

MEASUREMENT OF THE TIME-DEPENDENT PILE SHAFT FRICTION WITH HIGH-STRAIN DYNAMIC AND STATIC PILE LOAD TESTS

Anders Beijer Lundberg, ELU Konsult

CONTENTS

+ Background

- + Geological conditions
- + Piles in tension
- + Dynamic pile load tests
- + Pile shaft bearing capacity increase

BACKGROUND

- Pile foundations for a large project
- + Main motor bridge
- + Piles in compression
- + Piles in tension
- + Verification of the bearing capacity

GEOLOGICAL CONDITIONS

- + Medieval coastline
- + Former harbor
- + 10-20 m sand and gravel fill
- + 20-40 m esker sand gravel
- **+** 50 m to rock

NORTHERN ABUTMENT

- + Large pile group
- + Vertical / horisontal load
- + Piles in compression
- + Piles in tension
- + Limited time for the construction

DESIGN (VERIFICATION/CALCULATION)

- Piles in compression
 End-bearing piles
- + Piles in tension
 - + Pile shaft resistance
 - + Rock anchors

DESIGN (VERIFICATION/CALCULATION)

- + Verification compression
 + High-strain dynamic pile load tests
 - +CASE-method
- + Verification tension
 - + High-strain dynamic pile load tests
 - + Signal matching (CAPWAP)
 - + Static pile load tests (tension)
- + Calculation
 - + Effective stress method (β -method)
 - + (CPT-based methods)

MARK

ROCK ANCHORS

- Rock anchors drilled into the ground
- + Tension load tests

ROCK ANCHORS

SHAFT FRICTION

- + Verification/calculation
- + High-strain dynamic pile load tests
- + Economically advantageous
- + Static pile load tests
- + Time to design capacity

11

LOAD TESTS

+ Static load tests

+ Dynamic load tests

STATIC LOAD TESTING

STATIC LOAD TESTING

- + Expensive and time consuming
- + Reaction frame for the piles
- + Jack power

DYNAMIC PILE LOAD TESTING, METHODOLOGY

$$rac{\partial^2 u}{\partial t^2} = c^2 rac{\partial^2 u}{\partial x^2}$$

$$u(x,t) = F(x-ct) + G(x+ct)$$

DYNAMIC PILE LOAD TESTING, SHOAP IN DAY

MARKVIB

DYNAMIC PILE LOAD TESTING, PRACTICE

- Measurements
 Acceleration
 Strain
- Interpretation
 Case method
 Signal matching (CAPWAP)

- Fig-5 Schematic showing location of sensors attached to the pile.
- S1, S2- Strain Transducers A1, A2- Accelerometers

Fig-6 Typical arrangement

DLT AFTER COMPLETION AND DRIVING

TELU

NGV 2022 Sth Nordic Ground Vibration Day 24 October 2022 + Aarhus - Denmark

+ 20 days

+ 91 days

CALCULATION

With β = 0,2
tan(δ) = 0,7
1-sin(φ) = 0,43

+ Bearing capacity 2500 kN

PILE SHAFT BEARING CAPACITY COLOR OF CO

Pile shaft bearing capacity increase

CONCLUSIONS

- + The shaft friciton reaches the geostatic stress state
- + This requires 2-3 months
- + Early pile testing can verify the assumption
- + Calculation methods are available for these drilled piles
- + Time-dependent testing can be included in the design

THANK YOU!

