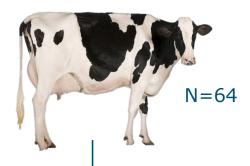
Enteric and manure emissions from dairy cattle fed grass silage- or maize silage-based diets

CEDERS project

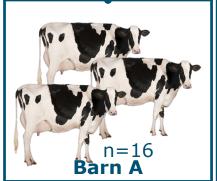
funded by NWO project ALW.GAS.2 & TKI-Agri & Food

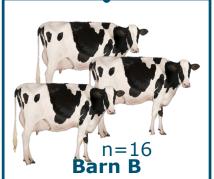
Sanne van Gastelen

Hendrik Jan van Dooren André Bannink

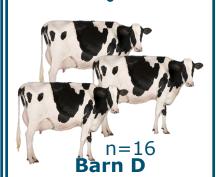


Objectives

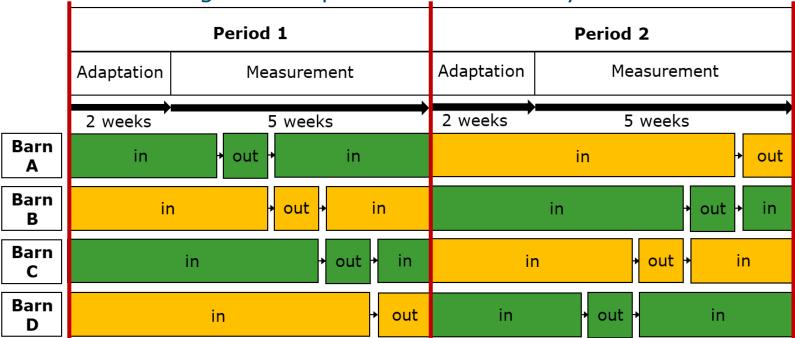

- 1. Evaluate potential trade-offs between enteric CH_4 emission and CH_4 emission from manure
- 2. Evaluate whether the effects in CH_4 emissions may cause a tradeoff or have a synergistic effect towards nitrogenous emissions (NH_3 and N_2O)



Animals



parity, lactation stage and milk yield



Experimental timeline

Cross-over design with 2 periods and 2 dietary treatments

Dietary treatments

g/kg DM	GS	MS
Organic matter (OM)	900	929
Crude protein (CP)	172	135
NDF	366	373
Starch	90	208
NE _L (MJ/kg DM)	6.7	6.6

Gas measurements

In each barn, ventilation rates were measured as well as concentrations of CH_4 , NH_3 and N_2O in sampled air with a Picarro G2508 multi-gas analyzer

- Corrected for background (cows absent for milking)
- Measurements without cows → after plateau is reached
- Manure emissions → expressed relative to total and experimental manure

Results: cow performance

	GS	MS
Milk yield (kg/d)	26.8	26.4
Fat- and protein-corrected milk yield (kg/d)	30.7ª	28.4 ^b
Milk fat content (g/100 g)	5.05ª	4.59 b
Milk protein content (g/100 g)	3.68ª	3.56 ^b
Milk urea content (mg/dL)	19.5ª	11.6 ^b
Feed efficiency (kg FPCM / kg DMI)	1.33ª	1.24 ^b

Results in line with

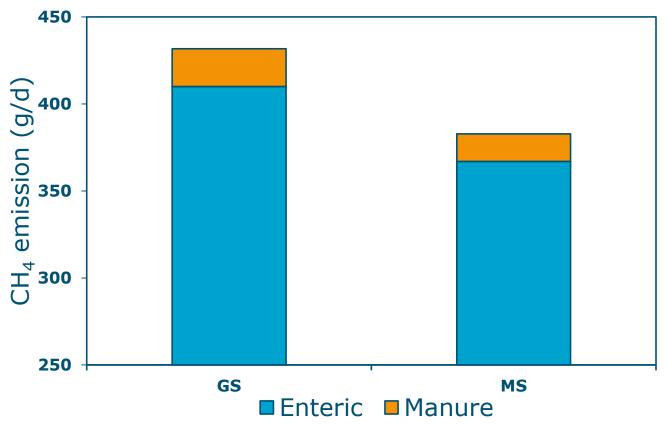
- decreased dietary CP content from 17.2% (GS) to 13.5% (MS)
- increased dietary starch content from 9.0% (GS) to 20.8% (MS)

Results: nutrient intake and digestibility

	GS	MS		
Intake (kg/cow/d)				
Dry matter	23.1	22.9		
Organic matter	20.8	21.3		
Crude protein	3.96ª	3.09 b	(
Starch	2.08ª	4.78 b	-	
Apparent total tract digestibility (%)				
NDF	79.0ª	57.5 b		
Starch	98.8	99.1		

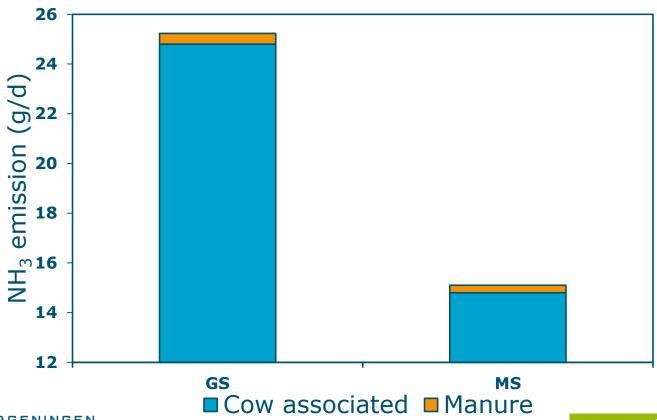
Results: nutrient excretion

	GS	MS	
Excretion (kg/cow/d))		
Dry matter	6.34	7.57	
Organic matter	4.53ª	6.14 ^b	-
Nitrogen	0.523ª	0.376 b	(
NDF	1.75ª	3.56 ^b	-
Starch	0.024ª	0.044b	-


Results: enteric and manure CH₄ emissions

- Enteric CH₄ emission was lower for the MS diet compared with the GS diet (-11%)
- Manure CH₄ emission was not affected by diet

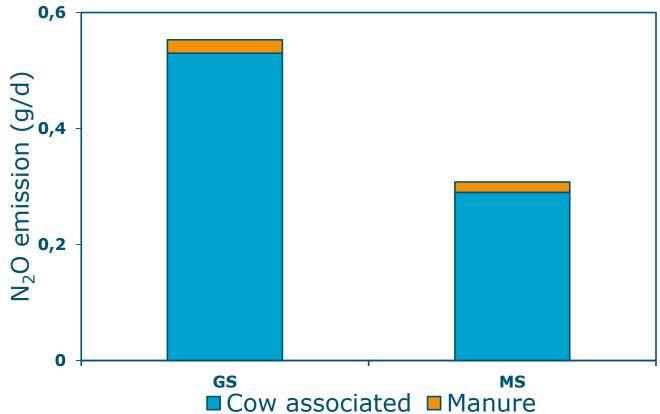
Results: enteric and manure CH₄ emissions



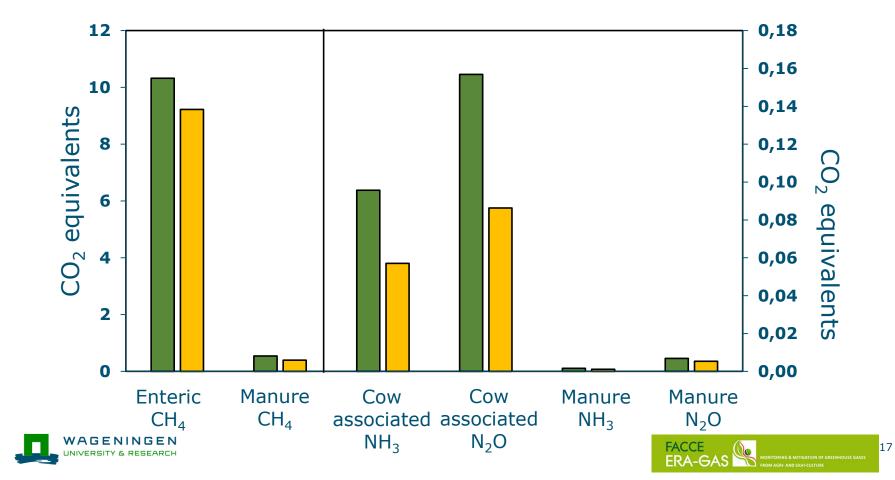
Results: nitrogenous emissions – NH₃

- Cow associated NH₃ emission was lower for the MS diet compared with the GS diet (-40%)
- Manure NH₃ emission tended to be lower for the MS diet compared with the GS diet

Results: nitrogenous emissions – NH₃


Results: nitrogenous emissions – N₂O

- Cow associated N_2 O emission was lower for the MS diet compared with the GS diet (-45%)
- Manure N₂O emission was not affected by diet


Results: nitrogenous emissions – N₂O

Results: GHG balance

Take home messages

In this short-term study:

- ❖ No trade-off between enteric and manure CH₄ emissions
- ❖ Synergistic effects for CH₄ and nitrogenous emissions

sanne.vangastelen@wur.nl

