BREEDING FOR LOW METHANE EMITTING COWS

ZERO GREENHOUSE GAS EMISSION AGRICULTURE COR4 28 JUNE 2021 POSTI

CORALIA INES V MANZANILLA PECH POSTDOC

кпоета

Sources: FAO, EDGAR, World Resources Institute 💿 👔 (=)

Livestock-Based Methane Emissions

About a quarter of U.S. methane emissions come straight out of livestock, most of it from belching.

SOURCES: EPA; FAO

METHANE EMISSIONS

Global estimates in grams,

CO₂-equivalent

PER GRAM OF PROTEIN

GENETICS IS PART OF THE LONG-TERM SOLUTION

ZERO GREENHOUSE GAS EMISSION AGRICULTURE 28 JUNE 2021 CORALIA INES V MANZANILLA PECH POSTDOC

Milk production increased through selection

U.S. milk production and dairy herd, 1980-2014

Source: USDA, Economic Research Service, Baseline Related Historical Data.

Genetic trends increased through selection

HOL

Source: NAV (Nordic Cattle Genetic Evaluation)

How does it work?

Phenotypic differences

ZERO GREENHOUSE GAS EMISSION AGRICULTURE 28 JUNE 2021 POSTDOC

CORALIA INES V MANZANILLA PECH

Animal variation

28 JUNE 2021

POSTDOC

PREDICTING PERFORMANCE

Other animals related

J. Dairy Sci. 103:9195–9206 https://doi.org/10.3168/jds.2019-17857

© 2020, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Multitrait genomic prediction of methane emissions in Danish Holstein cattle

C. I. V. Manzanilla-Pech,¹* **D. Gordo**,¹ **G. F. Difford**,^{1,2} **P. Løvendahl**,¹ and **J. Lassen**³ ¹Department of Molecular Biology and Genetics, Aarhus University, PO Box 50, DK-8830 Tjele, Denmark

¹Department of Molecular Biology and Genetics, Aarhus University, PO Box 50, DK-8830 Tjele, Denmark ²Department of Breeding and Genetics, Nofima AS, PO Box 210, N-1431 Ås, Norway ³Viking Genetics, Ebeltoftvej 16, Assentoft, 8960 Randers, Denmark

Figure 1. Accuracies of prediction of genomic EBV for methane, averaged across 10 validation groups per sub-scenario for BLUP and single-step genomic BLUP (SSGBLUP). CH_4 = methane concentration, OR = only reference, VR = validation + reference. Error bars represent SE.

J. Dairy Sci. 104 https://doi.org/10.3168/jds.2020-19889

© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Breeding for reduced methane emission and feed-efficient Holstein cows: An international response

	Molecille			
Table 8. Correlated respons	Si Hydrogen	I, residual fe	oli d	ECM using met production
(MeP) or residual methane (Hydrogen Carbon Water	nomic value: -0.60 ¹		
Item	Hydrogen	Cortes de sponse		Correla sponse
Index 1 Economic value for MeP Base scenario 0 -0.30 -0.60 Index 2 Economic value for RMet Base scenario 0 -0.30 -0.60	Expected response for MeP 0.36 0.30 0.23 0.15 Expected response for RMet 0.00 -0.02 -0.06 -0.10	Correlated response for DMI 1.10 0.71 0.66 0.59 Correlated response for DMI 1.10 0.71 0.72 0.73	Correlated response for MBW 1.54 -0.06 -0.61 -1.18 Correlated response for MBW 1.54 -0.06 -0.09 -0.12	Correlated response for ECM 2.64 2.45 2.36 2.31 Correlated response for ECM 2.64 2.46 2.45 2.44
Index 3 Economic value for MeP Base scenario 0 -0.30 -0.60 Index 4 Economic value for RMet Base scenario 0 -0.30 -0.30	$\begin{array}{c} -0.10\\ \hline \\ \text{Expected response}\\ & \text{for MeP}\\ & 0.36\\ & 0.33\\ & 0.26\\ \hline & 0.19\\ \hline \\ \text{Expected response}\\ & \text{for RMet}\\ & 0.00\\ & -0.05\\ & -0.09\\ & 0.40\\ \hline \end{array}$	Correlated response for RFI 0.33 0.28 0.25 0.22 Correlated response for RFI 0.33 0.28 0.28 0.22	-0.12 Correlated response for MBW 1.54 1.55 1.09 0.59 Correlated response for MBW 1.54 1.55 1.51	Correlated response for ECM 2.64 2.60 2.56 2.49 Correlated response for ECM 2.64 2.60 2.59
	Table 8. Correlated response (MeP) or residual methane (Item Index 1 Economic value for MeP Base scenario 0 -0.30 -0.60 Index 2 Economic value for RMet Base scenario 0 -0.60 Index 3 Economic value for MeP Base scenario 0 -0.60 Index 3 Economic value for MeP Base scenario 0 -0.60 Index 4 Economic value for RMet Base scenario 0 -0.60	Table 8. Correlated response (MeP) or residual methane (IItemIndex 1Economic value for MePBase scenario000.30-0.30-0.60Index 2Economic value for RMetBase scenario000.30-0.60000.30-0.60000.30-0.600.000-0.6010Index 3Economic value for MePBase scenario0.30-0.60-0.6010Index 4Economic value for RMetBase scenario0.33-0.30-0.6000.30-0.600.33-0.30-0.31	Table 8. Correlated response (MeP) or residual methane (IItemExpected response for MePCorrelated response for DMIBase scenario0.361.1000.300.71-0.300.230.66-0.600.150.59Index 2Expected response for RMetCorrelated response for DMIBase scenario0.360.71-0.300.230.66-0.600.150.59Index 2Expected response for RMetCorrelated response for DMIBase scenario0.001.100-0.020.71-0.30-0.060.72-0.600.100.73Index 3Expected response for MePCorrelated response for RFIBase scenario0.360.3300.260.25-0.600.190.22Index 4Expected response for RMet base scenarioCorrelated response for RFIBase scenario0.360.3300.260.25-0.600.190.22Index 4Expected response for RMet base scenarioCorrelated response for RMet base scenario0.000.330.28-0.30-0.090.26-0.30-0.090.26-0.30-0.090.26-0.30-0.130.24	Table 8. Correlated response (MeP) or residual methane (I)ItemItemIter (I)Iter (I)Iter (I)Iter (I)Index 1Expected response for MePCorrelated response for MePCorrelated response for MePCorrelated response for MBWBase scenario0.361.101.5400.300.71-0.06-0.600.150.59-1.18Index 2Economic value for RMetExpected response for RMetCorrelated response for DMICorrelated response for MBWBase scenario0.000.150.59-1.18Index 2Economic value for RMetExpected response for MBWCorrelated response for MBWBase scenario0.000.72-0.06-0.60-0.100.73-0.12Index 3Economic value for MeP Base scenarioExpected response for MePCorrelated response for RFICorrelated response for MBWBase scenario0.360.331.5400.2260.251.09-0.600.190.220.59Index 4Expected response for RMet 0.00Correlated response for RFICorrelated response for MBWBase scenario0.030.281.55-0.30-0.090.281.55-0.30-0.090.261.51-0.30-0.090.261.51-0.30-0.090.261.51-0.30-0.090.261.51

Genes for methane emission

Associations between SNP and phenotypes

Genome-wide association study for methane emission traits in Danish Holstein cattle

Manzanilla-Pech et al., 2021 JDS Under revision

Challenges

- New trait (recorded less than decade ago)
- Scarce records (few animals, multiple methods)
- Few studies (different countries)
- Disentangle the relationship between efficiency and methane emissions
- Account for methane emissions in the breeding goal

THANK YOU FOR YOUR ATTENTION

QUESTIONS?

