Livestock production and feeding to reduce GHG emission from livestock

André Bannink

Wageningen Livestock Research

acknowledging colleagues Wageningen Livestock Research, Animal Nutrition Wageningen University & Research, Animal Nutrition

Ministerie van Landbouw, Natuur en Voedselkwaliteit

Feeding measures to mitigate

Relevant questions :

- How to attribute GHG emission to a dietary component ?
- How to study differences between (quality of) components ?
- How do GHG emissions vary with feeding conditions ?

For some realism :

- Quantifying GHG accurately
- Distinguishing types of roughages and by-products / concentrates
- Evaluate at the dietary level (feed intake, diet type, digestibility effects)
- Integral assessment

on-farm: enteric, excreta / manure, soil *off-farm*: production related GHG emissions, transport, soil C, deforestation,

Contents

- 1. Dietary measures
- 2. Feed additives (& fat supplement)

3. How to account for these ?

How to turn detailed knowledge into accounting?

1. Dietary measures to reduce enteric CH₄ per unit of feed

- Options
 - Harvesting grass silage and fresh herbage (grazing)
 - Cutting/grazing at younger stage, lower CH₄ yield (g CH₄/kg DM)
 - Whole plant silages (maize, wheat, ...)
 - Starch-rich, lower CH₄ yield than grass (-10 to -15%)
 - Protein-rich / fat-rich, lower CH₄ yield
 - Concentrates & byproducts
 - Same
- Early harvested grass, concentrates/by-products ferment well & much CH₄,
 - But also greater DM intake & faster fermentation \rightarrow lower CH₄ yield
- Larger rumen 'bypass' fraction (e.g. starch, protein, fat), lower CH₄ yield
 - E.g. later cutting of maize, greater bypass starch fraction, less fermented OM
- And not to forget physical aspects affecting intake & fermentation rate

Effect of grass silage quality on CH₄

						Warner et al., 2017
	Stage of maturity at cutting					Maturity
	leafy	boot	early hdng	late hdng		<i>P</i> -value
OM dig (%)	77.7	78.2	74.3	68.5		<0.01
NDF dig (%)	76.4	79.4	69.8	61.0		<0.01
CH ₄ (% GE)	5.7	6.5	6.5	6.8	+19%	<0.01
CH ₄ (g/kg DMI)	19.5	22.0	22.0	23.6	+21%	<0.01
CH ₄ (g/kg digOM)	27.5	30.9	32.2	36.8	+34%	<0.01
CH ₄ (g/kg milk)	10.7	12.8	13.5	13.8	+29%	<0.01

70% grass silage : 30% concentrates respiration chambers

Comparing grass products on CH₄

GreenFeed during grazing and in stall ~ 80% grass product : 20% concentrates

GreenFeed during grazing and in stall 40% fresh grass : 40% grass silage : 20% concentrates

Exchanging types of roughages, e.g. grass vs. maize

- Maize thought to produce considerably less CH₄ than grass
- According to meta-analysis : effective mitigation options
- Also under practical conditions ?

>>> see presentation by *Sanne van Gastelen* this afternoon

Trade-offs / synergies / limitations dietary measures

- Grass, earlier stage of maturity
 - Trade-off: potentially higher N content & excretion
 - Synergy: less manure OM and manure CH₄
 - Trade-off: lower yield grass sward
 - Limitation: difficult to unify with biodiversity & low N fertilization
- More maize / starch-rich plant silage
 - Limitation: not unifiable with EU-derogation
 - Limitation: not unifiable with more grazing ?
 - Trade-off: decline of soil C and nitrate leaching
- More dietary fat, starch, protein
 - Trade-off: relying on imports and emissions elsewhere
 - Limitation: less unifiable with circularity aim ?
 - Synergy: higher DMI & production level
 - Trade-off: decreased digestibility, increased N & OM excretion and emissions

WAGENINGEN UR

2. Additives / fat supplements to reduce enteric CH₄

- Options dietary supplements & feed additives
 - 3 categories of additives to reduce CH₄
 - Scavenging hydrogen (nitrate)
 - Methanogen inhibitors (bromoform, 3-nitrooxypropanol)
 - Plant extracts / herbs (essential oils, tannins, etc.)
 - 1 category of (unprotected) fat supplement
 - Crude fat (long chain fatty acids, triglycerides)

Figure derived from Duin et al. (2016)

Meta-analysis of 2 example additives (dairy)

Trade-offs / limitations feed additives

- Hydrogen sink (nitrate)
 - Extra N intake and NH₃ (can replace feed urea)
 - Up to 1% nitrate in DM no decline in DM intake
- Fats/fatty acids
 - C footprint / origin fat (e.g. palm oil)
 - Up to 7% crude fat in DM, decline / reduction DM intake & digestibility marginal
- Methanogen inhibitors
 - 3-NOP, no clear trade-offs; rumen degradation products naturally occur in silage
 - Bromoform, highly effective but questions on bromoform
- Plant extracts
 - Considered 'natural', affecting the microbiome, but rumen adaptation likely
 - Effects on DM intake and digestibility variable

effect -10%

Estimated effect

effect -10%

effect -30%

effect -0/-10%

3. Accounting for mitigating feeding measures

- Empirical data ~ regression equations / meta-analysis
 - Rather generic approach & use of general factors
 - Interaction between factors not included

- Modelling mode-of-action & mechanism
 - Allows to account for more details
 - Representing (variation in) the fermentation process
 - Interaction between factors included

Empirical approach, global meta-analysis

- Meta-analysis of feeding measures to mitigate CH₄
- Using a global dataset of treatment means data

Arndt et al., 2022, PNAS, in press

Strategies to Mitigate Enteric Methane Emissions by Ruminants – A Way to Approach the 2.0°C Target

Claudia Amdt^{a*}, Alexander N. Hristov^b, William J. Price^c, Shelby C. McClelland^d, Amalia M. Pelaez^e, Sergio F. Cueva^b, Joonpyo Oh^b, André Bannink^c, Ali R. Bayat^f, Les A. Crompton^g, Jan Dijkstra^e, Maguy A. Eugène^h, Emnias Kebreabⁱ, Michael Kreuzer^j, Mark McGee^k, Cécile Martin^h, Charles J. Newbold^l, Christopher K. Reynolds^g, Angela Schwarn^m, Kevin J. Shingfield^{f**}, Jolien B. Venemanⁿ, David R. Yáňez-Ruiz^e, and Zhongtang Yu^p.

Applicability empirical approaches

- Can be accurate, but dependant on dataset used / conditions met
- Equations
 - General explanatory factors & prediction average
 - May not reflect conditions of interest
 - No specific measures or details (e.g. digestive aspects, fermentable OM)
 - Boundaries for application

- Mechanistic / process-based approaches needed to
 - Predict (variation in) efficacy of measures
 - Perform condition-specific evaluations
 - Derive values for feed ingredients and diet types

A process-based approach (Dutch Tier 3)

Why process-based relevant for CH₄ ?

- Microbial processes in soils & stored manure, conditions and microbiota determine N₂O, CH₄ and CO₂ emissions
- In analogy, same expected for feedstuffs entering the rumen ?
- The cow rumen is a much better host-regulated environment
 - continuous inflow / outflow
 - chewed / chopped / fine-particulate feed
 - adaptive capacity absorbing rumen wall
 - relatively constant temperature
 - strictly anaerobic
 - acidity, osmotic value, moisture content
 - an adaptive/ redundant microbiome
- Still, dynamics in rumen are strong due to diet & feeding behaviour !

How to derive CH₄ for feeds(tuffs) ?

- Variation in diet gives variation in rumen conditions & microbiome
- Variation in rumen conditions (e.g. passage, acidity, pH, DM intake, type of substrate substrate, etc.) gives variation in microbial activity
- Hence, also variation to be expected in CH₄ yield

- Hence, a feedstuff does not have a single 'CH₄ value' but a rumen-condition dependant CH₄ 'value'
- How to quantify this, to be used in linear programming and when formulating low-CH₄ dairy rations ?

A process-based model to derive CH₄ for feedstuffs -- following a 'derivative' approach --

- A CH₄ emission Factor (EF) in g CH₄/kg DM
- A process-based model to account for rumen conditions

- Calculate an EF by 5% feedstuff inclusion in a given diet
- Assume the change in CH_4 (ΔCH_4) due to inclusion
- Derive EF feedstuffs DM from ΔCH_4
- Repeat with different diets to obtain a diet-specific EF for a feedstuff

EF values for individual feedstuffs

• A feedstuff an **EF** (g CH₄/kg feedstuff DM) calculated for a given diet

Feedstuff EF for different diet types

- 3 diet types with 0%, 40% and 80% maize silage in roughage DM
- An EF Table (g CH₄/kg feed DM) derived for each diet type

..... but different diet types possible

e.g. based on CP, NDF, starch, fat content % concentrates in DM OM digestibility rumen pH or

Original simulated value with Tier 3

Summed EF values of individual diet components

Summed EF values, interpolated from EF values at at 0%, 40% and 80% maize silage

When using details, when empirical equations ?

- Empirical approaches suffice for an average 'picture'
 - but not very specific for dietary measures or farm type
 - may still be accurate as average on a larger scale (national inventories, IPCC)
- When aiming to account for
 - diet- or farm-specific conditions
 - other variation in rumen conditions
 - efficacy of dietary measures
 - trends in EF
 - details on rumen manipulation
 - •

more details to be accounted for, represent the largest part of observed variation in the rumen, aiming to diversify EF values

Concluding remarks

- Dietary measures to mitigate enteric CH₄
 - Potential dietary measures moderate
 - Potential feed additives appears larger

(-10 to -15%) (-10 to -40%)

- Awareness of trade-offs/limitations, but synergies possible as well
 - DM intake, OM digestibility and N digestibility and excreted urine N
 - Legislation or farm management may limit implementation of measures
 - Careful ration formulation needed to prevent trade-offs
 - Dietary measures require much effort / change in farm management
- Diet- and farm-specific accounting of feeding measures
 - In reality, no fixed CH₄ value of feeds(tuffs) or efficacies of measures
 - Empirical approach for averages, more details for specificity
 - More representation of mechanisms / mode-of-action worthwhile
- Both empirical and process-based approaches useful; the choice depends on specificity & goal one pursuits

Inventory year in the Netherlands

for research &

An example: including rumen pH

Comparison to IPCC Tier 2 (6% GE intake)

A Bannink & J. Dijkstra WAGENINGEN

.....

A. Bannink & J. Dijkstra

A. Bornink & J. Dilkstn rooran Low Emission Animal I