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Climate policy
“Now or never” SRUC

. “ipce
- Halt the rise In

emissions by 2025 Climate Change 2022
Mitigation of Climate Change

- Halve emissions by
2030 to achieve net
zero by 2050

- Limiting temperature
rise to < 1.5°C now
highly unlikely




- Biological emissions
* Non-CO, greenhouse gases
- Emissions and uptake

* Food production is a basic
human need

- \Wider socio-economic
implications

* |nertia




IPCCs projections for the agriculture and e ge
land use sector SRUC
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UK greenhouse gas emissions
J J SRUC
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UK policy development SRUC

- The UK should set an ambitious target to reduce
greenhouse gas emissions to 'net-zero' by 2050

» Agriculture and land use will be critical
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Carbon mitigation — where to start-

Cost-effectiveness
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UK GHG Emission Inventory
SRUC

* For national level reporting under
UNFCCC according to IPCC protocols

 Is the metric against which UK
compliance with emission reduction
targets will be assessed

« Comprises 5 reporting categories:
* Energy
* Industrial Processes
« Agriculture
« LULUCF
« Waste




UK agriculture

SRUC

Agriculture accounts for ~10 % of total GHG emissions in the UK
Livestock production is the main contributor
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System boundaries very important

UK and global

Embedded

emissions in inputs

SRUC
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Dairy Case Study Farm
Higher-yielding indoor dairy herd

* 410 Holstein cows
+ 252 ha platform
* 10,000 litres/cow

- Total emissions
— 4851 t CO,-eq
—1.18 kg CO,-eq/kg milk

Other 3%

Electricity 1%
Fuel 4%
Purchased
bedding 3%
High-yielding
indoor herd Purchased feed



Dairy PSS
Application of mitigations to National Inventory grycC

Table & Impact of key mitigations on GHG emissions from the whole UK dairy sector and on the overall Agricultural

Inventory.
Impact on
GHG reduction for UK dairy ~ GHG reduction for whole .

sector of UK agriculture * Scaled down Natlonal
Mitigation options kt CO,-eq % % Inventory model (200 cow
Methane inhibitor used in all dairy animals 2268 203 5.6 herd) explored impact of
Methane inhibitor used only in cows 1764 19.8 4.4 Im roved rOdUCtiVit
Increased productivity 1006 8.7 25 p p y
Reduce age at first calving from 29 to 24 months 467 40 1.2 ° Land re|eased and ut”ised

’
Use of nitnification inhibitor with dairy slurry application 178 16 04 . 0
Dairy slurry processed by AD 1343 120 33 for foreStry’ dellvered 15A)
Use of nitrification inhibitor with all N fertiliser applied to all 246 97 06 reduction in net GHG
UK grassland . .
] emissions

Combined effect of mitigations 13,456 5030 450 125



Ruminant mitigation

Improved productivity efficiency
(including animal and soil health)

Methane inhibitors

Improved application of manures
& fertilisers, nitrification & urease
inhibitors to reduce N,O
emissions. Fertiliser further
reduced by use of forage
legumes.

Afforestation of released land



Application of mitigation across all livestock 2 >< 2
sectors SRUC

Impact on national inventory reports

AMMONIA
GHG

GHGs need to be reduced by
64% to meet net zero target



Greenhouse gas removals

SRUC

Balancing emissions & removals by

* Mitigation is not enough 2050

100

* Carbon removals needed %
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Carbon removals

« Gross emissions from agriculture cannot be reduced to zero
due to natural/biological processes

* Role for carbon removal strategies such as:
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agroforestry sequestration weathering with Carbon Capture &
Capture and Carbon
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Carbon sequestration - opportunities P
& challenges SRUC

Opportunities
Low cost GHG mitigation

Co-benefits in terms of soil fertility, resilience & crop
production

Widespread opportunity
Challenges
Reversibility of carbon storage & carbon saturation
Non-CO, emissions
Measurement Reporting and Verification



UK soil carbon stocks

SRUC

Total UK soil carbon stocks: 4560 MT
to 100cm depth - Bradley et al. (2005)

Seminatural
44%

Grassland
29%

Woodland
9%
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Reporting

- National inventory reporting assumes soill
carbon stocks change only in response to
land use

— 20 year adjustment to new equilibrium conditions

- Without land use change, there is no change
in soil C stocks in grassland or cropland

* New IPCC guidelines allow reporting of soil
carbon stock changes within land use
categories




Measurements
Changes in soil carbon in Scotland 1978-2009 SRUC
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With Iand use change Without land use change

Change in soil
F carbon stock % Change in soil
Grassiand g Cropland Grassland carbon stock %
* Liming

Achieving carbon sequestration
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Net zero: implications for land use

SRUC
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Potentially edible protein in Scotland

SRUC

Barley
Wheat
Other cereal
Potato
Peas

Beans
Other plant

Beef
Sheep
Pigs
Broiler
Eggs
Dairy

Source of protein

Salmon and trout

0 20000 40000 60000 80000 100000 120000 140000
Production, tonnes per year Leinonen et al. 2020



Implications for land use change

SRUC

Total plant protein, t/ha/year Human edible plant protein, t/ha/year
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Arable land requirements per tonne
of lysine production SRUC
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Representing rotational LCAs by
different functional units

Protein Cereal
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Concluding remarks <>
SRUC

Net zero will be a major challenge for agriculture
and land use

Structural changes will lead to alterations in land
use and supply chains

Need widespread application of existing mitigation
technologies and new approaches

GHG removals will be critical

A more strategic approach to land use will be
needed



Thank you 2 >< 2

SRUC
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