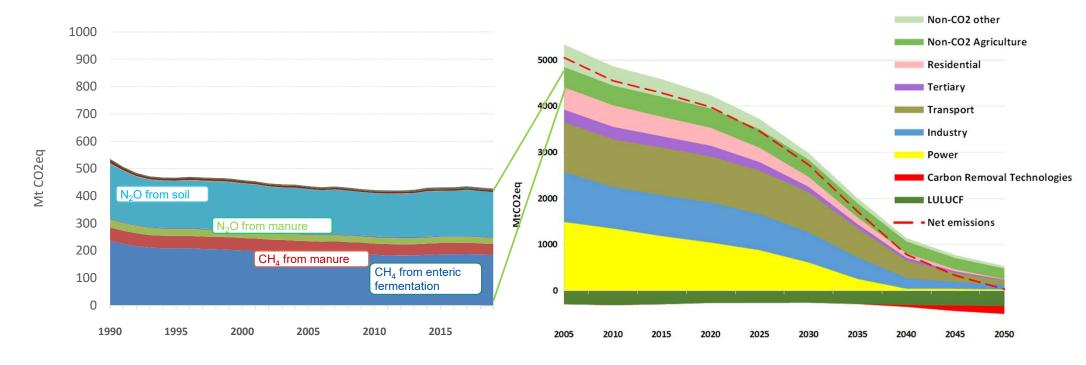


Systematic review of farming practices: translating science in policy relevant information for GHG mitigation

Simona Bosco, Joint Research Centre

May 4th 2022

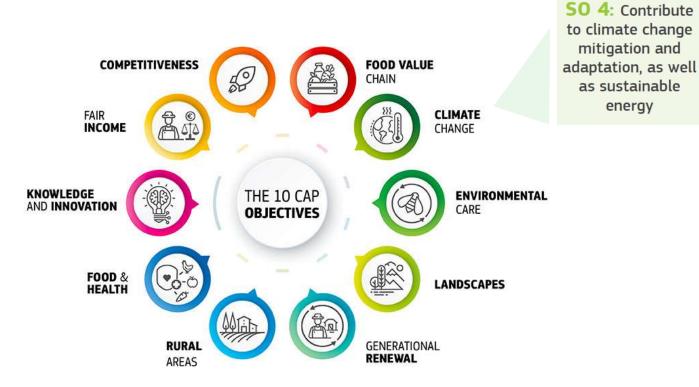
It is a team work



JRC-Food Security: M Pérez-Soba, A Schievano, S Bosco, A Montero, I. Guerrero, C Rega, V Angileri, R Catarino, M Assouline, JM Terres, F. Dentener

INRAE: D Makowski Univ. de Paris, Inserm: M Chen Univ. Bari: G Tamburini

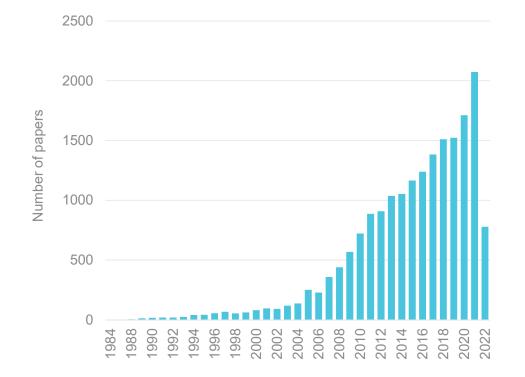
Trends and scenarios for GHG emissions in agriculture


COM(2018) 773 GHG emissions trajectory in a 1.5° C scenario

Important moment for climate mitigation in agriculture

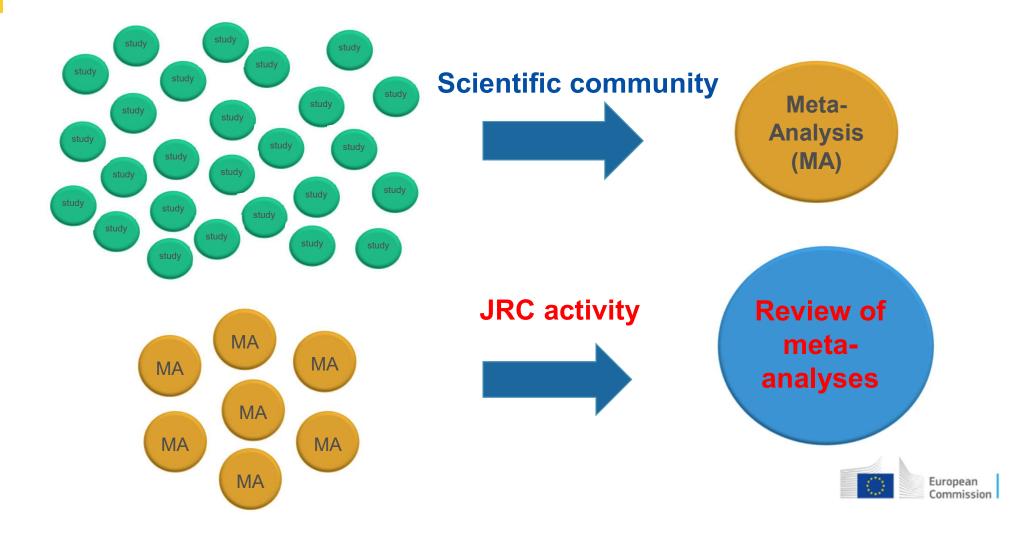
- Climate mitigation is included in all the policies related with agriculture
- New Common Agricultural Policy (CAP) will raise climate mitigation ambition

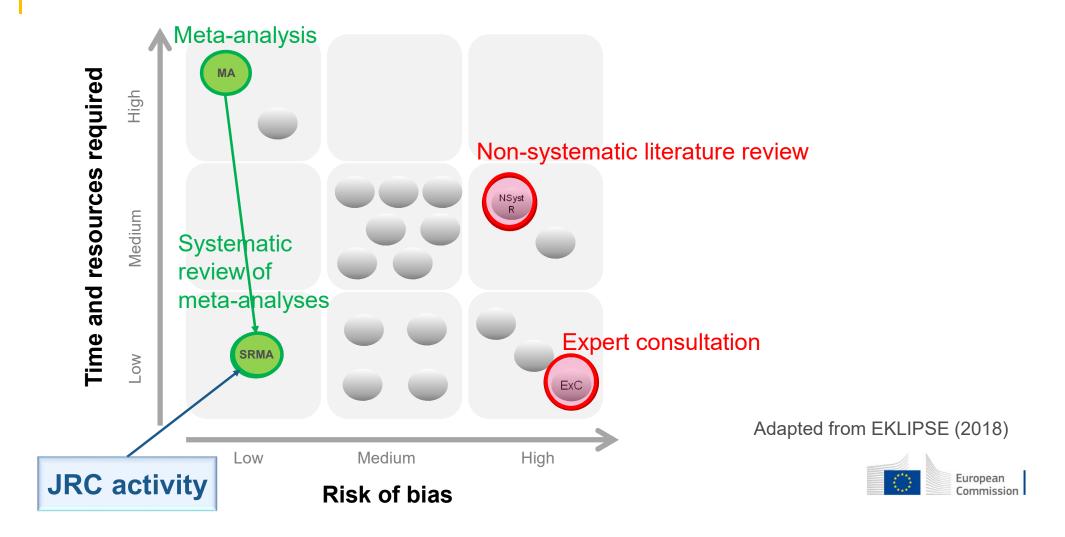
Evaluating the best option for climate mitigation in agriculture


These targets should be reflected in the CAP Strategic Plans of Member States

Which measure should be adopted by Member States?

Are CAP Strategic Plan ambitious enough?


Need of evidence based knowledge for policy


- High number of papers in the last 2 decades:
- 18,792 papers in Scopus on GHG emission AND agriculture
- How to synthesize this knowledge?

JRC method to synthesise scientific evidence

Methods available for knowledge synthesis

Systematic review of meta-analyses: the methodological framework

Literature search of existing metaanalyses

Screening and selection of metaanalyses

Data extraction and quality assessment

Reporting

- Search done both in WoS and Scopus DB
- The proposed framework is semiautomatic and it allows scientific experts to reduce the time needed in the reporting step.

Makowski et al., 2021. DOI: 10.31219/osf.io/byuw9

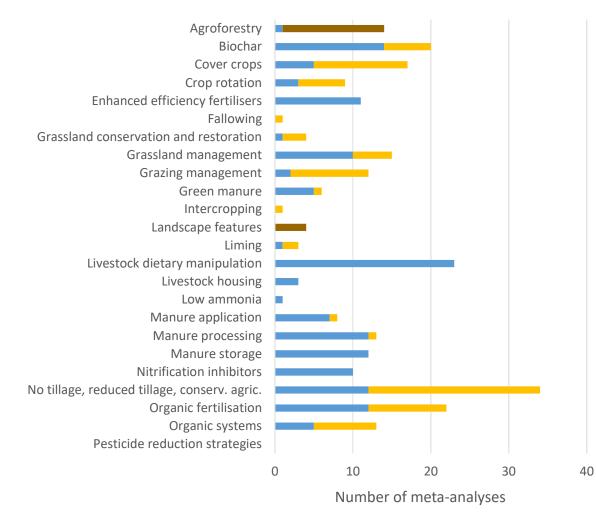
Quality criteria of the meta-analyses

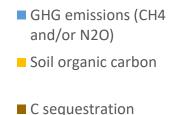
Quality of meta-analysis	 1. List of studies 2. Selection criteria 3. Objective specified 4. Databases mentioned 5. Search string 6. Number of studies at each step of the selection process 7. Quantitative results described
Quality of statistical analysis	 8. Statistical methods described 9. Individual effect sizes presented 10. Individual effect sizes weighted 11. Dataset available 12. Confidence intervals presented 13. Method of data extraction described
Risk of bias	 14. Heterogeneity of results analyzed 15. Funding sources mentioned 16. Publication bias analyzed

Effect size: is a quantitative measure of the magnitude of the experimental effect.

Review of farming practices (2021-2022)

- Agroforestry
- Organic systems
- Fallowing
- Landscape features
- Fertilisation strategies
 - Organic fertilisation
 - Green manure
 - Enhanced efficiency fertilisers
 - Nitrification inhibitors
 - Low ammonia emission techniques
- Soil amendments
 - Lime or gypsum
 - Biochar
- Pesticide reduction strategies


- Crop rotation
- Intercropping
- Cover crop
- No tillage, reduced tillage, conservation agriculture
- Grassland:
 - Grassland management
 - Grassland conservation and restoration
 - Grazing
- Livestock practices
 - Manure land application
 - Manure storage
 - Manure processing
 - Livestock dietary manipulation
 - Livestock housing techniques

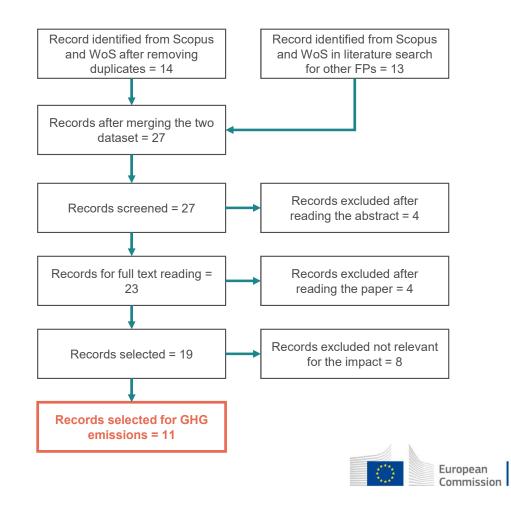

THE DATASET:

- 24 farming practices
- 540 meta-analyses
- Average of 22 meta-analyses per farming practice
- 27 impacts related to the environment and climate
- **4** impacts related to yield

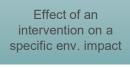
Three impacts related to climate change mitigation

(biomass + soil)

 All farming practices included results for impacts related to climate change mitigation except one


Some results on impact of farming practices on GHG emissions

- Enhanced efficiency fertilisers
- Livestock dietary manipulation
- Organic systems



Enhanced efficiency fertilisers: data extraction

- 19 meta-analyses from 1530 single papers
- 11 meta-analyses from 735 reporting results on GHG emissions
- We found 3 fertiliser types:
 - Control-release fertilisers
 - · Fertilisers amended with urease inhibitors
 - Fertilisers amended with double inhibitors

Enhanced efficiency fertilisers: summary of impacts

Fertiliser type Impact Positive	Negative	No effect	Uncertain
Decrease air pollutant emissions (NH ₃) 6 (6)	0	0	1(0)
Decrease air pollutant emissions (NO) 1(1)	0	0	0
Control-release Decrease GHG emissions (N2O) 6 (6)	0	3 (3)	1(0)
fertilisers (CRF) Decrease N leaching/run-off 2 (2)	0	0	0
Increase plant N uptake 2 (2)	0	0	0
Increase crop yield 4(4)	0	3 (3)	0
Decrease air pollutant emissions (NH ₃) 5 (5)	0	0 (0)	2 (0)
Fertilisers Decrease GHG emissions (N2O) 2 (2)	0	3 (3)	0
amended with Decrease N leaching/run-off o (o)	0	1 (1)	0
(UI) Increase plant N uptake 4(3)	0	0	0
Increase soil N content 1(1)	0	0	0
Increase crop yield 4(3)	0	0	0
Decrease air pollutant emissions (NH ₃) 1(1)	0	0	0
Fertilisers Decrease GHG emissions (N2O) 4 (4)	0	0	0
amended with Decrease N leaching/run-off o (o)	0	1 (1)	0
(DI) Increase plant N uptake 2 (2)	0	0	0
Increase soil N content o	0	1 (1)	0
Increase crop yield 2 (1)	0	2 (1)	0

(n) = number of studies with a quality > 50%

- Mainly positive results
- No trade-off.
- Knowledge gaps: results only for main crops (wheat and maize)

Livestock dietary manipulation: summary of impacts for GHG emissions

Impact	Metric	Intervention group	Intervention	Control	Positive	Negative	No effect	Uncertain*
		Diet formulation	Dietary legumes	Grass pasture/silage		0	0	1 (1)
			Forage with higher digestibility Forage with lower digestibility		0	0	0	1 (1)
			High concentrate level in diet Low concentrate level in diet		0	0	1 (1)	1 (1)
			Low CP diet No reduction of dietary CP		0	1 (0)	1 (1)	0
			Tannin-rich forages	No tannin-rich forage	0	0	0	1 (1)
	СН4	Feed additives	Coccidiostats and histomonostats	No feed additive	3 (3)	0	1(1)	1(1)
			Lipids	No lipid	4 (3)	0	3 (2)	1(1)
-			Non specified feed additives	eed additives No feed additive		1 (0)	0	0
			Nutritional additives	tional additives No feed additive		0	0	1 (1)
			Sensory additives	Monensin ³	0	0	1 (1)	0
			Sensory additives	No feed additive	6 (5)	0	5 (5)	3 (3)
			Technological additives	No feed additive	1(1)	0	3 (3)	0
			Zootechnical additives	No feed additive	8 (6)	0	2 (2)	2 (2)
	GHG	Diet formulation	High concentrate level in diet	Low concentrate level in diet	0	0	1 (1)	0
		Feed additives	Nutritional additives	No feed additive	1 (1)	0	0	0
	N2O	Diet formulation	Low CP diet	No reduction of dietary CP	1 (0)	0	1 (1)	0
			High concentrate level in diet	Low concentrate level in diet	0	0	0	1 (1)
		Feed additives	Coccidiostats and histomonostats	No feed additive	0	0	0	1 (1)
			Non specified feed additives	No feed additive	0	1 (0)	0	0
			Technological additives	No feed additive	0	0	1 (1)	0
			Zootechnical additives	No feed additive	0	0	0	1 (1)

- **30** meta-analyses (**23** with results on GHG emissions.
- > 80% on CH4 from ent. Fermentation
- Including several animal categories

Two main intervention groups:

- Diet formulation
- Feed additives

Livestock dietary manipulation: main results

- **Diet formulation**: no effect on CH₄ emissions
- Feed additives: some categories (coccidiostats, lidips and zootecnical additives) are effective for reducing CH₄ emissions but not N₂O emissions. Feed additive type and rate are the main driving factors.
- Trade-off:
 - Most do not have yield decrease except low crude protein diet and lipids;
- Knowledge gap: There is the need of studies on the whole-farm modelling in different feeding scenarios.

Organic farming: summary of impacts

	Effects per unit of AREA				
Impact	Positive	Negative	No effect	Uncertain	
Increase soil organic carbon	7 (6)	0	0	2 (1)	
Decrease greenhouse gas emissions (CH ₄)	1 (1)	0	0	1 (1)	
Decrease greenhouse gas emissions (N_2O)	2 (2)			1 (1)	
Decrease ammonia emission	0	0	1 (1)	0	
Decrease nutrient loss (Nitrogen)	3 (3)	0	0	0	
Decrease nutrient loss (Phosphorus)	0	0	2 (2)	0	
Increase soil nutrients	0	0		1 (0)	
Improve soil biological quality	1(1)	0	0	1 (0)	
Increase biodiversity	9 (9)	1 (1)	1 (1)	1 (0)	
Increase abundance of pests natural enemies	2 (2)	0	0	0	
Reduction of pests and diseases	0	2 (2)	0	0	
Increase crop yield	0	9 (9)	2 (2)	1 (0)	

- **30** meta-analyses
- **5** on GHG emissions
- 8 on soil carbon
- Trade-off for crop yield: effects per unit of product show contrasting results
- Meta-analysis of LCA studies

European Commission

Organic farming: summary of impacts

	Effects per unit of PRODUCT				
Impact	Positive	Negative	No effect	Uncertain	
Increase soil organic carbon	0	0	0	0	
Decrease greenhouse gas emissions (CO2eq)	1 (1)	0	3 (2)	1 (1)	
Decrease greenhouse gas emissions (CH ₄)	1 (1)	0	0	1 (1)	
Decrease greenhouse gas emissions (N ₂ O)	0	1 (1)	1 (1)	1 (1)	
Acidification	0	1 (1)	1 (1)	1 (1)	
Decrease ammonia emission	0	0	1 (1)	0	
Energy Use	3 (3)	2 (1)	2 (1)	1 (1)	
Decrease eutrophication	0	1 (1)	2 (2)	1 (1)	
Decrease nutrient loss (Nitrogen)	0	1 (1)	1 (1)	0	
Increase Land Use	0	3 (3)	0	1 (1)	

- **30** meta-analyses
- **5** on GHG emissions

•

- 8 on soil carbon
 - Trade-off for crop yield: effects per unit of product show contrasting results
- Meta-analysis of LCA studies

Quantitative results for policy and science

- Quantitative results from meta-analyses:
 - Overall effect size for policy assessment:
 - Consistent evaluation of mitigation potential and several environmental impacts to evaluate CAP Strategic Plans
 - One effect size does not fit all, we are extracting effect sizes for sub-groups (animal and crop type, climate, geographical area,...).
 - > Provide EF and parameters as input to models (e.g. CAPRI model, ...)
 - Need to analyse driving factors, such as climate and land-related ones, and on managementregionalisation.

Potential use of these results in GHG inventories

- This review of meta-analyses showed the mitigation potential of several farming practices that are not always well represented in the GHG inventories. How to use these data to improve the GHG inventories?
- Information on the uptake of these farming practices should be shared with environmental agencies.
- The inventory systems should be able to use these data (tier 2-3 methods).
 - CH₄ emissions from enteric fermentation: effect of mitigation strategies (diet formulation, feed additives) could be included in advanced tier 2 and in tier 3 (models)
 - N₂O emissions from soil: lower tiers are used. Need of include mitigation practices (correction factors, additional parameters, models)
- Benchmarking of models?

Concluding remarks

- This methodological framework ensures access to the best current scientific evidence with a lower risk of bias
- Study was developed for rapid policy assessment, but there is large potential to improve tiered approaches in GHG inventories, to use it as input and benchmark for models.
- We are using 16 quality criteria for our review. Quality of single studies and metaanalyses is pivotal.

Dissemination of results

- A wiki is already available to the European Commission policymakers and Member States
- A public wiki to share this information is about to be released
- Workshops with relevant stakeholders including scientific community will be organized

IMAP wiki is a platform to facilitate the implementation and evaluation of the CAP Strategic Plans, in particular for the objectives linked to cl content and features are added periodically.

The support includes:

Thank you

simona.bosco@ec.europa.eu

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Access the wiki

- Accessibility to the wiki is granted based on EU login registry, which is needed: external users can have access contacting JRC through the Functional Mail Box to be accredited
- <u>https://webgate.ec.europa.eu/fpfis/wikis/display/IMAP/Home</u>
- JRC-wiki-CAP-SP@ec.europa.eu

