But it can be assumed that this would allow for in-depth analyses of such processes. 
On the other hand, the sub-processes observed by Greefrath and Siller (2017) can be further 
investigated and enriched with respect to the concrete tool usage. In order to gain initial access to 
such processes, successful modelers are focused on first. Furthermore, the combination of self-
regulated learning, CBLEs and mathematical modeling with technology is an open research field. To 
gain more information about self-regulated modeling processes within a CBLE, the following 
research question can be posed: 

How can successful modeling processes within a CBLE be described using log data?  

With regard to this research question, a study was conducted during distance learning in May 2019. 
Two secondary school classes (N=42, grade 9 from German Gymnasium, average age 14.56) took 
part and should work on five different modeling tasks offered in a CBLE. Since the sample of this 
survey is quite small and the coding of the modeling products is necessary to identify the successful 
modelers, we focus on a qualitative approach in this paper. The CBLE was pre-structured and 
included videos with information on the handling of GeoGebra to meet the properties of CBLEs 
described above. Furthermore, each modeling task should be solved with a pre-created GeoGebra-
Applet. Except for the first one, all tasks were structured in the following way: on the first page, the 
situation of the task was presented by text, pictures or videos. The second page consisted of the 
GeoGebra-applet and on the third page, learners were asked to answer the task question, describe 
their approach, and validate how the unit, the chosen model, and the outcome made sense. In addition, 
between the three main pages, helpful strategies were described with the help of texts and pictures, 
which were intended to support especially in the case of hurdles and to stimulate self-regulated work. 
Furthermore, the first modeling task was more small-scale as it included smaller work requests. For 
example, the second page initially suggested simplifying the real situation. In addition, two different 
mathematical models were visualized, which were then to be implemented in GeoGebra. Afterwards, 
the solution should be validated, and a new, more precise model was to be found. 

The items were developed with the authoring-tool CBA-ItemBuilder (Rölke, 2012) and delivered via 
a webpage. A wide range of log and process data (e.g., mouse movements, timestamps, tool-use in 
GeoGebra, answers in input-fields) were stored on a server at the University of Münster. On this 
basis, the latest state in the GeoGebra-applets was used to recover the constructions of the students 
with a custom program written in JavaScript. A visual coding of the final state was conducted. As 
done by Rellensmann et al. (2017), the modeling performance was assessed by estimating the 
accuracy of the solution on a 3-point scale. Hereby, the last snapshot from the GeoGebra-applet was 
considered to be representative of the final solution because all tasks should be solved in this way. A 
correct solution was coded with 2. A code of 1 was given for a solution that was incorrect due to 
estimation errors, not answering to the whole problem or, when the mathematical model was not fully 
adequate. The code 0 was awarded for an incorrect or missing solution. An average of 0.91 points 
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was scored among the 42 students. After the rating, the four best participants were selected to consider 
the most successful modeling processes with regard to the formulated research question. Their 
average modeling performance is 1.83 points. 

To describe the modeling processes of the four selected students, the following variables were 
considered to be relevant and were extracted from log data: last mathematics grade, number of logins, 
total time spent within the CBLE, tool use, tutorial use.  

RESULTS 
The following Table 1 includes the extracted variables and both their specification for the four most 
successful participants as well as the average of each variable based on all 42 participants. The 
processes of the four participants, John, Laura, Sam and Max (fictional names), are described now. 
Hereby, special attention is paid to the task playground, where the students should find the best place 
for a new playground in the depictured park. In Figure 2, the four students’ solutions are shown. 

 
No. Login Grade Total Time 

[Min] 
No. Tools 

playground 

No. Play 
GeoGebra 
tutorials 

John 7 2 213 6 13 
Laura 5 1 130 7 0 
Sam 5 2 341 11 23 
Max 2 2 79 3 6 

Average (all 
participants) 3.12 2.37 191 4.10 9.32 

Table 1. Exemplifying variables that describe processes properties within the CBLE 

 

Figure 2. Four different final states in the GeoGebra-applet of the task playground 
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John 
John logged in a total of 7 times, with two logins occurring within 10 minutes of each other. However, 
the rest were over the specified time period. In total, John was logged in on the tasks for 3.5 hours. 
He worked on one modeling task per logged-in day and additionally on the GeoGebra exercises on 
the first day. At the last login, no changes in answer fields or GeoGebra applets can be seen in the 
process data. Instead, only all tasks were clicked again. With regard to the task playground, John used 
six different tools: segment, orthogonal, join, point, circle, two points and polygon. It becomes 
obvious that he thinks about different solution possibilities, uses the “backwards”-button a few times 
and remains with the circle-solution. His final solution in the input field includes interpretation and 
validation: “The playground should be built mathematically in the center of the park. However, it is 
not realistically possible, because there is a pond. Therefore, I would build the playground somewhere 
next to the pond. This way, the way to it is longer from some entrances than from others, but the 
playground is still quite centered and easily accessible from all entrances.” 

Laura 
Laura, who claimed to have the best mathematics grade, logged in five times. She worked on the 
GeoGebra exercise and the introductory task when she first logged in. Subsequently, as well as during 
the further logins, it can be observed that she sometimes switches between the tasks and also comes 
back to the GeoGebra exercises. However, she does not watch the tutorial videos. In total, she works 
in the CBLE for a little more than two hours on two different days. In the playground task, she changes 
tools a total of 19 times, using seven different tools: move, point, join, segment, midpoint, distance 
and translate view. The last sequence of tools consists of point and distance, with the view being 
moved again and again in the meantime. Accordingly, her solution approach is also focused on 
measuring the individual paths from the entrances. She describes her approach as follows: “I 
determined the lengths of the individual paths and picked out a point from which it seemed as if one 
was the same distance from all entrances. Since this point fit well, I refined it a bit.” She also describes 
that she looked for possible obstacles on the paths. Accordingly, her approach is reality-based, and 
she does not move to the world of mathematics totally. She also does not consider whether other 
models might have produced a more accurate or better result, but she comes to a correct one. 

Sam 
Sam logged in on five different days and spent the most time (about 5.5 hours) with the CBLE. He 
watched the tutorial videos on GeoGebra a lot. Every time he logs in again, he first clicks through the 
task he solved last time and only then starts the following one. In some cases, he also changes his 
solution, so that a control can be assumed here. Sam’s solution of the task playground is the best one 
(see Figure 2). It becomes obvious that he considers the lake and then measures where the best 
position for a new playground near to the lake could be. For example, he tries constructing the circle 
with different tools: at the beginning, he uses the Circle with one point tool and then drags the center 
point with the mouse. Afterwards, however, he uses the Circle with three points tool. He comments 
on his solution as follows: “To find the mathematically optimal point I drew a circle over all the 
entrances and found its center, since this point was in the lake I drew routes from the park entrances 
to a modeled surface for the realistic geographically optimal point and tried to place the surface so 
that the routes were similar in length.” Thus, he used two different mathematical models, interpreted 
and validated them. 

Max 
Even though Max dealt with the CBLE the shortest of the four, he worked on all five tasks and also 
watched the GeoGebra tutorials. A total processing time of 1.5 hours is below the average of all 
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processing times. There is a total of 10 days between the two login times. Max works linearly and 
deals with the GeoGebra exercise as well as the first two tasks during the first login and the rest during 
the second access. His solution to the playground task is not complete and was therefore coded as 1. 
At this point, the insight is missing that modeling over a rectangle makes sense, which is only the 
case because the vertices are almost on a circle. Max uses only the three tools Point, Segment, Delete 
and then Segment again. This is even lower than the relatively low average value for the tools used 
by all participants. Furthermore, it follows that he considers only one mathematical model, which can 
also be seen in Figure 2. Nevertheless, he gives the correct answer and writes that the most ideal point 
would be in the lake, but this is not possible and therefore a place on the edge of the lake must be 
chosen, slightly disadvantaging an entrance side. 

DISCUSSION 
First of all, it can be concluded from the descriptions that the processes were different. John and Sam 
both worked in a very linear way, logging in regularly and solving one task after the next. Control 
mechanisms could also be observed, so that some characteristics of self-regulated work can be 
assumed (Crompton, 2013; Greene et al., 2011). Laura’s return to the GeoGebra exercises may also 
be an indication that she sought for help and aimed at obtaining already mediated information about 
certain GeoGebra tools. Her frequent tool changes may indicate that her use of GeoGebra was rather 
uncertain. Max, on the other hand, worked through everything very quickly. This could be related to 
the fact that he also used few tools in the playground task and instead implemented the first considered 
mathematical model. He also does not go into further models in the description of his procedure. 
Nevertheless, he gives a correct answer to the general question. 

In summary, sub-processes of modeling could be hypothesized based on log data (see Figure 1). It 
was also possible to determine specific additional functions that were made possible by the digital 
format. In line with previous empiricism (e.g., Galbraith & Stillman, 2006), indicators for difficulties 
such as frequent tool changes or access to explanations can also be defined and linked to possible 
successful strategies. It can also be observed that students used the opportunity to try out different 
mathematical models in the DGS by making use of the “back”-button. In addition, the intensely 
researched drag mode could be identified as a used tool during task processing (e.g., Arzarello et al., 
2002). Interpreting the way of tutorial usage as an indicator for the familiarity with DGS, the 
following conclusions can be made. On the one hand, hurdles in the individual sub-processes can be 
supported by the means of CBLEs. On the other hand, the integration of various digital tools and 
media strengthened the opportunity of different, worthy solutions of the modeling problem. Thus, we 
can observe heterogeneity in tool use and modeling. Since the CBLE offers various opportunities, 
students can cope with their difficulties and find an individual but appropriate solution for the 
modeling problem, as can be seen in Figure 2. 

CONCLUSION 
This paper deals with different modeling processes within a CBLE and especially how the processes 
of successful modelers can be described by using log data. It can be concluded that successful 
modelers use the various embedded digital tools and media to cope with their individual difficulties 
during the modeling process and thus achieve different, valuable solutions.  

For the first time, log data could be used for the analysis in the context of modeling problems, which 
offers a new focus on the handling of digital technologies and enables a detailed description. For 
example, it would be hardly feasible or very time-consuming to identify the different tools used in 
GeoGebra and to determine their switching frequency with the help of videos. Therefore, looking at 
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successful modeling processes in this way provides new clues as to how indicators of self-regulated 
learning can be established in the log data in future works. However, it should always be borne in 
mind that the interpretation of such indicators must be considered carefully. More qualitative 
approaches should also be used to validate the statements generated on the basis of variables from 
log data. It can be considered as a limitation of this study that students were not observed during 
processing or interviewed afterwards. Nevertheless, it seems very interesting to conduct similar 
studies with a larger sample. It would also be conceivable to perform a cluster analysis based on the 
extracted variables in order to identify processing types. Alternatively, a regression could be 
performed to identify predictive variables for successful or unsuccessful modeling. Overall, log and 
process data offer a promising means to gain new insights into technology use in mathematics 
education. 
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Individual, diagnosis-guided support for learners is one of the most important factors in 
understanding mathematics and learning efficiently. Especially in the field of algebra, many students 
often still lack basic competencies to handle variables, algebraic expressions and equations in a 
proper way. Digitally supported diagnostic systems offer the possibility to perform a deep 
understanding-oriented diagnosis with little time. This is the aim of the Australian SMART-system 
(Specific Mathematics Assessments that Reveal Thinking (Stacey et al., 2018)), which is currently 
being adapted for use in German-speaking countries. SMARTA is a twofold project to investigate the 
effects on students’ understanding of algebra and on teachers’ insight into formative assessment in 
the field of algebra.  

Keywords: Algebraic thinking, formative assessment, online diagnostic, student thinking, teacher 
diagnostic. 

INTRODUCTION 
Individual, diagnosis-guided support for learners is one of the most important factors in understanding 
mathematics and learning efficiently (Wiliam, 2011; Black & Wiliam, 2009; Leuders & Prediger, 
2017). Despite political, scientific and educational efforts, implementation of formative assessment 
in the classroom still appears to be challenging (Schütze et al., 2018). For sustainable individual 
support, teachers require diagnostic competencies and usually a not to be underestimated amount of 
time. To this demand, online diagnostic tools may seem to be a convenient solution. However, it must 
not be forgotten that diagnoses should not remain on a superficial level only focusing on solution 
rates such as “correct/incorrect” but should also target conceptual understanding. Nevertheless, at 
least in Germany, digital diagnostic systems often focus on solution rates and procedural fluency 
within narrowly defined tasks (Thurm, 2021). Thus, teachers only discover which tasks are mastered 
well and what solution rate their learner group has. Therefore, there is an urgent need to support 
teachers with in-depth understanding-oriented diagnostics that provide information on existing 
learner misconceptions and stages of understanding. 

Deep understanding-oriented diagnosis can be performed with the help of digitally supported 
diagnostic systems that use a fast and intelligent evaluation (Stacey et al., 2018), which, for example, 
also analyses answer-patterns between individual diagnostic items (Steinle et al., 2009). This is the 
essence of SMART (Specific Mathematics Assessments that Reveal Thinking), which is a web-based 
diagnostic system that provides not only understanding-oriented diagnoses within a few minutes, but 
also further teaching recommendations and information on common misconceptions. Hence, on the 
one hand, SMART delivers quick, directly usable results and, on the other hand, it implicitly fosters 
teachers’ pedagogical content knowledge and thus their diagnostic skills. As a part of this project, 
SMART tests are currently being adapted and translated for use in German-speaking countries in the 
frame of DZLM (German Centre for Mathematics Teacher Education) as a nationwide university 
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network for research and development of professional development (PD) programmes and teaching 
material. In addition, an accompanying PD programme for SMART tests is being designed to scale 
up the effects on teachers’ diagnostic competencies and thereby students’ competencies. The study 
sets out to investigate whether additional PD sessions are necessary for SMART to have a significant 
effect on teachers’ as well as students’ competencies.  

For the first part of this project, called SMARTA, algebra was chosen as a topic because, especially 
in the field of algebra, there still seems to be a lack of basic competencies to handle variables, 
algebraic expressions and equations in a proper way (Arcavi et al., 2017). In Germany, this is reflected 
in a discrepancy between the expectations from universities for learners and actual school education 
(Neumann et al., 2017) and aspects of school mathematics are often seen as the main reason for this 
deviation (Biehler, 2018). In our contribution, we will present the first findings about the effects of 
SMART tests on teachers’ design of algebra lessons and the development of students’ algebraic 
competencies. 

THEORETICAL BACKGROUND 
The theoretical framework of SMARTA comprises two main levels of the Three-Tetrahedron Model 
for content-related PD research (Prediger et al., 2019), here classroom level and teacher PD level 
concentrating on teachers’ and students’ competencies. On the teacher PD level, we focus on 
teachers’ diagnostic competencies and expertise in the field of online formative assessment, while on 
the classroom level, we target students’ learning of algebra. 

In recent decades, research has shown that new technologies, such as digital formative tests or online 
diagnostic systems, can support students' mathematics performance in a variety of ways (Stacey & 
William, 2013). Although an integration of these digital tools into mathematics education is often 
recommended, the current use of technology in mathematics classrooms still remains low (Drijvers 
et al., 2016).  This quantitative and qualitative gap between the potential of digital tools and the reality 
of teachers’ use of them can be widely perceived (Bretscher, 2014), and research indicates that 
teachers are the most relevant factor for closing this gap, because they are ultimately responsible for 
which and how digital tools are used (Mumtaz, 2000; Thurm & Barzel, 2019). This fact highlights 
the importance of PD for teachers to support the implementation of digital tools (see also Thurm & 
Barzel, 2020).  

This is not only the case for integrating tools like computer algebra or geometry software but 
particularly important with regards to digital formative assessment tools. Results have shown that 
formative assessment with technology is not much used in mathematics teaching and that, especially 
in times of lockdowns due to the COVID-19 pandemic, the use of digital formative assessment tools 
has even decreased (Drijvers et al., 2021). This is surprising since formative assessment – assessing 
the students’ performance during the learning process and using this diagnostic information to 
improve their individual learning (Schütze et al., 2018) – can be very helpful in providing appropriate 
learning opportunities, especially in the challenging situation of distance learning. 

Consequently, teachers should be supported in the integration of technology-based formative 
assessment into their teaching by high-quality teaching materials and online tools as well as 
corresponding PD. Studies have shown that teachers’ PD is fundamental to improving teaching 
(Lipowsky & Rzejak, 2015). More specifically, Busch et al. (2015) found that PD programmes are 
able to improve teachers’ diagnostic competencies from a corrective to a descriptive or analytical way 
of diagnosing that includes the application of pedagogical content knowledge (PCK). Helmke (2012) 
defines diagnostic competence as the ability to precisely assess the performance of a student, and it 
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can be operationalised as the accuracy of a teacher’s assessment regarding student performance 
(Cullen & Shaw, 2000; Demaray & Elliott, 1998; Fuller, 2000). 

The quality of PD can be ensured by following certain design principles, such as competence-
orientation, participant-orientation, stimulating cooperation, various instruction formats, fostering 
(self-)reflection or case-relatedness (Barzel & Selter, 2015). For PD addressing technology 
innovations, these principles have to be complemented by focussing on self-efficacy to enable 
teachers to actually change their routines and integrate the innovation (Thurm & Barzel, 2019). 

For the realisation of case-relatedness in PD programmes, a focus on one’s own teaching and one’s 
own students is much more effective than analysing other people’s teaching (Seidel et al., 2011). This 
is the value of the SMART tests, which allow teachers to use short tests of 10-15 minutes to assess 
their students’ competencies in a specific content focus. Learner response patterns across different 
diagnostic items are included in the SMART analysis. Following the test, the teacher receives an 
automated evaluation for each learner regarding existing misconceptions, individual level of 
understanding, gaps in prior knowledge, and frequent errors. In addition to this diagnostic 
information, the teacher gets access to targeted recommendations for appropriate learning support 
derived from this information (Steinle et al., 2009). SMART tests have been research-based 
developed and evaluated by analysis of more than 500,000 tests completed by students (Stacey et al., 
2018). 

The aim of a PD programme is to be effective on all of Lipowsky’s (2014) four levels for successful 
PD: On the first level, teachers are satisfied with and accept the PD programme, but there is only a 
weak connection between satisfaction and changes in their knowledge and actions. The second stage 
refers to an actual change in teachers’ competencies by enhancing teachers’ knowledge and beliefs, 
while the third stage relates to changes in teachers’ teaching practice and quality in the classroom. 
On the fourth level, the effectiveness manifests in the improvement of students’ competencies 
(Lipowsky & Rzejak, 2015). 

On the classroom level, SMARTA focuses on the learning of algebra. Although Küchemann and Malle 
described students’ understanding of algebra and common misconceptions already in 1981 
respectively 1993, learning algebra still appears to be challenging (Arcavi et al., 2017). For this study, 
we concentrate on the interpretation of variables involving common errors and typical misconceptions 
as, for example, letter as object.  

Figure 1. One of the SMART items testing for the letter as object misconception 

 

Lucy bought 6 doughnuts for 12 dollars. 
 
She wanted to work out how much each doughnut costs. 
 
She wrote the equation 6𝑑𝑑 = 12 
 
In Lucy’s equation, 𝑑𝑑 stands for:   
 

 one doughnut 
  dollars 
  the number of doughnuts 
  doughnuts 
  the cost of one doughnut 
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RESEARCH QUESTIONS AND DESIGN OF THE STUDY 
The research interest of SMARTA is twofold as we focus on both PD and classroom levels. On the 
PD level, the aim is to find out to what extent the use of SMART tests improves teachers’ general 
diagnostic competencies and especially whether SMART is effective as a means to enhance teachers’ 
PCK. For this reason, a comparative research design was created to investigate whether SMART tests 
by themselves implicitly improve teachers’ diagnostic competencies or if explicit PD is necessary, 
because studies have shown that especially PD programmes can support teachers to enhance their 
diagnostic competencies (see groups G1 and G2). On the classroom level, we examine how teachers 
make use of the diagnostic information in their teaching depending on the type of support they receive 
(see G1, G2, G3). In addition, we investigate the development of students’ understanding of variables. 

In total, the following three groups are compared:  

G1: SMART diagnosis with teaching suggestions plus PD 

G2: SMART diagnosis with teaching suggestions without PD 

G3: SMART without diagnosis (only corrected student solutions) without PD 

We investigate the following research questions: 

1. How do teachers’ diagnostic and support skills (in the area of variable comprehension) and 
teachers’ self-efficacy beliefs about digital formative assessment develop through the use of 
the SMART tests? 

2. What kind of support do teachers implement in their lessons depending on the type of support 
teachers receive? 

3. How and for what purpose do teachers integrate SMART test results into their teaching?  

4. How do students’ competencies develop depending on the type of support teachers receive? 

 

Figure 2. Project design 

These questions are addressed by a randomised pre-test-treatment-post-test design, including 
quantitative as well as qualitative data collection in two different treatment groups and a control 
group. While both treatment groups will receive a video introduction to SMART tests, including the 
technical handling of SMART tests as well as relevant PCK, only teachers of group 1 (n = 120) will 
take part in two further PD sessions. The first PD session focuses on PCK and common 
misconceptions regarding algebra, and supports teachers in the development of targeted teaching 
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based on their students’ SMART test results. In the second PD session, the implementation of those 
developed support concepts is evaluated, and the transfer to other topics that can be addressed by 
SMART tests is encouraged. Meanwhile, group 2 teachers (n = 120) will not receive further PD 
support in using SMART diagnoses; they only get access to a written report about diagnostic 
information and targeted recommendations. Teachers in the control group (n = 120) will not be 
supported by a video introduction or PD sessions. Another difference between the two treatment 
groups and the control group is that teachers in groups 1 and 2 will receive their students’ SMART 
diagnoses as well as teaching suggestions to inform their further teaching, whereas teachers in the 
control group (G3) will only get access to the corrected solutions of their students and may use these 
at their own discretion. This design with three groups allows not only for comparison between 
teachers who did or did not receive additional PD, but also for scrutinising the effect of SMART tests 
compared to diagnostic tools that do not provide detailed diagnoses but only report on (in)correct 
solutions. 

To answer the first question, diagnostic competencies of teachers in all groups are to be measured in 
pre-, post- and follow up-tests. For this purpose, a specific test instrument will be used that was 
developed by Busch et al. (2015) and will be adapted for the topic of algebra. In addition, self-efficacy 
beliefs regarding digital formative assessment will be surveyed. 

The second research question will be answered with the help of self-report questionnaires that focus 
on the type of student support being implemented by teachers in their classrooms. 

In order to scrutinise how teachers make sense of SMART test results, how they relate these to their 
teaching and their students, and with what intention they integrate the results into their teaching 
(question 3), interviews will be conducted with a sample of five teachers from each group. To answer 
question 3, quantitative results from the surveys will be combined with a qualitative analysis of these 
interviews in the sense of a mixed-methods design. 

To investigate how online assessment tests for variables and algebraic expressions can support the 
development of students’ algebraic competencies, SMART tests will be used not only to inform 
teachers about their students’ achievements but also as a pre- and post-test to monitor and compare 
the students’ progressions and change in misconceptions of all groups (question 4). 

FIRST IMPRESSIONS 
While adapting and piloting SMART tests in Germany, we have already obtained some initial 
findings. Besides the challenge to implement SMART into German language, and especially to 
transfer the material ranging from the single item to the corresponding teaching suggestions into the 
German culture of mathematics education, teachers’ and students’ competencies in the field of 
learning and teaching algebra could be observed.  

As a first pilot, two volunteering teachers used the SMART tests “Values for letters” and “Letters for 
numbers or objects” with their 7th-grade students. Due to COVID restrictions, the teachers had to ask 
their students to fill in the test at home during an online lesson (pre-test) and as homework 
respectively in a lesson in which only half of the class was allowed to participate (post-test). As 
students did not necessarily attend both lessons or followed the instructions, only 18 (“Values for 
letters”) respectively 15 students (“Letters for numbers or objects”) completed both pre- and post-
test. Another limitation of this pilot is that some of the students reportedly received help from adults 
while completing the test at home (although it had been made clear to the students that the test would 
not be used for grading). Therefore, student results need to be handled with care and further 
investigated, for example, by additional student interviews. In the following, we focus on the teachers 
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who were interviewed after administering the pre-test and asked to think aloud while receiving and 
reviewing their students’ SMART results. 

Our assumption that it would be worthwhile to investigate possibilities to support the development 
of diagnostic competencies in the field of algebra is corroborated by the interviews: Teachers seem 
to be unaware of typical mistakes, for example, the belief that the values that letters can take are 
somehow related to the variable’s place in the alphabet: 

Teacher: I have never thought about there obviously being students who relate algebraic 
letters to their place in the alphabet. This is for me – well, I have NEVER thought 
about this[1]. 

Therefore, it seems to be indispensable to support teachers in enhancing their PCK regarding algebra. 
In the interviews, first indications can be found that the type of support provided to teachers is crucial. 
Although the teacher genuinely acknowledged the letter as object misconception as new and 
interesting information, he did not recognise any connection to his own teaching, for which he 
reportedly uses complete words like “fries” as variables and equation riddles with pictures of objects, 
which are popular on social media, as an introduction to algebra. This suggests that SMART 
diagnoses with teaching suggestions might not be sufficient to evoke a profound reflection of one’s 
teaching and to change beliefs, but that additional PD sessions are necessary. In these PD sessions, it 
might be advisable to focus not only on PCK but also on diagnostic competencies because it does not 
appear to be a routine activity to receive diagnostic recommendations and implement those into the 
classroom as the interviewed teacher tended to retrace the correction of single student answers rather 
than planning targeted teaching activities based on the automatically diagnosed levels of 
understanding. 

For now, we are looking forward to further results in the field of algebra. In the long term, our 
perspective is on more studies in other areas to gain more insight into students’ and teachers’ thinking 
and the challenges for PD to enhance mathematics teaching and learning on classroom and PD level. 

NOTES 

1. Translated by the authors; here the original German quotation from the teacher: “Da habe ich noch nie drüber 
nachgedacht, dass es auch offensichtlich Schüler gibt, die mit den Buchstaben halt Positionen im Alphabet verbinden. 
Das ist mir – also, da habe ich noch NIE drüber nachgedacht.” 
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In this paper, we investigate the implementation strategies related to bringing programming and an 
increased focus on the use of digital tools into the mathematics curriculum in Sweden. Drawing on 
implementation theory, we take a starting point in two teacher training in-service modules that 
constitute a central aspect in the Swedish effort of implementing both programming and an increased 
use of digital tools in the Swedish curriculum. The paper thus aims to contribute in reaching an 
understanding of the specific challenges related to bringing programming into the mathematics 
curriculum from an implementation perspective.  
Keywords: Comparative research, computational thinking, implementation research, mathematical 
digital competencies, programming. 

INTRODUCTION AND STATE OF THE ART 
In recent years, educational systems in many countries have increased their focus on programming 
and digital competencies. One key aspect is a change in direction, now focusing on support of students 
to become producers of technology rather than merely users. As part of this wave, Denmark, Norway, 
Sweden and several other countries are pursuing ambitious goals for implementing programming in 
compulsory education. The reasons behind such changes are many. One has to do with a wish from 
industry for more people pursuing a STEM career (Danmarks Vækstråd, 2016). Yet a reason to focus 
on programming may very well be to prepare students to meet a reality where computational and 
data-driven methods outperform classical mathematics paper and pencil calculations in tasks of 
mathematical modelling as well as problem solving. Hence, the increased focus on programming as 
an educational goal has potential consequences for mathematics teaching and learning. For example, 
teachers, schools, school owners and national educational systems face a range of decisions about the 
relation between mathematics teaching and technology teaching. These decisions concern content as 
well as which group of teachers are to be responsible for teaching students programming and not least 
in what school topics it should be taught. Sometimes programming is treated as a part of mathematics, 
but it can also be viewed as part of an integrated science topic, as a transdisciplinary element in all 
topics, or as a topic in its own right. Different countries are currently investing massively in pursuing 
different paths relating programming and digital mathematics (Bocconi et al., 2016; Vahrenhold et 
al., 2017). Still, there is currently no solid knowledge foundation on which to rely decisions about 
these matters. Although there are obvious synergies between digital mathematical competencies and 
programming, no systematic efforts in studying, describing and conceptualizing these have been 
made so far, nor in experimenting with their potentials in practice. Another challenge in exploiting 
these synergies is that mathematics teachers find programming to be outside their area of expertise 
(Misfeldt et al., 2019).    
In spite of this, we currently see new initiatives seeking to implement programming as a part of the 
mathematics curriculum, thus exploiting synergies between them and simultaneously addressing a 
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societal need for programming skills. Although such initiatives can be considered similar to any other 
implementation of curriculum change, the novelty of programming as a school topic and the lack of 
knowledge about how to connect mathematics and programming makes it likely that this is a different 
challenge compared to other curriculum implementation processes. In light of these challenges, the 
aim of this paper is to investigate the specific challenges of bringing programming into the 
mathematics curriculum considered from an implementation perspective. We will pursue this aim by 
applying Century’s and Cassata’s (2016) five factors of implementation to compare the 
implementation strategies in two in-service teacher training modules focusing on 1) programming 
and 2) the use of digital tools in mathematics teaching, both in the Swedish educational system. 
Comparing these modules will allow us a deeper understanding of how the challenge of implementing 
programming relates to a more conventional yet seemingly similar implementation of curriculum 
change. Before we get to the case, we will first outline the relation between mathematics teaching 
and learning and programming.  

The ambition of using computer-based constructions as a means to reform education has been around 
for the last 40 years and has led to educational ideas and innovations (e.g. programming languages 
for kids) that are currently applied when implementing programming and computing in compulsory 
schools (Bocconi et al., 2016; Brennan & Resnick, 2012). It was, however, not until Jeannette Wing’s 
much-cited paper from 2006 was published that the effort of making computational thinking (CT) 
into an integrated part of compulsory education became mainstream (Bocconi et al., 2016). Wing 
(2006) described CT as decomposition, data representation and pattern recognition, abstractions and 
algorithms. Although Wing’s (2006) work mostly addressed CT, educational research and policy also 
include elements of programming. In recent years, educational research has attempted to clarify and 
activate programming and CT as teachable competencies. We will refer to this trend as programming 
and computational thinking (PCT).  

It is often highlighted how PCT relates to mathematical competencies such as abstraction, problem 
solving, modelling and algorithm building (Kafai & Burke, 2013). Mathematical competencies are 
well-described in the mathematics education literature, most frequently with reference to the Danish 
mathematics competencies – the so-called KOM – framework (Niss & Højgaard, 2011), in which 
a mathematical competency is defined as “(an individual’s) well-informed readiness to act 
appropriately in situations involving a certain type of mathematical challenge” (Niss & Højgaard, 
2011, p. 49). The Danish mathematics programs, and in particular that of compulsory school, is 
heavily based on the KOM-framework, and also the Swedish curricula for compulsory school have 
been influenced by the KOM’s description of mathematical competencies.  
From an implementation point of view, it makes sense to align an inclusion of PCT with the Danish 
competencies approach of KOM. Yet, the KOM-framework itself does not explicitly address the 
notion of digital competency in relation to mathematics. This, however, is done by Geraniou and 
Jankvist (2019). They argue that much of students’ mathematical work in the 21st century calls for a 
simultaneous activation of mathematical competencies and digital competencies in such an intricate 
manner that it makes sense to coin the two into Mathematical Digital Competencies (MDC). MDC 
involves “being aware of which digital tools to apply within different mathematical situations and 
contexts, and being aware of the different tools’ capabilities and limitations” as well as “being able 
to use digital technology reflectively in problem solving and when learning mathematics” (p. 43). 
Furthermore, it entails “being able to engage in a techno-mathematical discourse” (p. 42). Both of 
these aspects of MDC can feed into PCT. But simultaneously, it is clearly possible to work with PCT 
without building explicitly on mathematics or MDC, as the case in the majority of the curriculum in 
England [1]. 
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In the following section, we introduce the case on which we conduct our analysis in this paper, and 
next continue to describe the theoretical framework we apply and our approach to data collection and 
analysis.  

IMPLEMENTING PROGRAMMING AND THE USE OF DIGITAL TOOLS IN SWEDEN 
In 2017, the Swedish government decided that programming should be included in the mathematics 
curriculum from grade 1 through 12. This integration was connected to an attempt to raise the 
students’ level of proficiency in algebra (Kilhamn & Bråting, 2019), and thus concerned all teachers 
and students of mathematics associated with these grade levels. Thus the Swedish educational system 
faced a major implementation challenge. To address it, a number of in-service training activities were 
initiated. Some of these are available under the programmes for teacher in-service training located at 
a digital portal. This portal was developed during an earlier national in-service training project called 
Boost for Mathematics. Although this project is completed, the portal remains as a platform for 
teacher training resources. It is on this portal that the resources for implementing programming are 
located. Despite such initiatives of support, Swedish mathematics teachers state rather clearly that 
they do not feel ready to conduct teaching in programming (Misfeldt et al., 2019).  

The first author of this paper has been involved in developing some of the materials (Allsopp & 
Misfeldt, 2019). These programming materials are organized as four modules, each consisting of four 
key activities. The first two modules are entitled About Programming, and Teaching with 
Programming. The key ideas in these modules are about programming and how programming is 
taught. The third and fourth modules are entitled Programming with Mathematics and Programming 
in Mathematics. These explore the specific interfaces between mathematics and programming. In 
module 3, for instance, mathematics is used as a tool to develop programs (for example, computer 
games), whereas in module 4 programming is used to solve mathematical problems. The material is 
placed in the digital portal for in-service training in Sweden. In this paper, we focus on comparing 
module 1, focusing on teaching mathematics with digital tools, and module 2, focusing on 
programming as part of mathematics, from an implementation perspective. To do so, we draw on 
Century’s and Cassata’s (2016) five key aspects of implementation in education and mathematics 
education research, which we describe below.    

THEORETICAL FRAMEWORK: FIVE KEY ASPECTS OF IMPLEMENTATION  
In a central review of the literature around educational implementation research, Century and Cassata 
(2016) define implementation research as “the systematic inquiry regarding innovations enacted in 
controlled settings or in ordinary practice, the factors that influence innovation enactment, and the 
relationships between innovations, influential factors, and outcomes” (p. 170). Moreover, they 
suggest that implementation in education cannot be satisfactorily described as adoption of innovations 
without taking seriously five key aspects (also discussed more closely to mathematics education in 
Jankvist et al., 2019):  

Characteristics of the individual users: The change that an educational innovation is aimed at 
generating is mediated by the people involved in the implementation process. Hence, it is important 
to know their individual characteristics. We distinguish between (a) characteristics of the individual 
in relation to the innovation (mathematical background, experience using the materials or resources 
involved in the innovation, etc.) and (b) characteristics of the individual that exist independently of 
the innovation (willingness to try new teaching methods, attitudes towards new artefacts in the 
classroom, etc.). 
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Organizational and environmental factors: In the case of an innovation implemented in a 
mathematics classroom, organizational factors refer, on the one hand, to the characteristics of the 
setting itself (number of students, characteristics of the physical space, access to material resources, 
etc.), and on the other hand to the collective beliefs and behaviours of the members of the class 
(identity, sociomathematical norms, didactical contract, etc.). Environmental factors refer to those 
outside the organization that have an influence on how an innovation is adopted and implemented 
(economic conditions, educational policies, priorities of government agencies, etc.). 

Attributes of the innovation: The attributes of the innovation can influence its implementation. 
However, it is important to distinguish between the actual attributes of the innovation (objective 
characteristics) and the perceived attributes of the innovation (subjective characteristics perceived by 
the user). Of course, the perceived attributes may vary from user to user. 

Implementation support strategies: It is important for an innovation initiative to be accompanied by 
an intentional and planned support for the end-users and their institutions. Such support strategies can 
consist of professional development, development or access to specific resources, etc. 

Implementation over time: Another factor that influences the implementation of an innovation is time. 
Thus, it becomes relevant to study innovation endurance over time: how can we promote that an 
innovation, besides being adopted, is preserved over time until it is routinized? It is in this branch of 
the implementation research, where longitudinal studies will become essential to answer questions 
like the one previously stated. 

Informed by the framework above, we seek to answer the following research question: What are the 
essential differences of the modules targeted at (1) programming and (2) the use of digital tools in 
mathematics teaching in Sweden considered from the perspective of Century’s and Cassata’s (2016) 
five factors of implementation?   

METHOD AND DATA 
In order to compare the two modules, we build on data from the above-mentioned digital portal for 
in-service training in Sweden (https://larportalen.skolverket.se). The in-service resources found at 
this digital portal function as an important part of the implementation of both programming and use 
of digital tools in mathematics in Sweden and is thus a natural entry point for investigating differences 
in the implementation strategies. In addition to these resources, we draw on results from a survey 
study sent to Swedish mathematics teachers (Misfeldt et al., 2019). Below, we describe these data 
sources and our approach to analyzing them. 

Teaching Mathematics with Digital Tools 1 (module 1) focus on digital tools in mathematics teaching 
and contains eight elements: 1) The web as a resource; 2) Orchestration of mathematics education 
with the help of digital tools; 3) Dynamic representation with digital tools; 4) Formative classroom 
practice with response system; 5) Analysis of digital software; 6) Investigate and discover maths with 
digital tools; 7) Mathematics teaching based on the students’ digital world; and 8) Mathematics 
teaching and development with digital tools. The portal includes descriptions of the necessary 
classroom equipment to carry out the activities in the module and a document that outline the 
theoretical foundations of the material and common pitfalls when using digital tools in the 
mathematics teaching[2]. Module 1 was developed in concordance with the in-service initiative 
“Boost for Mathematics”.  

Teaching Mathematics with Digital Tools 2 (module 2) focus on programming as a part of 
mathematics teaching and contains four elements: 1) About programming; 2) Teaching with 
programming; 3) Programming with Mathematics; and 4) Programming in Mathematics. Module 2 

https://larportalen.skolverket.se/#/modul/1-matematik/Grundskola/416_matematikundervisningmeddigitalaverktyg_%C3%A5k1-3
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involve the similar support documents/resources as the ones described above for module 1. Contrary 
to module 1, module 2 was developed later as a direct response to changes in the mathematics 
curriculum standards in Sweden, starting in 2018. 

Besides the content and resources of the two modules described above, the digital platform provides 
information that Swedish mathematics teachers are expected to work individually and in collegiate 
groups using the resources in the modules. The aim is for them to gain experience with teaching the 
content and inspiration of how the topics can be addressed in teaching. The platform also describes 
that all students ideally should have access to a device, but that they alternatively may work in pairs 
and share a device.  

As the resources from the portal do not provide us information about the end-users, we supplement 
our empirical foundation with the results of a survey sent to Swedish mathematics teachers’ (N=133) 
concerning their experience of teaching mathematics and programming, their conception of the 
relation between mathematics and programming, their conception of how programming should be 
implemented in mathematics and of how programming could help develop students’ understanding 
of mathematical concepts, procedures, and problem-solving competency (Misfeldt et al., 2019). This 
survey provides us with empirical insights into the characteristics of the end-users in relation to the 
innovation, which is needed to fully understand the implementation strategies of the modules through 
the lenses of Century and Cassata (2016). Rather than summarizing all the results from the survey in 
our analysis, we include only the results needed in our analysis to answer the research question.  

In our approach to analyze the data described above, we consider each of Century’s and Cassata’s 
(2016) factors of implementation for the intentions of the two modules in order to compare their 
strategies from an implementation point of view.  

ANALYSIS: COMPARISON OF MODULES 1 AND 2 
As stated, we now analyze and compare the implementation strategies in modules 1 and 2 according 
to Century’s and Cassata’s (2016) five factors of implementation. We will analyze modules 1 and 2 
under the same heading and focus on describing how their elements and strategies compare in respect 
to each of the five factors.   

Characteristics of the users: In the case of both modules, the users of the mathematics portal are 
Swedish teachers. As described by (Misfeldt et al., 2019), very few of the Swedish teachers included 
in the above-mentioned survey felt well prepared to teach programming, which is addressed in 
module 2. This is likely to be different from the case of module 1, where it is reasonable to anticipate 
a relatively higher level of proficiency concerning the use of digital tools or media in mathematics, 
since digital tools have been an integrated component of mathematics teaching for decades. Despite 
the similarity of the end-users, independently from the innovation, the situation is likely to differ 
completely regarding their relation to the innovation in modules 1 and 2.  

Organizational and environmental factors: Concerning this factor, each of the modules has several 
unique characteristics. Module 1 was partly organized in concordance with the Boost for Mathematics 
project and was hence a part of a larger capacity-building program. Moreover, it represents an 
extension of an already existing and consolidated subject. Due to this characteristic of the module, at 
least some of the Swedish mathematics teachers are likely to have an expertise about the content of 
module 1. Contrary to module 1, module 2 is organized in relative isolation from existing initiatives. 
Moreover, the content of module 2, focusing on programming, represents a new topic of which 
Swedish mathematics teachers are not immediately expected to be proficient. From an organizational 



 

ICTMT 15 Copenhagen 303 

 

perspective, this translates into differences between the two modules in terms of how their anchoring 
relate to existing initiatives and the availability of experts/resource persons in the current staff. 

Attributes of the innovation: One way to describe the innovation is as a specific website/educational 
material. From that perspective, the two modules both include an overview of topic related concerns 
likely to emerge. In this respect, the modules are similar in format and only differ in the specificity 
of the aforementioned topic related concerns. Another way to describe the innovation is as a political 
decision. From that perspective, the two materials represent quite different innovations. The 
introduction of programming in the mathematics curriculum in module 2 represents a significant 
change in learning objectives, whereas the material about digital technologies and mathematics 
teaching developed for Boost for mathematics is much more concerned with enhancing and 
supporting the existing practice of mathematics teachers. 

Implementation support strategies: Both collections of materials comes with a larger plan and 
implementation strategy as well as a package of further support initiatives. The material about 
programming in module 2 is situated in a recent political decision and comes as part of a number of 
other courses and initiatives allowing teachers of mathematics to learn about programming. The 
material about the use of digital tools in mathematics teaching was part of the Boost for Mathematics 
project, and thus inherited the support strategies from that initiative, such as meeting agendas and 
how organizational anchoring.  

Implementation over time: Time plays a very different role in relation to the two materials. In relation 
to the material about programming, there is a clear starting point for implementing this change 
because it is connected to a change in the mathematics curriculum planned to begin in the fall of 2018. 
This is not the case in the modules about digital tools and media (module 1), which have been running 
for a long time and thus do not involve a similar date of launch.  

DISCUSSION AND CONCLUSION 
In this paper, we have investigated how the implementation strategies in modules 1 and 2 compare in 
relation to Century’s and Cassata’s (2016) five factors of implementation. The two modules share a 
number of obvious similarities in that they are both organized as in-service training initiatives located 
at a digital portal and supplied with similar support documents for teachers. The analysis has, 
however, revealed substantial differences between the two modules that are of great significance for 
their implementation. These differences include both innovation-specific and innovation-independent 
matters. Regarding the innovation specific differences, the fact that Swedish mathematics seems to 
consider programming to be outside their area of expertise triggers differences between the modules 
with regard to several of Century’s and Cassata’s (2016) factors. This difference translates into a 
substantial difference in the amount of available local support for the teachers, and it leads to two 
very different scenarios regarding the relation between end-users and the innovation in the two 
modules. These findings suggest that the grounds for implementing programming into mathematics 
represents a particular type of challenge that has to do with the nature of programming as a school 
topic. The analysis, however, also points to innovation independent differences that is likely to be of 
importance for the success of the implementation. Namely that module 1, contrary to module 2, is 
developed in relative isolation from existing initiatives. A future consideration could be how the 
implementation of initiatives related to programming can bridge ongoing activities with an existing 
infrastructure and format for resources and support.    
We have generated the results summarized above by analyzing in-service teacher training resources 
found at the Swedish digital portal for teachers through the theoretical lenses offered by Century and 
Cassata (2016). These results represent a valuable contribution in terms of understanding the systemic 
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challenges involved in implementing programming into the mathematics curriculum, but needs to be 
supplemented with additional research in the near future. Although the resources at the digital portal 
constitute a cornerstone in the Swedish implementation strategy, there is also a need to investigate 
students’ and teachers’ practices and perceived challenges in programming lessons in mathematics. 
Understanding the practices and experiences of these actors is an essential key to optimally support 
the implementation of programming into the mathematics curriculum.  
As any other framework, Century’s and Cassata’s (2016) concepts focus on some aspects of the 
implementation process at the cost of others. For example, the framework does not capture to what 
extent the decision to implement programming in mathematics was made in a top-down or bottom-
up manner and any derived implications from this. Neither does it consider whether the 
implementation of programming has led to collateral changes in the education policy, such as changes 
in the national assessment. The insights generated in this paper constitute a first attempt at 
understanding some essential aspects of the implementation of programming in the mathematics 
curriculum. Any further studies should include the policy level in order to address issues identified 
in this paper. 

NOTES 
1. https://www.gov.uk/government/publications/national-curriculum-in-england-computing-
programmes-of-study/national-curriculum-in-england-computing-programmes-of-study 

2. https://larportalen.skolverket.se/LarportalenAPI/api-
v2/document/path/larportalen/material/inriktningar/1-
matematik/Gymnasieskola/443_REV_matematikundervisningmeddigitalaverktygGY/se-
aven/pres/IKTGy_01_verktyg.docx 
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INTRODUCTION 
Due to the Covid-19 crisis, instruction shifted from the classroom to the children’s rooms in Spring 
2020. As a result, lessons in Germany were no longer conducted synchronously but mostly 
asynchronously, leading to a loss of personal contact and a loss of familiar school structures 
(Wößmann et al., 2020). To address these issues, the MCM@home concept was developed in Spring 
2020. Hereby, the smartphone app MathCityMap—originally aiming at mathematical outdoor 
education—is used for the purpose of distance education. In the following, three perspectives on 
MCM@home are presented, namely the view of learners, teachers and task authors.  

THE MCM@HOME CONCEPT 

Perspective of Learners 
Following a low-tech approach, students only need a smartphone with an installed MathCityMap app 
(cost-, add-free and in line with GPDR) and an active internet connection to participate in lessons 
conducted with MCM@home. The app guides students through a digital learning path and shows the 
tasks. On demand, learners can involve up to three hints and a sample solution. Further, the app gives 
immediate feedback on the entered solution (Figure 1). 

By using the feature Digital Classroom, all students work synchronously at a predefined time. Here, 
a chat is implemented to enable direct student-teacher interaction despite the spatial separation.  

 

Figure 1. Students view of the MCM@home task “Ping Pong Table” 

Perspective of Teachers 
The working space for teachers is the MathCityMap web portal (https://mathcitymap.eu/). Within the 
Digital Classroom, teachers can easily monitor students’ working progress in real-time by two 

mailto:ludwig@math.uni-frankfurt.de
mailto:barlovits@math.uni-frankfurt.de
mailto:larmann@math.uni-frankfurt.de
https://mathcitymap.eu/
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functionalities. Firstly, a class overview is provided, showing how the students solved the tasks of the 
digital learning path. It displays the number of invoked tasks and the quality of the entered solution 
per task. As students receive up to 100 points per task, their archived score is also shown. To analyse 
the working progress on an individual level, the e-portfolio allows teachers to retrace all interactions 
of a student with the app, such as the use of hints or entered solutions.  

By using the chat function for sending text or voice messages as well as images, teachers can directly 
support the task solving process of their students. For a more detailed description of the Digital 
Classroom and its use in distance-education settings, see Larmann et al. (2022). 

Perspective of Authors 
Teachers can decide whether to use an already existing digital learning path or to create own tasks 
and learning paths. To create tasks, teachers simply need to fill in a predefined form in the web portal. 
It contains the task formulation, hints and a sample solution as well as a task image. Due to the wide 
range of different answer formats (e.g., exact value, interval, vector), the system offers the 
opportunity to create not only ‘classic’ computational tasks but also tasks for modelling, reasoning 
and problem solving. In addition, the task formats quiz or cloze text are available. 

OUTLOOK AND WORKSHOP ACTIVITY 
The MCM@home concept was developed in Spring 2020 based on the experiences of distance 
education in Germany. Until April 2021, MathCityMap experts created 56 digital learning paths in 
seven different languages, which were downloaded nearly 3.700 times to the app. This indicates a 
successful first dissemination progress of MCM@home in school praxis (Barlovits & Ludwig, 2021). 

To fully meet the requirements of distance education (cf. Larmann et al., 2022), MCM@home will 
be further developed into a stand-alone system. This system, called ASYMPTOTE, will also consist 
of a smartphone app for learners and a web portal for teachers and task authors. It will extend 
MCM@home with a systemic adaptivity and a long-term analysis option.  

In the workshop, the MCM@home concept will be presented as a technically low-barrier system for 
distance education. Subsequently, the workshop participants will get to know MCM@home from the 
three perspectives mentioned above:  Firstly, they take on the role of students and work on a digital 
learning path within MCM@home. Secondly, from the teacher’s perspective, the function of the 
digital classroom as a monitoring tool is discussed. Thirdly, the participants create as task authors 
their own tasks within the MCM@home system.  

REFERENCES 
Barlovits, S., & Ludwig, M. (2021). MCM@home: A concept for teaching and learning 

mathematics during the Corona crisis. In Gómez Chova, L., López Martínez, A., Candel Torres, I.  
EDULEARN21 Proceedings, IATED Academy (pp. 1588–1597). 

Larmann, P., Barlovits, S., & Ludwig, M. (2022). MCM@home: Analysing a learning platform for 
synchronous distance education. In U. T. Jankvist, R. Elicer, A. Clark-Wilson, H.-G. Weigand, & 
M. Thomsen (Eds.), Proceedings of the 15th international conference on technology in mathematics 
teaching (ICTMT 15) (pp. 79–86). Danish School of Education, Aarhus University. 

Wößmann, L., Freundl, V., Grewenig, E., Lergetporer, P., Werner, K., & Zierow, L. (2021). Bildung 
erneut im Lockdown: Wie verbrachten Schulkinder die Schulschließungen Anfang 2021? 
[Education on lockdown again: how did school children spend the school closures in early 2021?]. 
ifo Schnelldienst, 74(5), 3–19. ifo Institut. 



 

ICTMT 15 Copenhagen 308 

 

AN APPROACH TO TEACHING DATA SCIENCE IN MIDDLE SCHOOL 

Susanne Podworny and Yannik Fleischer 

Paderborn University; podworny@math.upb.de, yanflei@math.upb.de 

We present an innovative series of lessons using digital technologies for a data science project in 
middle school. In a data science project, on the one hand, the selection of data is of elementary 
importance, on the other hand, a technology has to be used that allows interesting data explorations 
and at the same time is easy to learn for students. As data, we use self-collected survey data from 492 
young people regarding their leisure and media behaviour. For the data exploration, we chose the 
free and web-based data science platform CODAP, which allows an easy entry into data science. 
Student results show that CODAP is a suitable technology for doing data science in middle school 
and is positively received by the students. 

Keywords: CODAP, data science, decision trees, statistical projects. 

INTRODUCTION 
Data science is an emergent field with fast-growing importance (Ridgway, 2016). In everyday life, 
one encounters data and conclusions inferred from data everywhere, for example in business, politics 
and society (Engel, 2017). Due to the general presence of data science, its statistical fundamentals 
should also be addressed in mathematics lessons. Today, data is analysed everywhere with the help 
of computers and, in the field of data science, often with artificial intelligence methods. This results 
in a connection to computer science lessons if one wants to address data science in school teaching. 
Because real data science problems are always situated in a certain context, there is a third component 
of a certain subject domain, such as politics or society. This results in the typical picture of data 
science at the intersection of statistics, computer science and domain knowledge as in Figure 1. 

 

Figure 1. Data science as an interdisciplinary field 

The basis with data provides a natural starting point for data science in maths and statistics lessons. 
The corresponding reasoning about data (Biehler et al., 2018) should be promoted as early as possible 
in schools (Ben-Zvi, 2018). 

In this paper, we present an innovative approach to how data science in middle school can be carried 
out in a computer-based way. The approach for a teaching series is to lay the foundations in statistics 
and data exploration with technology in the first part of the teaching series. In the second part, a 
prediction model is developed by systematically creating a decision tree based on the data and the 
findings from the first part of the series. Preliminary results from an exploratory teaching experiment 
in a tenth-grade class, in which real, multivariate data were explored with the Common Online Data 
Analysis Platform (CODAP), are presented from this teaching series. The second part of the teaching 
series is currently being tested.  
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BACKGROUND 
Data science is conducted here with a focus on statistical projects and the use of digital tools. In 
statistics education, so-called bottom-up software (Konold, 2007) are used for learning statistics. 
From a didactic point of view, the technological tools Fathom, TinkerPlots and CODAP are bottom-
up tools, which are all based on a similar didactic principle. They represent so-called landscape 
software (Bakker, 2002), in which learners can move freely and pursue their own questions. 
According to this didactic principle, no graphical visualisations, such as pie charts or histograms, are 
given, but have to be created by certain actions. This process should create a deeper understanding of 
the representation in the learner.  

In the series of lessons presented here, we use the CODAP environment (codap.concord.org), which 
is free and browser-based and provides the technological basis for the series of lessons. 

Statistical projects are widely seen as an effective teaching strategy for learning data science (Gómez-
Blancarte & Ortega, 2018) and can address fundamental ideas in statistics like data, representations, 
and variability (Burrill & Biehler, 2011). Research suggests a benefit in students’ motivation by doing 
projects (Bilgin et al., 2015). Another benefit of an innovative data science project work is that  

[w]orking with SP [statistical projects] thus represents a strategy that can enrich curricula because 
each phase involved in developing a project entails the use of various statistical concepts and 
processes that go beyond the topics normally included in curricula. (Gómez-Blancarte & Ortega, 
2018, p. 5) 

Another important part of data science is predictive modelling (Ridgway et al., 2018) and especially 
machine learning. Machine learning encompasses various sub-areas (supervised learning, 
unsupervised learning, reinforcement learning, etc.) and a variety of different methods. One of the 
methods of supervised learning is decision trees, which are algorithmically created from data 
(Breiman et al., 1998). This method is one of many that can automatically solve classification or 
regression problems based on data. However, decision trees have unique features that make this 
method particularly suitable for use in schools. Engel et al. (2018) cite the following advantages, 
among others: Due to the hierarchical rule structures, decision trees are very easy to interpret. This 
enables the tracing of individual decision processes, but also the analysis of patterns in underlying 
multivariate data. Thus, decision trees are not only suitable as predictive tools, but also to search for 
explanations (conditional factors) in the data. Another particularly important advantage of the method 
over others is that, in a basic form, no higher mathematics is necessary to understand the algorithms. 

In order to get to the decision tree method in class, the data basis must first be understood. Therefore, 
in our series of lessons, we work on data exploration in the first part and build on this in the second 
part. The paper describes ideas for the first part and presents some results from students’ project work. 

A SERIES OF LESSONS FOR DATA SCIENCE IN MIDDLE SCHOOL 
Based on the approach of a statistical project and the technological tool CODAP, with which both 
data exploration and decision trees can be carried out, we have developed the teaching series “Data 
detectives at work”.  

The lessons address students with no prior knowledge of statistics or data science. In the first part, 
students’ statistical thinking is promoted. For this purpose, we use the PPDAC framework by Wild 
and Pfannkuch (1999) with the phases problem, plan, data, analysis, and conclusion (Figure 2). In 
order to use data that is interesting for students, we started an online survey in cooperation with a 
German media association (https://www.mpfs.de). We call the resulting data JIM-PB 2021. These 
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data contain 492 cases of students between 10 and 20 years of age who answered 161 questions. The 
young people have given information on their leisure and media behaviour, for example about the 
frequency of reading books, magazines online or offline, playing computer games, using social media 
platforms, using YouTube, etc. An example question is: “How often do you watch LetsPlay videos 
on YouTube?” with possible answers ‘daily’, ‘several times a week’, ‘once a week’, ‘twice a month’, 
‘once a month’, ‘less often’, ‘never’. The resulting micro-data is analysed by the students, with media 
literacy as a background subject domain. Of course, data with 492 cases do not represent “big data”, 
but with 161 variables it is truly multivariate and provides an opportunity for diverse explorations. 
For students, this is usually the first encounter with multivariate data in their school years. Likewise, 
frequency distributions and analysing statistical relationships between two variables are not typically 
encountered in the mathematics curriculum. The aim of this part is for students to investigate their 
own meaningful questions using real and interesting data and thus gain a first experience of a data 
science project. 

 

Figure 2. Data analysis cycle in “data detectives at work” according to Wild and Pfannkuch (1999) 

We use CODAP as a digital tool for data analysis (for a detailed description, see Haldar et al., 2018). 
To be able to do data science with CODAP, one does not have to know how to write code, which is 
an important criterion for the use of the platform in middle school. CODAP is easy to learn and offers 
even inexperienced learners a quick start in data exploration. Thus, students can pursue their own 
questions with this digital tool. 

Four learning objectives are the main guiding principles for the design of the first part of the teaching 
series: 

• Students explore and analyse multivariate data.  
• Students use basic terms of statistics and statistical concepts. 
• Students use a digital tool such as CODAP for their data exploration. 
• Students document and present their findings in an appropriate way. 

Part one consists of eight lessons of 45 minutes each. In a data science project, the focus should be 
on the statistical and contextual content rather than on the procedures required to use the digital tool. 
Difficulties are known to arise when asking statistical questions (Arnold, 2013), exploring 
relationships between categorical variables (Watson & Callingham, 2014) and summarising findings 
in a presentation. These issues are specifically addressed during the first four sessions. There is a 
particular focus on percentage analysis when comparing distributions in lessons 3 and 4. The main 
project work takes place in lessons 5–7, when students explore the JIM-PB data along their own 
questions. In the project, students work in small groups on one topic each, for which they have to 
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pose questions and analyse the data themselves. The main context is targeted advertising, referring to 
four specific areas. These four areas represent the four topics for the group work: (1) Online 
newspapers, (2) TikTok, (3) Letsplay videos on Youtube, (4) Game consoles. The concluding lesson 
8 is a reflection on the findings, the tool, and the data analysis process. 

Part two consists of eight lessons too. Students use their findings from part one to create and 
understand the method of decision trees to predict a respective target group for the four areas.  

IMPLEMENTATION OF THE FIRST PART OF “DATA DETECTIVES AT WORK” 
All 13 students aged 15–17 from one tenth-grade class of a German middle school (German 
Realschule) participated in the regular lesson series in April 2021. The students had little prior 
knowledge of statistics. Due to the pandemic, a large part of the lessons took place online, which was 
easy to implement with CODAP because it is web-based. The presentations of the projects also took 
place digitally at the end. The students formed four groups for the project work. 

In the first four lessons, students were taught how to represent the distribution of a categorical or 
numerical variable in CODAP, how to investigate relationships between two variables with CODAP 
using different types of percentages (row, column, cell) and how to represent absolute and relative 
frequencies with CODAP. It is well known from studies such as Watson and Callingham (2014) that 
learners have considerable difficulty in exploring relationships between two categorical variables. 
For this reason, special instructions were developed and discussed with the students. 

We show some examples of the results from one typical student presentation. This shows how well 
students have mastered data analysis with the CODAP tool and what insights they have gained. 

Results from the Presentation of Student Group 1 with the Topic of Online Newspapers 
Student group 1 had three members. Their presentation consisted of seven slides with eleven 
diagrams, eight of them as a 7×7 table. In these tables, only row percentages were used. This is a 
default setting in CODAP when using percentages. Row percentages were used correctly in many 
places by all groups, but in some places, column or cell percentages would have been more 
appropriate with regard to the interpretations made by students. A typical example of student group 
1, following next represents work done in a similar way by the other student groups. 

 

Figure 3. Students’ diagram for “How often do you read newspapers online?” 

At first, this group analysed the frequency of reading newspapers online with CODAP (Figure 3). As 
a result, they stated that 57% of the respondents read newspapers online, while 43% do not do so at 
all. Next, they wanted to investigate which social media are used by newspaper readers. To do this, 
they created the 7×6 table in Figure 4.  

Students wrote for Figure 4: “If we look at the situation with Twitter, we see that active readers of 
online newspapers also use Twitter frequently.” It can be assumed that they are referring to the 
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percentage figures shown in the upper right corner. Maybe the use of column percentages would have 
been more appropriate for an interpretation of frequent online newspaper reading. 

 

Figure 4. Students’ diagram for “How often do newspaper readers use Twitter? (With row 
percentages)” 

However, a large proportion never uses Twitter, which is why the results here are rather poorly usable. 
The situation is different for those who use Instagram (Figure 5). 

 

Figure 5. Students’ diagram for “How often do newspaper readers use Instagram?” (With row 
percentages) 

Students wrote here: “Instagram has a large active audience that uses the platform and reads 
newspapers online several times a week.” It seems as if the students here have made an “and” 
association of the two variables in their interpretation.  

 

Figure 6. How often do newspaper readers use Instagram? (With cell percentages) 
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They are looking at people who read newspapers online AND use Instagram frequently. However, 
row percentages like in Figure 5 are not appropriate for such an interpretation, instead, cell 
percentages like in Figure 6 should have been used for this. Figure 6 shows a representation from 
which we can see that 11% of all respondents use Instagram daily and read newspapers online several 
times a week. 

Furthermore, the students investigated which German school type newspapers are most frequently 
read online. 

 

Figure 7. Students’ diagram for “How often do students from different types of schools read 
newspapers online?” (With row percentages) 

Students interpreted for Figure 7: “No matter how stereotypical it may sound, it is high school 
students who statistically read newspapers online more often”, which is a correct interpretation. 

The other graphs were correctly created and correctly interpreted by the group as well.  

Results from the Presentation of Other Student Groups  
Student group 2’s presentation included six diagrams, four of them as a 7×7 table. In these tables, 
once row percentages, once column percentages, and twice cell percentages were used, all of them 
correctly. Student group 3’s presentation included five diagrams, none of them as a 7×7 table. Student 
group 4’s presentation included ten diagrams, and three times row percentages were used. Many 
interpretations of student group 4 would have required column or cell percentages, but were 
incorrectly assigned to row percentages. Interpreting ‘small’ diagrams like, e.g., comparing gender 
(with only two values: female/male) and another variable was done by all groups correctly. 

Summary 
Looking at all presentations of students, it can be seen that the interpretations always refer to only a 
few percentage values shown. On the one hand, it can be interpreted that the information content of 
the 7×7 visualisations was too high to be interpreted completely, but on the other hand that the 
students were able to extract the information that was important for them. One can see that all groups 
have dealt intensively with their topic, which can be shown by the number of slides and diagrams 
used in their final presentations. The percentages were not always applied correctly, but overall a lot 
of information was worked out using the data. 

Students’ Self-Assessment of Part One 
After the lesson series of part one, the students completed an online survey on their attitudes and 
perceptions of the tool and the content. Students rated several items on a four-point Likert scale. Here 
we show selected results of four items. 
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Figure 9. Item 1: Dealing with CODAP has been 
easy for me 

 

Figure 10. Item 2: I liked the interaction with 
CODAP 

Results from item 1 and item 2 show that students felt competent in handling the tool CODAP and 
liked working with it. For the students’ self-assessment concerning their statistical competencies, 
items 3 and 4 (in Figures 11 and 12) give an impression. 

 

Figure 11. Item 3: I felt competent to interpret the 
charts 

 

Figure 12. Item 4: I had difficulties in doing the 
data analysis on my own 

The results show that all students felt competent to interpret the diagrams (although not all 
interpretations were correct), and only three students reported that they had difficulties when doing 
the data analysis with CODAP.  

DISCUSSION 
The innovative series of lessons on data science in middle school has generated enthusiasm among 
the students and led to interesting findings through data exploration. The students have made good 
use of statistical concepts to do data science. The resulting presentations have focused on many 
aspects of the different topics and answered many questions. Overall, few difficulties were 
encountered, including the relationship between two variables as reported by Watson and Callingham 
(2014). As expected, the CODAP tool could be used by the students for targeted data exploration 
after a minimal learning time. Thus, the approach presented here has proven successful in introducing 
an innovative data science project with real data in middle school. 

The second part of the lesson series is currently being tested. The students continue to work with 
CODAP to create decision trees. For the first part of the innovative lesson series, CODAP has proven 
to be an excellent way to do data science in mathematics lessons, and now we are interested to see 
how it supports understanding decision trees. 
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ICTMT 15 – PROCEEDINGS SCHEDULE: SUMMARY 

 

Schedule: summary 

 Monday 13 September Tuesday 14 September Wednesday 15 September Thursday 16 September 

  9:00 -   9:30  Plenary: Anna Baccaglini- Plenary: Shai Olsher   

  9:30 - 10:00  Frank              (9:00 – 10:00) (9:00 – 10:00) Paper session 5 

10:00 - 10:30  Coffee break Coffee break (9:00 – 10:30) 

10:30 - 11:00      Coffee break 

11:00 - 11:30  Paper session 2 Paper session 4   

11:30 - 12:00  (10:30 – 12:00) (10:30 – 12:00) Paper session 6 

12:00 - 12:30   Lunch   (11:00 – 12:30) 

12:30 - 13:00 Registration and lunch (12:00 – 13:00) Lunch Lunch 

13:00 - 13:30 (12:00 – 13:30)   (12:00 – 13:30) (12:30 – 13:30) 

13:30 - 14:00 Openning ceremony Walk and talk  Plenary: Chronis Kynigos 

14:15 - 14:30   (13:00 – 14:30) Workshops 2 (13:30 – 14:30) 

14:30 - 15:00 Paper session 1   (13:30 – 15:00) Closing ceremony 

15:00 - 15:45 (14:15 – 15:45) Workshops 1    

15:45 - 16:00 Coffee break (14:30 – 16:00)    

16:00 - 16:30 Plenary: Dan Meyer Coffee break Excursion: Canal trip  

16:30 - 17:00  (16:00 – 17:00)    (15:00 – 18:00)  

17:00 - 17:30 Poster session  Paper session 3    

17:30 - 18:00 and wine reception (16:30 – 18:00)    

18:00 - 18:30 (17:00 – 18:00)    

18:30 - 19:00   Conference dinner  

19:00 - later   (Starting 18:45)  
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ICTMT 15 – PROCEEDINGS DAY 1: MONDAY 13 SEPTEMBER 

12:00-13:30 – Registration and lunch 
Aulaen (A141) 
Time for checking in; receive credentials and materials, and having lunch 
 
13:30-14:00 – Opening ceremony 
Festsalen (A220) 
Uffe Thomas Jankvist, IPC chair – Danish School of Education, Aarhus 
University, Denmark 
 
14:15-15:45 – Paper session 1 
 
Festsalen (A220) 

• Rogier Bos and Winand Renkema: Metaphor-based algebra animation 
• Philipp Larmann, Simon Barlovits and Matthias Ludwig: MCM@home: 

Analysing a learning platform for synchronous distance education 
• Lena Frenken and Gilbert Greefrath: Successful modelling processes in a 

computer-based learning environment 
Chair: Morten Blomhøj 
 
Auditorium (D174) 

• Francesca Ferrara, Giulia Ferrari and Ketty Savioli: Children in movement 
towards STEAM: Coding and shapes at kindergarten 

• Melanie Platz: “... Then it looks beautiful” - Preformal proving in primary school 
• Susanne Podworny and Yannik Fleischer: An approach to teaching data 

science in middle school  
Chair: Julie Vangsøe Færch 
 
15:45-16:00 – Coffee break 
Aulaen (A141) 
 
16:00-17:00 – Plenary lecture 
Festsalen (A220) 
Dan Meyer – Desmos, Oakland, CA, USA 
Theme 4: Innovating with technologies 
Pixels are pedagogy  
Chair: Alison Clark-Wilson 
 
 
 
 
 

Day 1: Monday 13 September 
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ICTMT 15 – PROCEEDINGS DAY 1: MONDAY 13 SEPTEMBER 

17:00-18:30 – Poster session and wine reception 
Festsalen (A220) 
 
 

• Domenico Brunetto: StreetMath: Supporting young migrants empowerment 
(cancelled) 
 

• Ben Davies, Eirini Geraniou, Cosette Crisan and Manolis Mavrikis: 
Undergraduates’ experiences with automated assessment in STACK 
(cancelled) 
 

• Morten Elkjær: Equation Lab: Teaching equation solving in Virtual Reality 
using a modified dynamic balance model (cancelled) 
 

• Francesca Ferrara, Giulia Ferrari, Elvira Fernández-Ahumada and Natividad 
Adamuz-Povedano: Gamifying CLIL within the mathematical context of 
fraction learning 
 

• Julie Vangsøe Færch: Development and evaluation of primary school 
students’ mathematical competencies via dynamic online learning 
environments 
 

• Inge Olav Hauge and Johan Lie: Contributions of computational thinking and 
computer programming for development of critical democratic competence: 
Empowerment and agency  
 

• Ayse Kilic, Zeger-Jan Kock and Birgit Pepin: Connectivity related issues in a 
modularised course involving mathematics 
 

• Evelyn Schirmer, Alexander K. Schüler-Meyer and Birgit E.U. Pepin: Challenges 
of procedure-oriented cognitive conflict strategies for undergraduate 
students 
 

• Kinga Szücs: Finding theorems and their proofs by using a calculator with 
CAS in university-level mathematics 
 

• Laura Wirth and Gilbert Greefrath: Examining heuristic worked example 
videos in a collaborative setting: The conception of the project MoVie  

 
• Filip Moons, Ellen Vandervieren and Jozef Copaert: Atomic, reusable 

feedback: A technology-mediated solution for assessing handwritten math 
tasks? 
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ICTMT 15 – PROCEEDINGS DAY 2: TUESDAY 14 SEPTEMBER 

09:00-10:00 – Plenary lecture 
Festsalen (A220) 
Anna Baccaglini-Frank – University of Pisa, Italy 
Theme 2: Making sense of ‘classroom’ practice 
Shifts from teaching mathematics with technology to teaching mathematics 
through technology: A focus on mathematical discussion  
Chair: Hans-Georg Weigand 
 
 
10:00-10:30 – Coffee break 
Aulaen (A141) 
 
 
10:30-12:00 – Paper session 2  
 
Room A401 

• Rikke Maagaard Gregersen: How about that algebra view in GeoGebra? A 
review on how task design may support algebraic reasoning in lower 
secondary school 

• Cecilie Carlsen Bach and Angelika Bikner-Ahsbahs: When a digital tool 
guides mathematical communication 

• Annalisa Cusi, Agnese Ilaria Telloni and Katia Visconti: Design of digital 
resources to scaffold metacognitive activities: Focus on students’ reflections 
(cancelled) 
Chair: Anna Baccaglini-Frank 
 
Room A405 

• Katrin Klingbeil, Fabian Rösken, Daniel Thurm, Bärbel Barzel, Florian Schacht, 
Ulrich Kortenkamp, Kaye Stacey and Vicki Steinle: SMARTA – Online 
diagnostic to reveal students algebraic thinking and enhance teachers 
diagnostic competencies 

• Reinhard Oldenburg: Relational thinking supported by an algebraic modeling 
tool on the web 

• Simeon Schwob and Paul Gudladt: Successful communication as a part of 
teaching and learning mathematics in remote settings (cancelled) 
Chair: Stine Gerster Johansen 
 
 
12:00-13:00 – Lunch 
Aulaen (A141) 
 
 
 

Day 2: Tuesday 14 September 
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ICTMT 15 – PROCEEDINGS DAY 2: TUESDAY 14 SEPTEMBER 

13:00-14:30 – Walk and talk 
Festsalen (A220) 
Walk tour in groups with a visit to Grundtvig’s Church. 
 
 
14:30-16:00 – Workshop session 1 
 
Room A100a 

• Chaim Ballin, Anatoli Kouropatov and Ofir Shafirovitz: Workshop: Interactive 
digital environment for teaching and learning deductive geometry 
(FullProof): Design principles, functionality, pedagogy and results of 
implementation (Part I) 
Room A104 

• Theo van den Bogaart and Rogier Bos: Heuristic trees hackathon: Designing 
and implementing support for mathematical problem solving (Part I) 
Room A201 

• Kendal Bahadirgil and Knud Nissen: Maple Mathematics Suite - essential tools 
for STEM education 
Room A203 

• Lena Frenken: Discovering the Possibilities of a Computer-Based Learning 
Environment on Mathematical Modelling 
Room A408 

• Mats Brunström, Maria Fahlgren, Mirela Vinerean and Yosief Wondmagegne: 
Workshop on the design of tasks and feedback utilizing a combination of a 
dynamic mathematics software and a computer-aided assessment system 
Room A412 

• Yannik Fleischer and Susanne Podworny: Teaching machine learning with 
decision trees in middle school using CODAP 
Room A416 

• Allan Tarp: Develop children’s innate mastery of many by bridging outside 
existence to inside essence in full sentences 
 
 
16:00-16:30 – Coffee break 
Aulaen (A141) 
 
 
16:30-18:00 – Paper session 3 
Auditorium (D174) 

• Raimundo Elicer and Andreas Lindenskov Tamborg: Nature of the relations 
between programming and computational thinking and mathematics in 
Danish teaching resources 

• Liv Nøhr, Morten Misfeldt and Andreas Lindenskov Tamborg: Teacher 
development in computational thinking and student performance in 
mathematics: A proxy-based TIMSS study 

• Eleonora Faggiano and Federica Mennuni: Grasping sense and building 
meanings in mathematical distance contexts: The role of the teacher 
Chair: Mathilde Kjær Pedersen 
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ICTMT 15 – PROCEEDINGS DAY 2: TUESDAY 14 SEPTEMBER 

Room D170 (cancelled) 
• Scott Courtney: Exploring teachers’ attempts to differentiate instruction in 

remote learning environments: The case of Claudia (cancelled) 
• Eirini Geraniou and Cosette Crisan: Adapting classroom based practices to 

online teaching: A mathematics teacher’s reflections (cancelled) 
• Melih Turgut, Iveta Kohanová, Jørn Ove Asklund, Øistein Gjøvik, Marit Buset 

Langfeldt and Hermund André Torkildsen: Fourth graders explore a 
computational thinking task using Robot Emil: A multimodal analysis of pupils’ 
thinking (cancelled) 
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ICTMT 15 – PROCEEDINGS DAY 3: WEDNESDAY 15 
SEPTEMBER 

09:00-10:00 – Plenary lecture 
Festsalen (A220) 
Shai Olsher – University of Haifa, Israel 
Theme 3: Fostering mathematical collaborations 
Te(a)ching to collaborate: Automatic assessment based grouping 
recommendations and implications for teaching  
Chair: Eleonora Faggiano 
 
 
10:00-10:30 – Coffee break 
Aulaen (A141) 
 
 
10:30-12:00 – Paper session 4 
 
Festsalen (A220) 

• Frederik Dilling and Julian Sommer: Virtual Reality in Mathematics Education – 
Design of an Application for Multiview Projections 

• Alice Barana: Understanding linear functions in an interactive digital learning 
environment 

• Cintia Scafa Urbaez Vilchez and Alice Lemmo: A videogame as a tool to 
orchestrate productive mathematical discussions  
Chair: Eleonora Faggiano 
 
Auditorium (D174) 

• Manuela Subtil, António Domingos and Maria Alessandra Mariotti: Graphing 
calculator in the connection between geometry and functions with the 
contribution of semiotic mediation 

• David Reid, Angelika Bikner-Ahsbahs, Thomas Janßen and Estela Vallejo-
Vargas: Forms of epistemic feedback 

• Zelha Tunç-Pekkan, Eylem Sayar and Isıl Ozturk: Affordances of university 
based online laboratory school: Types of feedback  
Chair: Marianne Thomsen 
 
 
12:00-13:30 – Lunch 
Aulaen (A141) 
 
 
 
 
 

Day 3: Wednesday 15 September 
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ICTMT 15 – PROCEEDINGS DAY 3: WEDNESDAY 15 
SEPTEMBER 

13:30-15:00 – Workshop session 2 
 
Room A100a 

• Chaim Ballin, Anatoli Kouropatov and Ofir Shafirovitz: Workshop: Interactive 
digital environment for teaching and learning deductive geometry 
(FullProof): Design principles, functionality, pedagogy and results of 
implementation (Part II) 
Room A104 

• Theo van den Bogaart and Rogier Bos: Heuristic trees hackathon: Designing 
and implementing support for mathematical problem solving (Part II) 
Room A203 

• Filip Moons and Ellen Vandervieren: Workshop - Writing atomic, reusable 
feedback to semi-automatedly assess handwritten math tasks 
Room A405 

• Philipp Larmann, Simon Barlovits and Matthias Ludwig: MCM@home: An 
approach for synchronous distance learning with mobile devices 
Room A414 

• Frederik Dilling and Julian Sommer: Mixed reality in mathematics education 
Room A416 

• Francesca Ferrara, Giulia Ferrari and Keyy Savioli: Spatial and computational 
thinking at kindergarten through the aid of an educational robot 
Room D166 

• Douglas Butler: Comparing the user interfaces of dynamic software 
(cancelled) 
 
 
15:00-18:00 – Excursion 
Parking lot between buildings A and C 
Ferry tour to the Copenhagen canals. 
A bus will be expecting us on the campus parking lot. 
The last stop of the tour will be Christianshavn, at a walking distance to the 
conference dinner. 
 
 
18:45 – Conference dinner 
Restaurant Spiseloppen 
Address: Bådmandsstræde 43, 1407 Copenhagen (Christiania) 
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ICTMT 15 – PROCEEDINGS DAY 4: THURSDAY 16 
SEPTEMBER 

09:00-10:30 – Paper session 5 
 
Festsalen (A220) 

• Dimitris Diamantidis and Chronis Kynigos: Digital media as tools fostering 
teacher creativity on designing tasks around an area of mathematical 
concepts 

• Bjarnheiður Kristinsdóttir, Freyja Hreinsdóttir and Zsolt Lavicza: Developing 
silent video tasks’ instructional sequence in collaboration with teachers 

• Tim Lutz: Machine learning model for automated text classification of 
mathematical tasks (cancelled) 
Chair: Rikke Maagaard Gregersen 
 
Room A203 

• Marianne Thomsen and Uffe Thomas Jankvist: Mathematical thinking in the 
interplay between historical original sources and GeoGebra 

• Maria Fahlgren, Mats Brunström, Mirela Vinerean and Yosief Wondmagegne: 
Designing tasks and feedback utilizing a combination of a dynamic 
mathematics software and a computer-aided assessment system 

• Mathilde Kjær Pedersen: The use of digital technologies for mathematical 
thinking competency 
Chair: Andreas Lindenskov Tamborg 
 
 
10:30-11:00 – Coffee break 
Aulaen (A141) 
 
 
11:00-12:30 – Paper session 6 
 
Festsalen (A220) 

• Zelha Tunç-Pekkan, Rukiye Didem Taylan, Bengi Birgilil and İbrahim Burak 
Olmez: An examination of pre-service mathematics teachers’ experiences at 
an online school 

• Andreas Lindenskov Tamborg, Uffe Thomas Jankvist and Morten Misfeldt: 
Comparing programming and computational thinking with mathematical 
digital competencies from an implementation perspective 

• Simone Jablonski, Eugenia Taranto, Matthias Ludwig and Maria Flavia 
Mammana: Go online to go outdoors – a MOOC on MathCityMap  
Chair: Cecilie Carlsen Bach 
 
 
 
 

Day 4: Thursday 16 September 
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ICTMT 15 – PROCEEDINGS DAY 4: THURSDAY 16 
SEPTEMBER 

Room A203 
• Maxim Brnic and Gilbert Greefrath: Does the gender matter? The use of a 

digital textbook compared to printed materials 
• Alexander Schüler-Meyer: The purpose of handwriting with tablet-computers 

and smartpens in mathematical group work over distance 
• Stine Gerster Johansen: A Review on Allgemeinbildung and Digital 

Technologies in Mathematics Education  
Chair: Raimundo Elicer 
 
 
12:30-13:30 – Lunch 
Aulaen (A141) 
 
 
13:30-14:30 – Plenary lecture 
Festsalen (A220) 
Chronis Kynigos – National and Kapodistrian University of Athens, Greece; 
and Linnaeus University, Sweden 
Theme 1: Designing technology 
Embedding mathematics in socio-scientific games: The case of the 
mathematical in grappling with Wicked Problems  
Chair: Hans-Georg Weigand 
 
 
14:30-15:00 – Closing ceremony 
Festsalen (A220) 
Uffe Thomas Jankvist, IPC chair – Danish School of Education, Aarhus 
University, Denmark 
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